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Abstract. In this paper, we discuss the security of the ElGamal encryption scheme and its variant by
Damg̊ard. For the ElGamal encryption, we show that (1) under the generalized knowledge-of-exponent
assumption and the one-more discrete log assumption, ElGamal encryption is one-way under non-
adaptive chosen cipher attacks; (2) one-wayness of ElGamal encryption under non-adaptive chosen
cipher attacks is equivalent to the hardness of one-more computational Diffie-Hellman problem. For
a variant of ElGamal encryption proposed by Damg̊ard (DEG), we give a new proof that DEG is
semantically secure against non-adaptive chosen ciphertext attacks under the one-more decisional Diffie-
Hellman assumption (although the same result for DEG security has been presented in the literature
before, our proof is simpler). We also give a new security proof for DEG based on the decisional Diffie-
Hellman assumption (DDHA) and a weaker version of the knowledge-of-exponent assumption (KEA),
and note that KEA is stronger than necessary in the security proof of DEG, for which KEA was
originally proposed.
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1 Introduction

The ElGamal encryption scheme [6] is one of the classic public key encryption schemes. For public
key encryption schemes, three attack models are often used to analyze their security: chosen-
plaintext attacks (CPA), non-adaptive chosen-ciphertext attacks (CCA1), and adaptive chosen-
ciphertext attacks (CCA2). CCA2 is stronger than CCA1, and CCA1 is stronger than CPA (see,
e.g., [1]). ElGamal encryption is provably secure under CPA [10], and is insecure under CCA2. It
is conjectured to be secure under CCA1, but there has been no formal proof.

In [4], Damg̊ard proposed a variant of ElGamal encryption (DEG) and a new assumption known
as Knowledge-of-Exponent Assumption (KEA). Under an extension of of KEA named DHK1, DEG
is semantically secure under CCA1 (IND-CCA1) [3]. In [7], Gjøsteen proposed a new assumption
named Gap Subgroup Membership Assumption. Using this assumption and the hash proof system
approach, Gjøsteen proved that DEG is IND-CCA1 secure. DEG is the most efficient IND-CCA1
secure public key encryption scheme having a security proof without random oracles [3].

In this paper, first we investigate the connection between the security of ElGamal encryp-
tion and some known cryptographic assumptions, including the generalized knowledge-of-exponent
assumption (GKEA), one-more discrete log assumption (OMDLA), and one-more computational
Diffie-Hellman assumption (OMCDHA). The OMDLA that we use is a variant of the OMDLA
proposed in [2]. The relation between these two versions of OMDLA is discussed in [8]. OMCDHA
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was first proposed in [5]. Its relation with other one-more variant of DH problems is also discussed
in [8]. GKEA is first proposed in [11] to validate the use of KEA in some protocols in the literature.

We show that under GKEA and OMDLA, ElGamal encryption is one-way under CCA1 (OW-
CCA1), and one-wayness of ElGamal encryption under CCA1 is equivalent to the hardness of
OMCDH problem.

We also give a new proof that DEG is semantically secure against CCA1 (IND-CCA1) under the
one-more decisional Diffie-Hellman assumption (OMDDHA). Although the same result has been
presented in [7], our proof is simpler in that it uses a straightforward reduction without resorting
to the hash proof system as in [7].

Our proof for DEG security based on OMDDHA can be transformed to a proof based on DDHA
and a weaker version of KEA. This implies that KEA is stronger than necessary in the security
proof of DEG, for which KEA was originally proposed for.

The remainder of the paper is organized as follows. In Section 2, we present our security proof
for the ElGamal encryption scheme, and discuss the relations between OMCDHA, OMDLA, and
GKEA. In Section 3, we give our new proofs for DEG and discuss KEA. Section 4 concludes the
paper.

2 Security Of ElGamal Encryption

2.1 Scheme Description

First we recall the ElGamal encryption scheme. Let G be a multiplicative group of prime order q
and g be a generator of G. k ≈ log2 q will be used as the security parameter in the security analysis.
The scheme consists of three algorithms: key generation, encryption, and decryption. G, g, q are
default system parameters for these algorithms. In the following description, we use x

R←− X to
indicate that x is chosen from set X uniformly at random.

The key generation algorithm computes a public key u and a private key a as follows:

a
R←− Zq, u← ga.

The message space of the scheme is G. To encrypt a message m ∈ G, the encryption algorithm
computes a ciphertext c = (x, y) ∈ G×G as follows:

r
R←− Zq, x← gr, y ← m · ur.

To decrypt a ciphertext c = (x, y) ∈ G×G, the decryption algorithm computes

m← y/xa.

2.2 Security Analysis

First we review GKEA and OMDLA.

Assumption 1 The Generalized Knowledge-of-Exponent Assumption (GKEA) is as follows: Let
G be a group of prime order q, g be a generator of G, and k ≈ log2 q be the security parameter. Let
A be a polynomial time (in k) algorithm. A is given (x0, x0

a, · · · , xn, xn
a) where x1, · · · , xn ∈ G,

n is polynomial in k, and a
R←− Zq. If A outputs a pair (x, y) ∈ G2, then there exists a compiler E
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such that A′ = E(A), and A′ satisfies the following conditions: 1. A′ is polynomial time; 2. A′ has
the same input, output, and random tape accesses as A, except that in addition to x and y, A′ also
outputs (c0, · · · , cn) such that

Pr

[
n∏

i=0

xi
ci = x | y = xa

]
> 1− εgkea

where εgkea is negligible1.

GKEA was first proposed in [11] to validate the use of KEA in some protocols in the literature.

Assumption 2 The One-More Discrete Log Assumption (OMDLA) is as follows. Let G be a finite
cyclic group, g be a generator of G, and k ≈ log2 |G|. Let A be a probabilistic polynomial (in k)
time algorithm that takes input g and has access to two oracles. The first is a discrete log oracle
DLg(), which on input x ∈ G returns r such that x = gr. The second is a challenge oracle Cg()

that, when invoked, returns x
R←− G. A can access DLg() n times, where n is polynomial in k. The

OMDLA assumption assumes that after receiving a challenge x from Cg(), without further accesses
to the oracle DLg(), the probability that A outputs r such that gr = x is negligible.

Next we review the security notation. We define the following interactive game, Game 0, between
a probabilistic polynomial time (PPT) challenger C and a PPT adversary A. In the game, A can
ask for n decryptions from C. Then A tries to decrypt a fresh challenge ciphertext.

Game 0
C Messages A

1. a
R←− Zq, u← ga g, u

−→
Repeat 2 and 3 n times:
2. xi, yi←−−−
3. mi ← yi/xi

a mi−→
4. m

R←− G, r
R←− Zq, x← gr, y ← m · ur x, y

−→
5. m′

←−

Let S0 be the event that m′ = m in Game 0. We say that ElGamal encryption is one-way under
non-adaptive chosen ciphertext attack (OW-CCA1 secure) if Pr [S0] is negligible.

We show that ElGamal encryption is OW-CCA1 secure if GKEA and OMDLA hold. The sketch
of the proof is as follows: assuming that GKEA holds, if an adversary can break the scheme, then
using the adversary as a subroutine, a PPT algorithm can break the OMDLA. We follow the proof
style suggested in [9] to structure the proof as a sequence of games.

Theorem 3. If GKEA and OMDLA hold, then the ElGamal encryption scheme is OW-CCA1
secure.

Proof. We transform Game 0 to Game 1 by removing the values m in the messages.
1 We say ε(k), a function of the security parameter k, is negligible if for any polynomial Q, for k large enough, it

holds that ε(k) < 1/Q(k). For simplicity, we only write ε and make k implicit.
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Game 1
C Messages A

1. a
R←− Zq, u← ga g, u

−→
Repeat 2 and 3 n times:
2. xi←−
3. zi ← xi

a zi−→
4. x

R←− G x−→
5. z←−

We define S1 to be the event that z = xa in Game 1. It is clear that

Pr [S0] = Pr [S1] . (1)

We transform Game 1 to Game 2 by a conceptual change: instead of receiving x from C, A
generates a random x. Besides, A outputs x along with z.

Game 2
C Messages A

1. a
R←− Zq, u← ga g, u

−→
Repeat 2 and 3 n times:
2. xi←−
3. zi ← xi

a zi−→
4. x

R←− G
5. x, z

←−

We define S2 to be the event that z = xa in Game 2. It is clear that

Pr [S2] = Pr [S1] . (2)

In Game 2, A receives pairs (x0 = g, z0 = ga), (x1, z1 = x1
a), · · · , (xn, zn = xn

a). When A
outputs a pair (x, z), by GKEA, there is an extractor E such that A′ = E(A) and A′ has the same
input, output, and random tape accesses as A, except that, in addition to (x, z), A′ also outputs
r0, · · · , rn, such that

Pr

x =
∏

0≤i≤n

xi
ri |z = xa

 > 1− εgkea.

We replace A with A′ in Game 2 to generate Game 3. Note that A′ generates random x the
same way as A does.
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Game 3
C Messages A′

1. a
R←− Zq, u← ga g, u

−→
Repeat 2 and 3 n times:
2. xi←−
3. zi ← xi

a zi−→
4. x

R←− G
5. x, z, r0, · · · , rn←−−−−−−−−−−

Let S3 be the event that z = xa in Game 3. It is clear that

Pr [S3] = Pr [S2] . (3)

Let S′3 be the event that x =
∏

0≤i≤n xi
ri . By GKEA we have

Pr
[
S′3
]

> Pr [S3] (1− εgkea). (4)

Next we transform Game 3 into Game 4. In Game 4, C can query DLg(x) to compute the
logarithm of x, and A′ queries Cg() to receive a random x. The oracles DLg() and Cg() are as
defined in the OMDLA assumption.

Game 4
C Messages A′

1. a
R←− Zq, u← ga g, u

−→
Repeat 2 - 4 n times:
2. xi←−
3. ei ← DLg(xi)
4. zi ← xi

a zi−→
5. x←− Cg

6. x, z, r0, · · · , rn←−−−−−−−−−−
7. e = r0 + e1r1 + e2r2 + · · ·+ enrn

Let S4 be the event that ge = x. It is clear that

Pr [S4] = Pr
[
S′3
]
. (5)

In Game 4, DLg() is accessed n times, then Cg() outputs a random challenge x. e is computed
as a “guess” of the logarithm of x. Therefore,

Pr [S4] = AdvC
omdl (6)

where AdvC
omdl is the probability that the polynomial time algorithm C can solve the one-more DL

problem, which is negligible by OMDLA.
Combining (1) - (6), we conclude that Pr [S0] is negligible and hence ElGamal encryption is

OW-CCA1 secure. ut
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2.3 Relations Between The Assumptions

First, we consider the relation between OW-CCA1 security of ElGamal encryption and the following
one-more computational Diffie-Hellman assumption (OMCDHA).

Assumption 4 The One-More Computational Diffie-Hellman Assumption (OMCDHA) is as fol-
lows. Let G be a finite cyclic group of order q, g be a generator of G, and k ≈ log2 q. Let A be
a probabilistic polynomial (in k) time algorithm that takes input g, ga ∈ G where a

R←− Zq. A has
access to two oracles. The first is a CDH oracle CDHg,ga(), which on input x ∈ G returns xa. The

second is a challenge oracle Cg() that, when invoked, returns x
R←− G. A can access CDHg,ga() for

n times where n is polynomial in k. The OMCDHA assumes that after receiving a challenge x from
Cg(), without further access to the oracle CDHg,ga(), the probability that A outputs z such that
z = xa is negligible.

We observe that Game 1 is in fact a one-more computational Diffie-Hellman game. Therefore
we have the result:

Theorem 5. OW-CCA1 security of ElGamal encryption is equivalent to OMCDHA.

Since OMDLA and GKEA imply that the ElGamal encryption is OW-CCA1 secure, it also
holds that

Corollary 1. OMDLA and GKEA imply OMCDHA.

This result may be of independent interest in studying the relation between the assumptions.

3 Damg̊ard ElGamal Encryption

In this section, we use the one-more decisional Diffie-Hellman assumption (OMDDHA), which is the
Gap Subgroup Membership Assumption in prime order groups, to prove that DEG is IND-CCA1.
Our proof is simpler than the one in [7] in that it uses a straightforward reduction without resorting
to hash proof systems. Then, we transform this proof into a proof based on DDHA and a weaker
version of KEA, which leads to an observation on KEA.

3.1 Scheme Description

Let G be a group of prime order q and let g be a generator of G. DEG consists of three algo-
rithms: key generation, encryption, and decryption. G, g, q are default system parameters for these
algorithms.

The key generation algorithm computes a public key (u, v) ∈ G×G and a private key (a, b) ∈
Zq × Zq as follows:

a
R←− Zq, b

R←− Zq, u← ga, v ← gb.

The message space of the scheme is G. To encrypt a message m ∈ G, the encryption algorithm
computes a ciphertext c = (x, y, z) ∈ G3 as follows:

r
R←− Zq, x← gr, y ← ur, z ← m · vr.

To decrypt a ciphertext c, the decryption algorithm computes m as follows: if y = xa, then

m← z/xb.

Otherwise, the decryption algorithm returns ⊥ to indicate an invalid ciphertext.
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3.2 Security Analysis

First we define the OMDDHA:

Assumption 6 The One-More Decisional Diffie-Hellman Assumption (OMDDHA) is as follows:
Let G be a group of prime order q, g be a generator of G, and k ≈ log2 q. Let D be a probabilistic
polynomial (in k) time algorithm that takes input g, ga ∈ G where a

R←− Zq and A has access to two
oracles. The first is a DDH oracle DDHg,ga(), which on input (x, y) ∈ G2 returns 1 if y = xa and
returns 0 otherwise. The second is a challenge oracle Cg,ga() that, when invoked, returns a challenge

(x, xa) or (x, y) with equal probability where x
R←− G and y

R←− G. A can access DDHg,ga() for n
times where n is polynomial in k. The OMDDHA assumes that after receiving a challenge (x, y)
from Cg,ga(), without further accesses to the oracle DDHg,ga(), the advantage of D in this game,
defined as

AdvD
omddh =

∣∣∣Pr [D(x, y) = 1|y ← xa]− Pr
[
D(x, y) = 1|y R←− G

]∣∣∣ ,
is negligible.

Next we describe an interactive game, Game 0, between a PPT challenger C and a PPT adver-
sary A to define the semantic security of DEG under CCA1.

Game 0
C Messages A

1. a
R←− Zq, b

R←− Zq, u← ga, v ← gb g, u, v
−−−→

Repeat 2 - 5 n times:
2. xi, yi, zi←−−−−−
3. if yi = xi

a then mi ← zi/xi
b

4. else mi = ⊥
5. mi−→
6. m′

0,m
′
1←−−−−

7. d
R←− {0, 1}, r R←− Zq, x← gr

y ← ur, z′ ← vr, z ← m′
dz
′ x, y, z

−−−→
8. d′←−

We define S0 be the event that d′ = d in Game 0. The adversary’s advantage in this game is

AdvA
game0 = |Pr [S0]− 1/2| .

We say that DEG is IND-CCA1 secure if AdvA
game0 is negligible.

Next we prove the result:

Theorem 7. DEG is IND-CCA1 secure if OMDDHA holds.

Proof. We transform Game 0 to Game 1 by replacing y with a random element:
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Game 1
C Messages A

1. a
R←− Zq, b

R←− Zq, u← ga, v ← gb g, u, v
−−−→

Repeat 2 - 5 n times:
2. xi, yi, zi←−−−−−
3. if yi = xi

a then mi ← zi/xi
b

4. else mi = ⊥
5. mi−→
6. m′

0,m
′
1←−−−−

7. d
R←− {0, 1}, r R←− Zq, x← gr

y
R←− G, z′ ← vr, z ← m′

dz
′ x, y, z

−−−→
8. d′←−

Let S1 be the event that d′ = d in Game 1.
We construct the following algorithm D1 to solve the one-more DDH problem.

D
DDHg,ga ,Cg,ga

1 (g, ga) Messages A

1. b
R←− Zq, u← ga, v ← gb g, u, v

−−−→
Repeat 2 - 5 n times:
2. xi, yi, zi←−−−−−
3. if DDHg,ga(xi, yi) = 1 then mi ← zi/xi

b

4. else mi = ⊥
5. mi−→
6. m′

0,m
′
1←−−−−

7. d
R←− {0, 1}, (x, y)← Cg,ga(), z′ ← xb, z ← m′

dz
′

8. x, y, z
−−−→

9. d′←−
10. if d′ = d then return 1
11. else return 0

If in the challenge pair (x, y), y is generated by y ← xa, then the computation of A proceeds as
in Game 0, therefore

Pr [D1 = 1|(y ← xa)] = Pr [S0] .

If in the challenge pair (x, y), y is generated by y
R←− G, then the computation of A proceeds as

in Game 1, therefore
Pr
[
D1 = 1|(y R←− G)

]
= Pr [S1] .

It follows that

|Pr [S0]− Pr [S1] | =
∣∣∣Pr [D = 1|(y ← xa)]− Pr

[
D = 1|(y R←− G)

]∣∣∣ (7)

= AdvD1
omddh.
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Next we transform Game 1 to Game 2 by replacing z′ with a random element:

Game 2
C Messages A

1. a
R←− Zq, b

R←− Zq, u← ga, v ← gb g, u, v
−−−→

Repeat 2 - 5 n times:
2. xi, yi, zi←−−−−−
3. if yi = xi

a then mi ← zi/xi
b

4. else mi = ⊥
5. mi−→
6. m′

0,m
′
1←−−−−

7. d
R←− {0, 1}, r R←− Zq, x← gr

y
R←− G, z′

R←− G, z ← m′
dz
′ x, y, z

−−−→
8. d′←−

Let S2 be the event that d′ = d in Game 2. We construct the following algorithm D2 to solve the
one-more DDH problem.

D
DDHg,ga ,Cg,ga

2 (g, ga) Messages A

1. c
R←− Zq, u← ga, v ← uc g, u, v

−−−→
Repeat 2 - 5 n times:
2. xi, yi, zi←−−−−−
3. if DDHg,ga(xi, yi) = 1 then mi ← zi/yi

c

4. else mi = ⊥
5. mi−→
6. m′

0,m
′
1←−−−−

7. d
R←− {0, 1}, (x, z′)← Cg,ga(), y R←− G, z ← m′

dz
′c

8. x, y, z
−−−→

9. d′←−
10. if d′ = d then return 1
11. else return 0

Let b = ac. Then in D2, we have v = uc = gac = gb, and z′ = xa ⇔ z′c = xac = xb. Therefore,
if in the challenge pair (x, z′), z′ is generated by z′ ←− xa, then the computation of A proceeds as
in Game 1, and it holds that

Pr
[
D2 = 1|(z′ ← xa)

]
= Pr [S1] .

If in the challenge pair (x, z′), z′ is generated by z′
R←− G, then the computation of A proceeds as

in Game 2, therefore
Pr
[
D2 = 1|(z′ R←− G)

]
= Pr [S2] .
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It follows that

|Pr [S1]− Pr [S2] | =
∣∣∣Pr
[
D2 = 1|(z′ ← xa)

]
− Pr

[
D2 = 1|(z′ R←− G)

]∣∣∣ (8)

= AdvD2
omddh.

We also have Pr [S2] = 1/2 since z is independent of m′
b in Game 2. Therefore

|Pr [S0]− 1/2| ≤ AdvD1
omddh + AdvD2

omddh. (9)

We conclude that DEG is IND-CCA1 secure. ut

3.3 An Observation On KEA

First we review the KEA assumption.

Assumption 8 The Knowledge-of-Exponent Assumption (KEA) is as follows: Let G be a group of
prime order q, g be a generator of G, and k ≈ log2 q. Given g, ga where a

R←− Zq, for any polynomial
(in k) time algorithm A, if A outputs a pair (x, y) ∈ G2, then there exists a compiler E such that
A′ = E(A), and A′ satisfies the following conditions: (1) A′ is polynomial time; (2) A′ has the same
input, output and random tape access behaviour as A, except that in addition to x and y, A′ also
outputs r such that

Pr [x = gr|y = xa] > 1− εkea

where εkea is negligible.

KEA was originally proposed to prove the security of DEG. We observe that using the DDHA
and the following weaker version of KEA, we can prove that DEG is IND-CCA1 secure.

Assumption 9 The Weak Knowledge-of-Exponent Assumption (WKEA) is as follows: Let G be
a group of prime order q, g be a generator of G, and k ≈ log2 q. Given g, ga where a

R←− Zq, for any
polynomial (in k) time algorithm A, if A outputs a pair (x, y) ∈ G2, then there exists a compiler E
such that A′ = E(A), and A′ satisfies the following conditions: 1. A′ is polynomial time; 2. A′ has
the same input, output and random tape access behaviour as A, except that in addition to x and y,
A′ also outputs a bit e such that

Pr [e = 1|y = xa]− Pr[e = 1|y 6= xa] > 1− εwkea

where εwkea is negligible.

First, we observe that KEA is stronger than WKEA.

Lemma 1. KEA implies WKEA.

Proof. Suppose that KEA holds. We construct the algorithm A′ in WKEA (denoted as A′wkea)
based on the A′ in KEA (denoted as A′kea). Let (r, x, y) be the output of the A′kea and let (e, x, y)
be the output of A′wkea. We define that A′wkea outputs (1, x, y) if x = gr and y = (ga)r, otherwise
A′wkea outputs (0, x, y). It holds that

Pr[e = 0|y 6= xa] = 1
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and

Pr[e = 1|y = xa] ≥ Pr[e = 1 and x = gr|y = xa]
= Pr[e = 1|x = gr and y = xa] Pr[x = gr|y = xa]
> 1− εkea.

Therefore
Pr [e = 1|y = xa]− Pr[e = 1|y 6= xa] > 1− εkea.

ut

Informally speaking, WKEA says that A′ can tell if y = xa. On the other hand, KEA says that
A′ can tell if y = xa, and if y = xa, then A′ can also find r such that x = gr.

Next, we prove that DEG is IND-CCA1 secure if DDHA and WKEA hold.

Theorem 10. DEG is IND-CCA1 secure if DDHA and WKEA hold.

Proof. The proof is the same as that for Theorem 7 except that a different approach is used to
prove that |Pr [S0]− Pr [S1] | and |Pr [S1]− Pr [S2] | are negligible.

To show that |Pr [S0] − Pr [S1] | is negligible, we construct the following D1 to solve the DDH
problem. D1 receives a triple (ga, x, y) ∈ G3, then outputs 1 to indicate that y = xa or outputs 0
to indicate that y 6= xa. Note that D1 interacts with A′ = E(A) where A′ and E are as defined in
WKEA.

D1(ga, x, y) Messages A′

1. b
R←− Zq, u← ga, v ← gb g, u, v

−−−→
Repeat 2 - 5 n times:
2. ei, xi, yi, zi←−−−−−−−
3. if ei = 1 then mi ← zi/xi

b

4. else mi = ⊥
5. mi−→
6. m′

0,m
′
1←−−−−

7. d
R←− {0, 1}, z′ ← xb, z ← m′

dz
′

8. x, y, z
−−−→

9. d′←−
10. if d′ = d then return 1
11. else return 0

D1 checks if yi = xi
a by checking if ei = 1. By WKEA, in each round, D1 makes the correct decision

with probability greater than 1− εwkea. If D1 makes the correct decision in all n rounds, then the
computation of A′ proceeds the same way as A in Game 0 when y = xa, and it proceeds the same
way as A in Game 1 when y

R←− G (here we overlook the difference between y 6= xa and y
R←− G for

simplicity). Therefore,

|Pr [D1 = 1|(y ←− xa)]− Pr [S0]| ≤ 1− (1− εwkea)n
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and ∣∣∣Pr
[
D1 = 1|(y R←− G)

]
− Pr [S1]

∣∣∣ ≤ 1− (1− εwkea)n.

It follows that

|Pr [S0]− Pr [S1] | ≤ 2 (1− (1− εwkea)n) +
∣∣∣Pr [D1 = 1|(y ← xa)]− Pr

[
D1 = 1|(y R←− G)

]∣∣∣
= 2 (1− (1− εwkea)n) + AdvD1

ddh.

Note n is polynomial in k. If WKEA holds, then εwkea is negligible in k and limk→∞ nεwkea = 0.
We have that

lim
k→∞

2(1− (1− εwkea)n) = lim
k→∞

2

1−

(
1− 1

1
εwkea

) 1
εwkea

nεwkea


= lim
k→∞

2
(

1−
(

1
e

)nεwkea
)

= 0.

Therefore, |Pr [S0]− Pr [S1] | is negligible if WKEA and DDH hold.
To show that |Pr [S1]− Pr [S2] | is negligible, we construct the following algorithm D2 to solve

the DDH problem. D2 is given a triple (ga, x, z′) ∈ G3, and outputs 1 to indicate that z′ = xa or
outputs 0 to indicate that z′ 6= xa.

D2(ga, x, z′) Messages A′

1. c
R←− Zq, u← ga, v ← uc g, u, v

−−−→
Repeat 2 - 5 n times:
2. ei, xi, yi, zi←−−−−−−−
3. if ei = 1 then mi ← zi/yi

c

4. else mi = ⊥
5. mi−→
6. m′

0,m
′
1←−−−−

7. d
R←− {0, 1}, y R←− G, z ← m′

dz
′c

8. x, y, z
−−−→

9. d′←−
10. if d′ = d then return 1
11. else return 0

Using the same approach as in the case of D1, we can show that

|Pr [S1]− Pr [S2] | ≤ 2 (1− (1− εwkea)n) + AdvD2
ddh

which is negligible if WKEA and DDH holds. ut

The above results suggest that KEA is stronger than necessary in the security proof of DEG,
for which KEA was originally proposed for.
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4 Conclusion

In this paper, we showed that the ElGamal encryption is OW-CCA1 under the generalized knowledge-
of-exponent assumption (GKEA) and the one-more discrete log assumption (OMDLA), and its
security is equivalent to the hardness of the one-more computational Diffie-Hellman (OMCDH)
problem. For DEG, we gave a simple proof that DEG is IND-CCA1 secure under the one-more
decisional Diffie-Hellman assumption. We also gave a proof that DEG is IND-CCA1 secure under
the DDH assumption and a weaker version of the knowledge-of-exponent assumption (WKEA),
which suggests that KEA is stronger than necessary for the security proof of DEG, for which KEA
was originally proposed.
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