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NUMERICAL SIMULATION OF DYNAMOS WITH SCALE SEPARATION

Dinshaw Balsara

N.C.S.A., University of Illinois at Urbana-Champaign, USA

RESUMEN

El origen de los campos magnéticos en la astrof́ısica sigue siendo un reto para
la teoŕıa. La teoŕıa del dinamo de campo medio se ha desarrollado desde hace ya
algún tiempo pero tiene varios problemas. El crecimiento rápido del campo a es-
calas pequeñas, que supuestamente inhibe el aumento del campo a escalas grandes,
es uno de los mayores problemas. Una salida a este dilema está en la teoŕıa del
dinamo rápido. Sin embargo esta teoŕıa no ha podido desarrollarse tanto como uno
quisiera, haciendo necesario el uso de simulaciones. Presentamos simulaciones con
la resolución adecuada para separar las diferentes escalas. Se muestra que existen
soluciones del dinamo donde el campo crece rápidamente a todas las escalas, in-
cluyendo las mayores. Discutimos la enerǵıa que mantiene el espectro y la estructura
de dichos dinamos.

ABSTRACT

Explaining the origin of magnetic fields in astrophysical bodies has long been
a challenge for theorists. While mean field dynamo theory has been developed
for a while this theory runs into several problems. The rapid growth of small scale
magnetic fields which were thought to quench the emergence of larger scale fields was
thought to be a major problem. A way out of this dilemma exists through invoking
the theory of fast dynamos. However, the problem with fast dynamos is that the
theory cannot be developed as much as one would like, making it necessary to rely on
simulations. We provide simulations of dynamos with adequate resolution to have
a separation of scales. Dynamo solutions are shown to be possible with magnetic
fields growing rapidly on all scales including those larger than the forcing length
scales. We discuss the energy bearing structures and spectra of such dynamos.

Key Words: METHODS: NUMERICAL — MAGNETIC FIELDS —
MHD — GALAXY: STRUCTURE

1. INTRODUCTION

Classical dynamo theory was proposed as a way of explaining the growth of magnetic fields in astrophysical
bodies (Parker 1955; Krause & Radler 1980), and has yielded many insights. Application of classical dynamo
theory to bodies with large magnetic Reynolds number (Rem), such as the Galaxy (Rem ∼ 1019), has always
been slightly problematical (Kulsrud & Anderson 1992). Using the LDIA approximation (Kraichnan 1965),
Kulsrud & Anderson (1992) decomposed the magnetic field into a large scale and a small scale part. They
found that the small scale magnetic field grows much faster than the large scale magnetic field. Thus the small
scale magnetic fields are potentially capable of quenching the motions that could eventually have led to the
formation of large scale magnetic fields.

Since large values of Rem pose a problem, the idea of fast dynamos was proposed (Vainshtein & Zeldovich
1972; also see references in Childress & Gilbert 1995). Fast dynamos differ from classical dynamos in that the
growth times are comparable to the characteristic eddy turnover times in the flow and thus might provide a
way out of the dilemma. They have the problem, however, that their non-linear phase of evolution can only be
traced by direct numerical simulations. There is the additional problem that fast dynamo theory is valid only in
the limit of vanishingly small resistivity, thereby making direct simulation by a code that is non-linearly stable
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NUMERICAL SIMULATION OF DYNAMOS 93

very difficult. It is hoped that large simulations which have adequate scale separation between the forcing
scales, the large scales (larger than the forcing scales), and the small scales (smaller than the forcing scales)
might give us some insights on fast dynamo evolution. We present such simulations here.

The simulations were carried out on 2563 zone periodic domains. The set-up is similar to that in Balsara &
Pouquet (1999). An ABC forcing was applied to the velocity field on length scales of one sixth the computational
domain. The forcing was such as to become decorrelated on a certain coherence time. The ratio of coherence
time to eddy turn-over time ranged from 0.33 to 2.0, where the eddy turn-over time was 1.5 in code units. Over
30 eddy turnover times were simulated in each case. The forcing was such so as to maintain a Mach 1 flow
through the course of the simulation, consistent with Mach numbers in the ISM. We have used the RIEMANN
framework for computational astrophysics (see Balsara, these proceedings), for all the simulations. In § 2 we
discuss energy evolution, in § 3 we discuss spectra and in § 4 we give a brief conclusion.

2. EVOLUTION OF ENERGY BEARING STRUCTURES

Figure 1a shows the evolution of the kinetic energy, denoted by (V), and the magnetic energy, (M), in a
simulation where the ratio of coherence time to eddy turn-over time is 2.0. We see that the kinetic energy
saturates rapidly. However, the magnetic energy shows an initial phase of exponential growth with a growth
time of 3.06 code units. This time is comparable to the eddy turn-over time. Moreover, the simulations with
very different coherence times also grew with the same time of growth. This is significant because according
to the classical dynamo theory (see Krause & Radler 1980), the rate of growth should have been proportional
to α

2 where the dynamo’s α is proportional to the coherence time. Thus the different simulations, with vastly
different coherence times, should have very different growth rates according to classical dynamo theory. Fast
dynamo theory, on the other hand, predicts that their growth rate is comparable to the eddy turn-over time
which is almost the same for all the simulations. Since the different simulations underwent a linear phase of
growth with the same growth rate, it suggests that a fast dynamo is operating. When the magnetic energy
reaches 2% of the kinetic energy, a slower quasi-linear phase of evolution sets in and its growth rate decreases.
When the magnetic energy reaches 10% of the kinetic energy the evolution becomes strongly non-linear.
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Fig. 1. (a) Time history of the log of kinetic (V) and magnetic (M) energies. (b) Same as (a) but with large
scale (L) and small scale (S) magnetic energy shown separately.

In Figure 1b we plot the magnetic energy on scales larger than the forcing, denoted by L, and the magnetic
energy on scales smaller than the forcing, (S), and also the kinetic energy, (V). We see that the magnetic energy
on large and small scales grows at the same rate, but that on small scales saturates faster. The magnetic energy
on larger scales approaches saturation much more slowly. However, the saturation of magnetic energy on the
small scales does not prevent the magnetic energy on the large scales from growing. In view of the fact that
the different simulations have almost the same linear rates of growth, it is interesting to ask how they differ.
The answer is that the simulations with larger coherence times come much closer to equipartition between the
magnetic and kinetic energies than simulations with smaller coherence times. Thus the eddy coherence time
strongly influences the non-linear evolution of the field. In the non-linear phase of evolution it is significant to
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94 BALSARA

notice that the turbulence undergoes several episodes of strong decline and replenishment. After each of those
episodes, the small scale magnetic fields reach a strength that is comparable to their strength at the beginning
of the episode. However, the large scale fields reach a strength that is a little greater than their strength at the
beginning of the episode indicating that reorganization of large scale magnetic field structures is taking place.

3. EVOLUTION OF SPECTRA

Figure 2a shows several spectra of the magnetic energy plotted out on a log-log plot at equal time intervals.
The legends “0” through “5” correspond to increasing time. The simulation has a ratio of coherence time to
eddy turn-over time of 2.0 . The wave number of the forcing is given by log

10
(kforce) = 1.15 . We see that

the spectal energy on the small scales evolves rapidly, while the spectral energy on the larger scales grows very
slowly. The largest modes in the simulation are prevented from growing because of effects associated with the
finiteness of the computational domain. They are, therefore, excluded from spectral analysis.

Figure 2b shows the spectrum at the final time in the simulation. The small scales are best fit by the power
law EM (k) = k

−1.75, whereas the large scales are best fit by the power law EM (k) = k
−2.7 . Other runs in this

series of simulations show similar spectral indices.
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Fig. 2. (a) Several magnetic energy spectra at equal time intervals. (b) Final magnetic energy spectrum.

4. CONCLUSIONS

We have carried out several simulations of compressible dynamos. We notice that the time of growth is
comparable to the eddy turn-over time during the linear phase. Both large and small scale magnetic fields grow
at the same rate. The saturation of the small scale magnetic fields does not stop the large scale magnetic fields
from growing. The coherence time of the eddies is seen to strongly influence the final saturated magnetic energies
but not the growth rate during the linear phase of evolution. Spectral analysis provides further confirmation
of this scenario. Spectral indices for small and large scale magnetic field structures are also derived.
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