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Abstract

We present a new approach to the design of IND-CCA2 secure hybrid encryption schemes
in the standard model. Our approach provides an efficient generic transformation from
1-universal to 2-universal hash proof systems. The transformation involves a randomness
extractor based on a 4-wise independent hash function as the key derivation function. Our
methodology can be instantiated with efficient schemes based on standard intractability
assumptions such as DDH, QR and Paillier. Interestingly, our framework also allows to prove
IND-CCA2 security of a hybrid version of 1991’s Damg̊ard’s ElGamal public-key encryption
scheme under the DDH assumption.

Keywords: Chosen-ciphertext security, hybrid encryption, randomness extraction, hash
proof systems, ElGamal

1 Introduction

Chosen-Ciphertext Security. Indistinguishability against chosen-ciphertext attack (IND-
CCA2 security) is by now the accepted standard security definition for public-key encryption
schemes. It started with the development of security under lunchtime attacks (also called IND-
CCA1) by Naor and Yung [22], who also gave a proof of feasibility using inefficient non-interactive
zero-knowledge techniques. This was extended to the more involved systems with IND-CCA2
security in their full generality [24, 9].

Known practical constructions. Efficient designs in the standard model were first pre-
sented in the breakthrough works of Cramer and Shoup [3, 4, 5, 26]. At the heart of their design
methodology is the notion of hash proof systems (HPSs), generalizing the initial system based
on the decisional Diffie-Hellman (DDH) problem. Moreover, they are the first to formalize the
notion of “Hybrid Encryption,” where a public key cryptosystem is used to encapsulate the
(session) key of a symmetric cipher which is subsequently used to conceal the data. This is also
known as the KEM-DEM approach, after its two constituent parts (the KEM for key encapsu-
lation mechanism, the DEM for data encapsulation mechanism); it is the most efficient way to
employ a public key cryptosystem (and encrypting general strings rather than group elements).

Kurosawa and Desmedt [19] later improved upon the original work of Cramer and Shoup
with a new paradigm. Whereas Cramer and Shoup [5] require both the KEM and the DEM
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IND-CCA2 secure, Kurosawa and Desmedt show that with a stronger requirement on the DEM
(i.e., one-time authenticated encryption), the requirement on the KEM becomes weaker and can
be satisfied with any strongly 2-universal hash proof system. (Cramer and Shoup need both a
2-universal and a smooth hash proof system.)

Main Result. The main result of this work is a new paradigm for constructing IND-CCA2
secure hybrid encryption schemes, based on the Kurosawa-Desmedt paradigm. At its core is
a surprisingly clean and efficient new method employing randomness extraction (as part of
the key derivation) to transform a 1-universal hash proof system (that only assures IND-CCA1
security) to a 2-universal hash proof system. From that point on we follow the Kurosawa-
Desmedt paradigm: combination with a one-time authenticated encryption scheme (as DEM)
will provide IND-CCA2 security of the hybrid encryption scheme.

For the new transformation to work we require a sufficiently compressing 4-wise independent
hash function (made part of the public key); we also need a generalization of the leftover hash
lemma [15] that may be of independent interest. The efficient transformation enables the design
of new and efficient IND-CCA2 secure hybrid encryption schemes based on various hard subset
membership problem, such as the DDH assumption, Paillier’s DCR assumption, the family of
Linear assumptions, and the quadratic residuosity assumption.

A New Proof for Hybrid Damg̊ard’s ElGamal. One application of our method is centered
around Damg̊ard’s public-key scheme [6] (from 1991) which he proved IND-CCA1 secure under
the rather strong knowledge of exponent assumption.1 This scheme can be viewed as a “double-
base” variant of the original ElGamal encryption scheme [11] and consequently it is often referred
to as Damg̊ard’s ElGamal in the literature. We first view the scheme as a hybrid encryption
scheme (as advocated in [26, 5]), applying our methodology of randomness extraction in the
KEM’s symmetric key derivation before the authenticated encryption (as DEM). The resulting
scheme is a hybrid Damg̊ard’s ElGamal which is IND-CCA2 secure, under the standard DDH
assumption. We furthermore propose a couple of variants of our basic hybrid scheme that
offer certain efficiency tradeoffs. Compared to Cramer and Shoup’s original scheme [3] and the
improved scheme given by Kurosawa-Desmedt [19], our scheme crucially removes the dependence
on the hard to construct target collision hash functions (UOWHF), using an easy-to-instantiate
4-wise independent hash function instead.

Related Work. Various previous proofs of variants of Damg̊ard’s original scheme have been
suggested after Damg̊ard himself proved it IND-CCA1 secure under the strong “knowledge of
exponent” assumption (an assumption that has often been criticized in the literature; e.g., it is
not efficiently falsifiable according to the classification of Naor [21]). More recent works are by
Gjøsteen [14] who showed the scheme IND-CCA1 secure under some interactive version of the
DDH assumption, where the adversary is given oracle access to some (restricted) DDH oracle.
Also, Wu and Stinson [29], and at the same time Lipmaa [20] improve on the above two results.
However, their security results are much weaker than ours: they only prove IND-CCA1 security
of Damg̊ard’s ElGamal, still requiring security assumptions that are either interactive or of
“knowledge of exponent” type. Finally, Hieu and Desmedt [7] recently showed a hybrid variant
that is IND-CCA2 secure, yet under an even stronger assumption than Damg̊ard’s.

We remark that Cramer and Shoup [4] already proposed a generic transformation from 1-
universal to 2-universal HPSs. Unfortunately their construction involves a significant overhead:
the key of their transformed 2-universal HPS has linearly many keys of the original 1-universal

1This assumption basically states that given two group elements (g1, g2) with unknown discrete logarithm
ω = logg1

(g2), the only way to efficiently compute (gx
1 , gx

2 ) is to know the exponent x.
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HPS. We further remark that the notion of randomness extraction has had numerous applications
in complexity and cryptography, and in particular in extracting random keys at the final step
of key exchange protocols. Indeed, Cramer and Shoup [4] already proposed using a pairwise
independent hash function to turn a 1-universal HPS into a 2-universal HPS. Our novel usage is
within the context of hybrid encryption as a tool that shifts the integrity checking at decryption
time solely to the DEM portion. In stark contrast to the generic transformations by Cramer and
Shoup ours is practical. We also remark that several other works also use the general concept
of randomness extraction in the setting of public-key cryptography, e.g., [2, 5, 8, 12].

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N
then 1k denotes the string of k ones. If S is a set then s←R S denotes the operation of picking
an element s of S uniformly at random. We write A(x, y, . . .) to indicate that A is an algorithm
with inputs x, y, . . . and by z ←R A(x, y, . . .) we denote the operation of running A with inputs
(x, y, . . .) and letting z be the output. We write lg x for logarithms over the reals with base 2.
The statistical distance between two random variables X and Y having a common domain X
is SD(X,Y ) = 1

2

∑
x∈X |Pr[X = x] − Pr[Y = x]|. The min-entropy of a random variable A is

defined as H∞(A) = − lg(maxa∈D Pr[A = a]).

2.2 Public-Key Encryption

A public key encryption scheme PKE = (Kg,Enc,Dec) with message space M(k) consists of
three polynomial time algorithms (PTAs), of which the first two, Kg and Enc, are probabilistic
and the last one, Dec, is deterministic. Public/secret keys for security parameter k ∈ N are
generated using (pk , sk)←R Kg(1k). Given such a key pair, a message m ∈ M(k) is encrypted
by C ←R Enc(pk ,m); a ciphertext is decrypted by m ←R Dec(sk,C ), where possibly Dec
outputs ⊥ to denote an invalid ciphertext. For consistency, we require that for all k ∈ N, all
messages m ∈ M(k), it must hold that Pr[Dec(sk ,Enc(pk ,m)) = m] = 1 where the probability
is taken over the above randomized algorithms and (pk , sk)←R Kg(1k).

The security we require for PKE is IND-CCA2 security [24, 10]. We define the advantage of
an adversary A = (A1,A2) as

Advcca2
PKE,A(k) def=

∣∣∣∣∣∣∣Pr

b = b′ :
(pk , sk)←R Kg(1k) ; (m0,m1,St)←R A

Dec(sk ,·)
1 (pk)

b←R {0, 1} ; C ∗ ←R Enc(pk ,mb)
b′ ←R A

Dec(sk ,·)
2 (C ∗,St)

− 1
2

∣∣∣∣∣∣∣ .
The adversary A2 is restricted not to query Dec(sk , ·) with C ∗. PKE scheme PKE is said
to be indistinguishable against chosen-ciphertext attacks (IND-CCA2 secure in short) if the
advantage function Advcca2

PKE,A(k) is a negligible function in k for all adversaries A = (A1,A2) with
probabilistic PTA A1, A2.

For integers k, t,Q we also define Advcca2
PKE,t,Q(k) = maxA Advcca2

PKE,A(k), where the maximum
is over all A that run in time at most t while making at most Q decryption queries.

We also mention the weaker security notion of indistinguishability against lunch-time at-
tacks (IND-CCA1 security), which is defined as IND-CCA2 security with the restriction that the
adversary is not allowed to make decryption queries after having seen the challenge ciphertext.
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2.3 Hash Proof Systems

Smooth Projective Hashing. We recall the notion of hash proof systems as introduced by
Cramer and Shoup [4]. Let C,K be sets and V ⊂ C a language. In the context of public-key
encryption (and viewing a hash proof system as a key-encapsulation mechanism (KEM) with
special algebraic properties) and may think of C as the set of all ciphertexts, V as the set of
all consistent ciphertexts, and K as the set of all symmetric keys. Let Λsk : C → K be a hash
function indexed with sk ∈ SK, where SK is a set. A hash function Λsk is projective if there
exists a projection µ : SK → PK such that µ(sk) ∈ PK defines the action of Λsk over the subset
V. That is, for every C ∈ V, the value K = Λsk (C) is uniquely determined by µ(sk) and C. In
contrast, nothing is guaranteed for C ∈ C \ V, and it may not be possible to compute Λsk (C)
from µ(sk) and C. More precisely, following [17] we define 1- and 2-universal as follows.

1-universal. The projective hash function is ε1-almost 1-universal if for all C ∈ C \ V,

SD((pk ,Λsk (C)), (pk ,K)) ≤ ε1 (1)

where in the above pk = µ(sk) for sk ←R SK and K ←R K.

2-universal. The projective hash function is ε2-almost 2-universal if for all C,C∗ ∈ C \ V with
C 6= C∗,

SD((pk ,Λsk (C∗),Λsk (C)), (pk ,Λsk (C∗),K)) ≤ ε2 (2)

where in the above pk = µ(sk) for sk ←R SK and K ←R K.

To a projective hash function we also associate the collision probability, δ, defined as

δ = max
C,C∗∈C\V,C 6=C∗

(Pr
sk

[Λsk (C) = Λsk (C∗)]) . (3)

Hash Proof System. A hash proof system HPS = (Param,Pub,Priv) consists of three algo-
rithms. The randomized algorithm Param(1k) generates parametrized instances of params =
(group,K, C,V,PK,SK,Λ(·) : C → K, µ : SK → PK), where group may contain some additional
structural parameters. The deterministic public evaluation algorithm Pub inputs the projection
key pk = µ(sk), C ∈ V and a witness r of the fact that C ∈ V and returns K = Λsk (C). The
deterministic private evaluation algorithm Priv inputs sk ∈ SK and returns Λsk (C), without
knowing a witness. We further assume that µ is efficiently computable and that there are ef-
ficient algorithms given for sampling sk ∈ SK and sampling C ∈ V uniformly together with a
witness r.

We say that a hash proof system is 1- (resp. 2-universal) if for all possible outcomes of
Param(1k) the underlying projective hash function is ε1(k)-almost 1-universal (resp. ε2(k)-almost
2-universal) for negligible ε1(k) (resp. ε2(k)).

Subset Membership Problem. As computational problem we require that the subset mem-
bership problem is hard in HPS which means that for random C0 ∈ V and random C1 ∈ C \ V
the two elements C0 and C1 are computationally indistinguishable. This is captured by defining
the advantage function Advsm

HPS,A(k) of an adversary A as

Advsm
HPS,A(k) def=

∣∣ Pr[A(C,V, C1) = 1]− Pr[A(C,V, C0) = 1]
∣∣

where C is taken from the output of Param(1k), C1 ←R C and C0 ←R C \ V.

Hash Proof Systems with Trapdoor. Following [19], we also require that the subset
membership problem can be efficiently solved with a master trapdoor. More formally, we assume
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that the hash proof system HPS additionally contains two algorithms Param′ and Decide. The
alternative parameter generator Param′(1k) generates output indistinguishable from the one of
Param(1k) and additionally returns a trapdoor ω. The subset membership deciding algorithm
Decide(params, ω, x) returns 1 if x ∈ V, and 0, otherwise. All known hash proof systems actually
have such a trapdoor.

2.4 Symmetric Encryption

A symmetric encryption scheme SE = (E,D) is specified by its encryption algorithm E (encrypt-
ing m ∈M(k) with keys S ∈ KSE(k)) and decryption algorithm D (returning m ∈M(k) or ⊥).
Here we restrict ourselves to deterministic algorithms E and D.

The most common notion of security for symmetric encryption is that of (one-time) cipher-
text indistinguishability (IND-OT), which requires that all efficient adversaries fail to distinguish
between the encryptions of two messages of their choice. Another common security requirement
is ciphertext authenticity. (One-time) ciphertext integrity (INT-OT) requires that no efficient
adversary can produce a new valid ciphertext under some key when given one encryption of a
message of his choice under the same key. A symmetric encryption scheme which satisfies both
requirements simultaneously is called secure in the sense of authenticated encryption (AE-OT
secure). Note that AE-OT security is a stronger notion than chosen-ciphertext security. Formal
definitions and constructions are provided in Appendix B. There we also recall (following the
encrypt-then-mac approach [1, 5]) how to build a symmetric scheme with k-bit keys secure in
the sense of AE-OT from the following basic primitives:
• a (computationally secure) one-time symmetric encryption scheme with k-bit keys;
• a (computationally secure) MAC (existentially unforgeable) with k-bit keys;
• and a (computationally secure) key-derivation function.

3 Randomness Extraction

In this section we review a few concepts related to probability distributions and extracting
uniform bits from weak random sources. As a technical tool for our new paradigm, we will
prove the following generalization of the leftover hash lemma [15]: if H is 4-wise independent,
then (H,H(X),H(X̃)) is close to uniformly random, where X, X̃ can be dependent (but of
course we have to require X 6= X̃).

Let HS be a family of hash functions H : X → Y. With |HS| we denote the number of
functions in this family and when sampling from HS we assume a uniform distribution. Let
k > 1 be an integer, the hash-family HS is k-wise independent if for any sequence of distinct
elements x1, . . . , xk ∈ X the random variables H(x1), . . . ,H(xk), where H ←R HS, are uniform
random.2

Recall that the leftover hash lemma states that for a 2-wise independent hash function H
and a random variable X with min-entropy exceeding the bitlength of H’s range, the random
variable (H,H(X)) is close to uniformly random [15].

Lemma 3.1 Let X ∈ X be a random variable where H∞(X) ≥ κ. Let HS be a family of
pairwise independent hash functions with domain X and image {0, 1}`. Then for H ←R HS and
U` ←R {0, 1}`

SD((H,H(X)), (H, U`)) ≤ 2(`−κ)/2 .

2 A simple construction of a k-wise independent hash function Zp → Zp is the following: to sample a function,
sample k elements c0, . . . , ck−1 ←R Zk

p, and define hc0,...,ck−1(X) = c0 + c1X + c2X
2 + . . . + ck−1X

k−1 mod p.
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We will now prove a generalization of the leftover hash lemma that states that even when
the hash function is evaluated in two distinct points, the two outputs jointly still look uniformly
random. To make this work, we need a 4-wise independent hash function and, as before, sufficient
min-entropy in the input distribution. We do note that, unsurprisingly, the loss of entropy
compared to Lemma 3.1 is higher, as expressed in the bound on the statistical distance (or
alternatively, in the bound on the min-entropy required in the input distribution).

Lemma 3.2 Let (X, X̃) ∈ X × X be two random variables (having joint distribution) where
H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃] = 0. Let HS be a family of 4-wise independent hash
functions with domain X and image {0, 1}`. Then for H ←R HS and U2` ←R {0, 1}2`,

SD((H,H(X),H(X̃)), (H, U2`)) ≤ 2`−κ/2 .

Proof: Let d = lg |HS|. For a random variable Y and Y ′ an independent copy of Y , we denote
with Col(Y ) = Pr[Y = Y ′] the collision probability of Y , in particular

Col(H,H(X),H(X̃)) = Pr
H,(X,X̃),H′,(X′,X̃′)

[(H,H(X),H(X̃)) = (H′,H′(X ′),H′(X̃ ′))]

= Pr
H,H′

[H = H′] · Pr
H,(X,X̃),H′,(X′,X̃′)

[(H(X),H(X̃)) = (H′(X ′),H′(X̃ ′))|H = H′]

= Pr
H,H′

[H = H′]︸ ︷︷ ︸
=2−d

· Pr
H,(X,X̃),(X′,X̃′)

[(H(X),H(X̃)) = (H(X ′),H(X̃ ′))] . (4)

We define the event E, which holds if X, X̃,X ′, X̃ ′ are pairwise different.

Pr
(X,X̃),(X′,X̃′)

[¬E] = Pr
(X,X̃),(X′,X̃′)

[X = X ′ ∨X = X̃ ′ ∨ X̃ = X ′ ∨ X̃ = X̃ ′]

≤ 4 · 2−κ = 2−κ+2

Where in the first step we used that X 6= X̃,X ′ 6= X̃ ′ by assumption, and in the second step
we use the union bound and also our assumption that the min entropy of X and X̃ is at least
κ (and thus e.g. Pr[X = X ′] ≤ 2−κ). With this we can write (4) as

Col(H,H(X),H(X̃)) ≤ 2−d · (Pr[(H(X),H(X̃)) = (H(X ′),H(X̃ ′))|E] + Pr[¬E]) (5)

≤ 2−d(2−2` + 2−κ+2) (6)

where in the second step we used that H is 4-wise independent. Let Y be a random variable
with support Y and U be uniform over Y, then

‖Y − U‖22 = Col(Y )− |Y|−1

in particular

‖(H,H(X),H(X̃))− (H, U2`)‖22 = Col(H,H(X),H(X̃))− 2−d−2`

≤ 2−d(2−2` + 2−κ+2)− 2−d−2` = 2−d−κ+2

Using that ‖Y ‖1 ≤
√
|Y|‖Y ‖2 for any random variable Y with support Y, we obtain

SD((H,H(X),H(X̃)), (H, U2`)) =
1
2
‖(H,H(X),H(X̃))− (H, U2`)‖1

≤ 1
2

√
2d+2`‖(H,H(X),H(X̃))− (H, U2`)‖2

≤ 1
2

√
2d+2`

√
2−d−κ+2 = 2`−κ/2 .
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This concludes the proof.

We note that if Pr[X = X̃] = δ > 0, this introduces an additional term of at most δ to the
statistical difference above. Moreover, the statement also holds when auxiliary information Z
about X and X̃ leaks, as long as H∞(X|Z) ≥ κ and H∞(X̃|Z) ≥ κ (and H is independent of
(X, X̃, Z)).

4 Hybrid Encryption from Randomness Extraction

In this section we revisit the general construction of hybrid encryption from 2-universal hash
proof systems. As our main technical result we show an efficient transformation from a 1-
universal to a 2-universal HPS. Combining the latter with an AE-OT secure symmetric cipher
gives an IND-CCA2 secure hybrid encryption scheme. This result can be readily applied to
all known 1-universal hash proof systems with a hard subset membership problem (e.g., from
Paillier, QR [4], DDH, and n-Linear [17, 25]) to obtain a number of new IND-CCA2 secure
hybrid encryption schemes. In Sections 5 and 6 we will work out the consequences for DDH-
based schemes.

4.1 Hybrid Encryption from HPS

Recall the notion of a hash proof system from Section 2.3. Kurosawa and Desmedt [19] proposed
the following hybrid encryption scheme which improved the schemes from Cramer and Shoup [4].

Let HPS = (Param,Pub,Priv) be a hash proof system and let SE = (E,D) be an AE-OT
secure symmetric encryption scheme with key-space K. The system parameters of the scheme
consist of params ←R Param(1k).

Kg(k). Choose random sk ←R SK and define pk = µ(sk) ∈ PK. Return (pk , sk).

Enc(pk ,m). Pick C ←R V together with its witness r that C ∈ V. The session key K =
Λsk (C) ∈ K is computed as K ← Pub(pk , C, r). The symmetric ciphertext is ψ ← EK(m).
Return the ciphertext (C , ψ).

Dec(sk ,C ). Reconstruct the key K = Λsk (C) as K ← Priv(sk , C) and return {m,⊥} ← DK(ψ).

Note that the trapdoor property of the HPS is not used in the actual scheme: it is only
needed in the proof. However, as an alternative the trapdoor can be added to the secret key.3

This allows explicit rejection of invalid ciphertexts during decryption. The security of this
explicit-rejection variant is identical to that of the scheme above.

The following was proved in [19, 13, 17].

Theorem 4.1 Assume HPS is ε2-almost 2-universal with hard subset membership problem
(with trapdoor), and SE is AE-OT secure. Then the encryption scheme is secure in the sense of
IND-CCA2. In particular,

Advcca2
PKE,t,Q(k) ≤ Advsm

HPS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q · ε2 .

We remark that even though in general the KEM part of the above scheme cannot be proved
IND-CCA2 secure [16], it can be proved “IND-CCCA” secure. The latter notion was defined

3Strictly speaking the algorithm to sample elements in V (with witness) should then be regarded as part of
the public key instead of simply a system parameter.
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in [17] and proved sufficient to yield IND-CCA2 secure encryption when combined with a AE-OT
secure cipher.

There is also an analogue “lite version” for 1-universal HPS, giving IND-CCA1 only (and
using a slightly weaker asymmetric primitive). It can be stated as follows.

Theorem 4.2 Assume HPS is 1-universal with hard subset membership problem and SE is
WAE-OT secure. Then the encryption scheme is secure in the sense of IND-CCA1.

4.2 A Generic Transformation from 1-Universal to 2-Universal HPS

Our transformation is as follows. Given a projective hash function Λsk : C → K with projection
µ : SK → PK and a family of hash functions HS with H : K → {0, 1}`. Then we define the
hashed variant of it as:

ΛHSsk : C → {0, 1}`, ΛHSsk (C) := Hτ (Λsk (C)) .

We also define PKHS = PK × HS and SKHS = SK × HS, such the the hashed projection
is given by µHS : SKHS → PKHS , µHS(sk ,H) = (pk ,H). This also induces a transformation
from a hash proof system HPS into HPSHS , where the above transformation is applied to the
projective hash function. Note that C and V are the same for HPS and HPSHS (so that in
particular the trapdoor property for the language V is inherited).

We are now ready to state our main theorem.

Theorem 4.3 Assume HPS is ε1-almost 1-universal with collision probability δ and HS is a
family of 4-wise independent hash functions with H : K → {0, 1}`. Then HPSHS is ε2-almost
2-universal for

ε2 =
3
2
· 2`√
|K|

+ 3ε1 + δ .

Proof: Let us consider, for all C,C∗ ∈ C \ V with C 6= C∗, the statistical distance relevant
for 2-universality for HPS and let Y be the random variable (pk ,H, U2`) where pk = µ(sk) for
sk ←R SK, H ←R HS and U2` ←R {0, 1}2`. Then we can use the triangle inequality to get

SD((pk ,H,H(Λsk (C∗)),H(Λsk (C))), (pk ,H,H(Λsk (C∗)), U`))

≤ SD((pk ,H,H(Λsk (C∗)),H(Λsk (C))), Y )) + SD(Y, (pk ,H,H(Λsk (C∗)), U`)) (7)

where as before pk = µ(sk) for sk ←R SK, H ←R HS and U` ←R {0, 1}`. We can upper bound
the second term of (7), using again the triangle inequality in the first step, as

SD(Y, (pk ,H,H(Λsk (C∗)), U`))

≤ SD(Y, (pk ,H,H(K), U`)) + SD((pk ,H,H(K), U`), (pk ,H,H(Λsk (C∗))), U`)

≤ SD(Y, (pk ,H,H(K), U`)) + SD((pk ,K), (pk ,Λsk (C∗)))

≤ 2
`−κ
2 + ε1 ,

where κ = lg(|K|). In the last step we used the (standard) leftover hash-lemma (Lemma 3.1)
and ε1-almost universality of the HPS (cf. (1)) which states that for any C ∈ C \ V,

SD((pk ,K), (pk ,Λsk (C))) = SD(K,Λsk (C) | pk) ≤ ε1 .
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By the above, for C ∈ C \ V we can define an event EC , such that H∞(Λsk (C) | pk , EC) =
H∞(K | pk) = κ where Pr[¬EC ] ≤ ε1. Further, let ECol denote the event [Λsk (C) 6= Λsk (C∗)],
by assumption Prsk[¬ECol ] ≤ δ.

We now bound the first term of (7) as

SD((pk ,H,H(Λsk (C∗)),H(Λsk (C))), Y )

≤ SD((pk ,H,H(Λsk (C∗)),H(Λsk (C))), Y | EC ∧ EC∗ ∧ ECol ) + Pr
sk

[¬EC ∨ ¬EC∗ ∨ ¬ECol ]

≤ 2
2`−κ

2 + 2ε1 + δ

where in the last step we used Lemma 3.2.

4.3 Hybrid Encryption from 1-Universal HPSs

Putting the pieces from the last two section together we get a new IND-CCA2 secure hybrid
encryption scheme from any 1-universal hash proof system. Let HPS = (Param,Pub,Priv) be
a hash proof system, let HS be a family of hash functions with H : K → {0, 1}` and let
SE = (E,D) be an AE-OT secure symmetric encryption scheme with key-space {0, 1}`. The
system parameters of the scheme consist of params ←R Param(1k).

Kg(k). Choose random sk ←R SK and define pk = µ(sk) ∈ PK. Pick a random hash key τ for
H. The public-key is (τ, pk), the secret-key is (τ, sk).

Enc(pk ,m). Pick C ←R V together with its witness r that C ∈ V. The session key K =
Hτ (Λsk (C)) ∈ {0, 1}l is computed as K ← Hτ (Pub(pk , C, r)). The symmetric ciphertext
is ψ ← EK(m). Return the ciphertext (C , ψ).

Dec(sk ,C ). Reconstruct the keyK = Hτ (Λsk (C)) asK ← Hτ (Priv(sk , C)) and return {m,⊥} ←
DK(ψ).

Combining Theorems 4.1 and 4.3 gives us the following corollary.

Corollary 4.4 Assume HPS is ε1-almost 1-universal with hard subset membership problem
and with collision probability δ, that HS is a family of 4-wise independent hash functions with
H : K → {0, 1}`, and that SE is AE-OT secure. Then the encryption scheme above is secure in
the sense of IND-CCA2. In particular,

Advcca2
PKE,t,Q(k) ≤ Advsm

HPS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +Q · (3
2
· 2`√
|K|

+ 3ε1 + δ) .

5 Instantiations from the DDH Assumption

In this section we discuss two practical instantations of our randomness extraction framework
whose security is based on the DDH assumption. A concrete instantiation from the QR assump-
tion can be found in Appendix A.
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5.1 The Decisional Diffie-Hellman (DDH) Assumption

A group scheme GS [5] specifies a sequence (GRk)k∈N of group descriptions. For every value of
a security parameter k ∈ N, the pair GRk = (Gk, pk) specifies a cyclic (multiplicative) group
Gk of prime order pk. Henceforth, for notational convenience, we tend to drop the index k. We
assume the existence of an efficient sampling algorithm x ←R G and an efficient membership
algorithm. We define the ddh-advantage of an adversary B as

Advddh
GS,B(k) def=

∣∣Pr[B(g1, g2, gr
1, g

r
2) = 1]− Pr[B(g1, g2, gr

1, g
r̃
2) = 1]

∣∣ ,
where g1, g2 ←R G, r ←R Zp, r̃ ←R Zp \ {r}. We say that the DDH problem is hard in GS if
the advantage function Advddh

GS,B(k) is a negligible function in k for all probabilistic PTA B.

5.2 Variant 1: the Scheme HE1

The 1-universal hash proof system. We recall a 1-universal HPS by Cramer and Shoup [4],
whose hard subset membership problem is based on the DDH assumption. Let GS be a group
scheme where GRk specifies (G, p) and let g1, g2 be two independent generators of G. Define
C = G2 and V = {(gr

1, g
r
2) ⊂ G2 : r ∈ Zp}. The value r ∈ Zp is a witness of C ∈ V.

The trapdoor generator Param picks a uniform trapdoor ω ∈ Zp and computes g2 = gω
1 . Note

that using trapdoor ω, algorithm Decide can efficienctly perform subset membership tests for
C = (c1, c2) ∈ C by checking whether cω1 = c2.

Let SK = Z2
p, PK = G, and K = G. For sk = (x1, x2) ∈ Z2

p, define µ(sk) = X = gx1
1 gx2

2 .
This defines the output of Param(1k). For C = (c1, c2) ∈ C define

Λsk (C) := cx1
1 c

x2
2 . (8)

This defines Priv(sk , C). Given pk = µ(sk), C ∈ V and a witness r ∈ Zp such that C = (c1, c2) =
(gr

1, g
r
2) public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = Xr .

Correctness follows by (8) and the definition of µ. This completes the description of HPS.
Clearly, under the DDH assumption, the subset membership problem is hard in HPS. Moreover,
this HPS is known to be (perfect) 1-universal [4]:

Lemma 5.1 The above HPS is perfect 1-universal (so ε1 = 0) with collision probability δ = 1/p.

Proof: For perfect 1-universality, it suffices to show that given the public key X and any pair
(C,K) ∈ (C\V)×K, there exists exactly one secret key sk such that µ(sk) = X and Λsk (C) = K.
Let ω ∈ Z∗p be such that g2 = gω

1 , write C = (gr
1, g

s
2) for r 6= s and consider a possible secret

key sk = (x1, x2) ∈ Z2
p. Then we simultaneously need that µ(sk) = gx1+ωx2

1 = X = gx (for some
x ∈ Zp) and Λsk (C) = grx1+sωx2

1 = K = gy
1 (for some y ∈ Zp). Then, using linear algebra, x1

and x2 follow uniquely from r, s, x, y and ω provided that the relevant determinant (s−r)ω 6= 0.
This is guaranteed here since r 6= s and ω 6= 0.

To verify the bound on the collision probability δ it suffices —due to symmetry— to determine
for any distinct pair (C,C∗) ∈ (C \ V)2 the probability Prsk [Λsk (C) = Λsk (C∗)]. In other words,

10



for (r, s) 6= (r′, s′) (with r 6= s and r′ 6= s′, but that is irrelevant here) we have that

δ = Pr
x1,x2←RZp

[grx1+x2ωs
1 = gr′x1+x2ωs′

1 ]

= Pr
x1,x2←RZp

[rx1 + x2ωs = r′x1 + x2ωs
′]

= 1/p .

(For the last step, use that if r 6= r′ for any x2 only one x1 will “work”; if r = r′ then necessarily
s 6= s′ and for any x1 there is a unique x2 to satisfy the equation).

The hybrid encryption scheme HE1. For our hybrid encryption scheme we make the fol-
lowing assumptions.
• Let GS be a group scheme where GRk specifies (G, p) and the DDH assumption holds;
• Let HS be a family Hk : G→ {0, 1}`(k) of 4-wise independent hash functions with lg p ≥

4`(k);
• Let SE = (E,D) be a AE-OT secure symmetric scheme with key-space {0, 1}`(k).

Applying the transformation from Theorem 4.3 one obtains an ε-almost 2-universal hash proof
system with ε ≤ 2 · 2−`(k) (using Lemma 5.1 and |G| = p ≥ 24`(k)). The resulting hybrid
encryption scheme is depicted in Figure 1. Corollary 4.4 (in conjuction with Lemma 5.1) can
be used to bound an adversary’s IND-CCA2 advantage.

Theorem 5.2 Let GS = (G, p) be a group scheme where the DDH problem is hard, let H be a
family of 4-wise independent hash functions from G to {0, 1}`(k) with lg p ≥ 4`(k), and let SE be
a symmetric encryption that is secure in the sense of AE-OT. Then HE1 is secure in the sense
of IND-CCA2. In particular,

Advcca2
HE1,t,Q(k) ≤ Advddh

GS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +
2Q
2`(k)

.

Proof: The only difference between the statement above and a direct application of Corollary 4.4
is the way we bound the loss due to the 1-HPS to 2-HPS transformation:

3
2
· 2`√
|K|

+ 3ε1 + δ =
3
2
· 2`

22`
+

1
24`
≤ 2−`+1 ,

where we used that |K| = |G| = p ≥ 24` and (by Lemma 5.1) ε1 = 0 and δ = 1/p.

In terms of concrete security, Theorem 5.2 requires the image {0, 1}`(k) of H to be sufficiently
small, i.e., `(k) ≤ 1

4 lg p. For a symmetric cipher with `(k) = k = 80 bits keys we are forced to
use groups of order lg p = 4k = 320 bits. For some specific groups such as elliptic curves this
can be a drawback since there one typically works with groups of order lg p = 2k = 160 bits.

Relation to Damg̊ard’s ElGamal. In HE1, invalid ciphertexts of the form cω1 6= c2 are
reject implicitly by authenticity properties of the symmetric cipher. Similar to [5], a variant of
this scheme, HEer

1 = (Kg,Enc,Dec), in which such invalid ciphertexts get explicitly rejected is
given in Figure 2. The scheme is slightly simplified compared to a direct explicit version that
adds the trapdoor to the secret key; the simplification can be justified using the techniques of
Lemma 5.1.

We remark that, interestingly, Damg̊ard’s encryption scheme [6] (also known as Damg̊ard’s
ElGamal) is a special case of HEer

1 where the hash function H is the identity function (or an

11



Kg(1k)
x1, x2 ←R Zp ; X ← gx1

1 gx2
2

Pick random key τ for H
pk ← (X, τ) ; sk ← (x1, x2)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗p ; c1 ← gr

1 ; c2 ← gr
2

K ← Hτ (Xr) ∈ {0, 1}`
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C )
Parse C as (c1, c2, ψ)
K ← Hτ (cx1

1 c
x2
2 )

Return {m,⊥} ← DK(ψ)

Figure 1: Hybrid encryption scheme HE1 = (Kg,Enc,Dec).

Kg(1k)
ω, x←R Zp ; g2 ← gω

1 ; X ← gx
1

Pick random key τ for H
pk ← (g2, X, τ) ; sk ← (x, ω)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗p ; c1 ← gr

1 ; c2 ← gr
2

K ← Hτ (Xr) ∈ {0, 1}`
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C )
Parse C as (c1, c2, ψ)
if cω1 6= c2 return ⊥
K ← Hτ (cx1)
Return {m,⊥} ← DK(ψ)

Figure 2: Hybrid encryption scheme HEer
1 = (Kg,Enc,Dec) with explicit rejection.

easy-to-invert, canonical embedding of the group into, say, the set of bitstrings) and SE is “any
easy to invert group operation” [6], for example the one-time pad with EK(m) = K ⊕m. In his
paper, Damg̊ard proved IND-CCA1 security of his scheme under the DDH assumption and the
knowledge of exponent assumption in GS.4 Our schemes HEer

1 and HE1 can therefore be viewed
as hybrid versions of Damg̊ard’s ElGamal scheme, that can be proved secure under the DDH
assumption.

5.3 Variant 2: the Scheme HE2

The 1-universal hash proof system. We now give an alternative (and new) 1-universal
hash proof system from the DDH assumption. Keep C and V as before. Define SK = Z4

p,
PK = G2, and K = G2. For sk = (x1, x2, x̂1, x̂2) ∈ Z4, define µ(sk) = (X, X̂) = (gx1

1 gx2
2 , gx̂1

1 gx̂2
2 ).

For C = (c1, c2) ∈ C define
Λsk (C) := (cx1

1 c
x2
2 , c

x̂1
1 c

x̂2
2 ) .

This also defines Priv(sk , C). Given pk = µ(sk), C ∈ V and a witness r ∈ Zp such that
C = (c1, c2) = (gr

1, g
r
2), public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = (Xr, X̂r) .

Similar to Lemma 5.1 we can prove the following.

Lemma 5.3 The above HPS is perfect 1-universal (ε1 = 0) with collision probability δ = 1/p2.

The scheme HE2. For our second hybrid encryption scheme HE2 we make the same assumption
as for HE1, with the difference thatHS is now a familyHk : G2 → {0, 1}`(k) of 4-wise independent
hash functions with lg p ≥ 2`(k). Applying the transformation from Theorem 4.3 one obtains
an ε-almost 2-universal hash proof system with ε ≤ 2 · 2−`(k) (using Lemma 5.1 and lg |K| =

4 To be more precise, Damg̊ard only formally proved one-way (OW-CCA1) security of his scheme, provided
that the original ElGamal scheme is OW-CPA secure. But he also remarks that his proof can be reformulated to
prove IND-CCA1 security, provided that ElGamal itself is IND-CPA secure. IND-CPA security of ElGamal under
the DDH assumption was only formally proved later [27].
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Kg(1k)
x1, x2, x̂1, x̂2 ←R Zp

X ← gx1
1 gx2

2 ; X̂ ← gx̂1
1 gx̂2

2

Pick random key τ for H
pk ← (X, X̂, τ)
sk ← (x1, x2, x̂1, x̂2)
Return (sk , pk)

Enc(pk ,m)
r ←R Z∗p ; c1 ← gr

1 ; c2 ← gr
2

K ← Hτ (Xr, X̂r) ∈ {0, 1}`
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C )
Parse C as (c1, c2, ψ)
K ← Hτ (cx1

1 c
x2
2 , c

x̂1
1 c

x̂2
2 )

Return {m,⊥} ← DK(ψ)

Figure 3: Hybrid encryption scheme HE2 = (Kg,Enc,Dec).

lg |G2| = 2 lg p ≥ 4`(k)) . The resulting hybrid encryption scheme is depicted in Figure 3. This
time Corollary 4.4 (in conjuction with Lemma 5.3) leads to the following.

Theorem 5.4 Let GS = (G, p) be a group scheme where the DDH problem is hard, let H be
a family of 4-wise independent hash functions from G2 to {0, 1}`(k) with lg p ≥ 2`(k), and let
SE be a symmetric encryption that is secure in the sense of AE-OT. Then HE2 is secure in the
sense of IND-CCA2. In particular,

Advcca2
HE2,t,Q(k) ≤ Advddh

GS,t(k) + 2Q · Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +
2Q
2`(k)

.

Note that HE2 now only has the restriction lg p ≥ 2`(k) which nicely fits with the typical choice
of `(k) = k and lg p = 2k. So one is free to use any cryptographic group, in particular also
elliptic curve groups.

Similar to HEer
1 , the variant HEer

2 with explicit rejection can again be proven equivalent. In
the explicit rejection variant, HEer

2 , the public-key contains the group elements g2 = gω
1 , X = gx

1 ,
and X̂ = gx̂

1 ), and decryption first checks if cω1 = c2 and then computes K = Hτ (cx1 , c
x̂
1).

Relation to a scheme by Kurosawa and Desmedt. We remark that, interestingly, the
scheme HE2 is quite similar to the one by Kurosawa and Desmedt [19]. The only difference is
that encryption in the latter defines the key as K = Xrt · X̂r ∈ G, where t = Tτ (c1, c2) is the
output of a target collision-resistant hash function Tτ : G×G→ Zp.

6 Efficiency Considerations

In this section we compare the efficiency of HE1/HE2 and their explicit rejection variants
HEer

1 /HEer
2 with the reference scheme by Kurosawa and Desmedt [19] and its variants [13, 17].

The drawback of HE1 is that, in terms of concrete security, Theorem 5.2 requires the image
{0, 1}` of H to be sufficiently small, i.e., ` ≤ 1

4 lg p. Consequently, for a symmetric cipher
with ` = k = 80 bits keys we are forced to use groups of order lg p ≥ 4k = 320 bits. For
some specific groups such as elliptic curves this can be a drawback since there one typically
works with groups of order lg = 2k = 160 bits. However, for other more traditional groups
such as prime subgroups of Z∗q one sometimes takes a subgroup of order already satisfying the
requirement lg p ≥ 4k. The scheme HE2 overcomes this restriction at the cost of an additional
exponentiation in the encryption algorithm.

Table 1 summarizes the efficiency of the schemes KD [19], HEer
1 , and HEer

2 . (A comparison of
the explicit rejection variants seems more meaningful.) It is clear that when groups of similar size
are used, our new scheme HEer

1 will be the most efficient. But, as detailed above, typically HEer
1
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will have to work in a larger (sub)group. Even when underlying operations such as multiplication
and squaring remain the same, the increased exponent length will make this scheme noticeably
slower than the other two options.

For any given group, it is hard to tell in advance whether HEer
2 or KD will be fastest. For

encryption, they differ only in one point: the key derivation. In HEer
2 the symmetric key is

computed as K = Hτ (Xr, X̂r) ∈ {0, 1}k where Hτ is a 4-wise independent hash function, in
KD it is computed as K = Xrt · X̂r ∈ G, where t = Tτ (c1, c2), for a target collision resistant
hash function T (plus possibly the application of a key-derivation function KDF to represent the
group element K as a bit string suitable for symmetric key, cf. Appendix B). If one would ignore
the hashing, we see that we need to compute two single exponentiations (distinct bases, same
exponent) in HEer

2 versus a double exponentiation in KD. It is well known that in most scenarios
a double exponentiation costs significantly less than two separate single exponentiations. In
practice this is mainly due to the possibility to combine the squarings from both components of
the double exponentiation, thus saving lg p squarings (when compared to two single exponen-
tiations) and, to a lesser degree, to the ability to encode the two exponents simultaneously in
such a way that the weight is less than twice that of a single encoded exponent, thus saving
on multiplications. This all benefits KD. However, it should be noted that in certain scenarios
the advantage is less pronounced, e.g., when squaring is for free or when precomputation on
the public key (including group elements X and X̂) should be taken into account. We remark
that the decryption algorithms of KD and HEer

2 have roughly the same efficiency: KD uses two
exponentiations (to compute cω1 and cx1), and HEer

2 three (to compute cω1 , cx1 , and cx̂1)). It is well
known that exponentiations with respect to the same basis can be computed quite efficiently in
one go. The additional cost of having a third exponent in our case does therefore not incur too
much of a performance penalty.

Indeed, the main computational advantage of our scheme lies in the much simpler hash that
is required to attain provable security. A 4-wise independent hash function is a combinatorial
object that can be implemented with three multiplications (typically in a field of size ≈ p, not
in G itself). On the other hand, a target collision resistant hash function is a computational
object. Bootstrapping such a hash function from the presumed hardness of the DDH problem
will not be cheap. It will most likely cost at least the equivalent of one exponentiation.5 In
that case HEer

2 will be faster than KD, both for encryption and decryption. Another important
advantage of HEer

2 is that in encryption the computation of c1, c2, and the key (Xr, X̂r) can be
done in parallel, whereas in KD the computation of the key Xr·T(c1,c2)X̂r can only be done after
the values c1 and c2 are available.
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5 To the best of our knowledge, the most efficient construction of a (target) collision resistant hash function
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1 Ax2
2 ∈ G, where

τ = (A1, A2) ∈ G2).
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Scheme Assumption Encryption Decryption Ciphertext Key-size Restriction
#[multi/sequential,single]-exp Size Public Secret on p = ord(G)

KD DDH & TCR [1, 2]+tcr [1, 0]+tcr 2|G|+|ψ| 4|G|+|τtcr| 4|Zp| lg p ≥ 2`(k)
HEer

1 DDH [0, 3]+4wh [1, 0]+4wh 2|G|+|ψ| 3|G|+|τ4wh | 2|Zp| lg p ≥ 4`(k)
HEer

2 DDH [0, 4]+4wh [1, 0]+4wh 2|G|+|ψ| 4|G|+|τ4wh | 4|Zp| lg p ≥ 2`(k)

Table 1: Efficiency comparison for known CCA2-secure encryption schemes from the DDH
assumption. All “symmetric” operations concerning the authenticated encryption scheme are
ignored. The symbols “tcr” and “4wh” denote one application of a target collision-resistant
hash function and 4-wise independent hash function, respectively.

References

[1] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer-Verlag, Berlin, Ger-
many, December 2000. (Cited on page 5, 19, 20.)

[2] Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry, and David Pointcheval. Key
derivation and randomness extraction. Cryptology ePrint Archive, Report 2005/061, 2005.
http://eprint.iacr.org/. (Cited on page 3.)

[3] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume
1462 of LNCS, pages 13–25. Springer-Verlag, Berlin, Germany, August 1998. (Cited on
page 1, 2.)

[4] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 45–64. Springer-Verlag, Berlin, Germany, April / May 2002.
(Cited on page 1, 2, 3, 4, 7, 10.)

[5] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003. (Cited on page 1, 2, 3, 5, 10, 11, 19, 20.)

[6] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456.
Springer-Verlag, Berlin, Germany, August 1992. (Cited on page 2, 11, 12.)

[7] Yvo Desmedt and Duong Hieu Phan. A CCA secure hybrid Damg̊ards ElGamal encryption.
In ProvSec 2008, volume 5324, pages ???–??? LNCS, 2008. (Cited on page 2.)

[8] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin. Random-
ness extraction and key derivation using the CBC, cascade and HMAC modes. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 494–510. Springer-Verlag,
Berlin, Germany, August 2004. (Cited on page 3.)

[9] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In 23rd ACM
STOC, pages 542–552. ACM Press, May 1991. (Cited on page 1.)

15



[10] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000. (Cited on page 3.)

[11] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of
LNCS, pages 10–18. Springer-Verlag, Berlin, Germany, August 1985. (Cited on page 2.)

[12] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure Hashed Diffie-Hellman over
non-DDH groups. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 361–381. Springer-Verlag, Berlin, Germany, May 2004. (Cited
on page 3.)

[13] Rosario Gennaro and Victor Shoup. A note on an encryption scheme of Kurosawa and
Desmedt. Cryptology ePrint Archive, Report 2004/194, 2004. http://eprint.iacr.org/.
(Cited on page 7, 13.)

[14] Kristian Gjøsteen. A new security proof for Damg̊ard’s ElGamal. In David Pointcheval,
editor, CT-RSA 2006, volume 3860 of LNCS, pages 150–158. Springer-Verlag, Berlin, Ger-
many, February 2006. (Cited on page 2.)

[15] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
(Cited on page 2, 5.)

[16] D. Hofheinz, J. Herranz, and E. Kiltz. The Kurosawa-Desmedt key encapsulation
is not chosen-ciphertext secure. Cryptology ePrint Archive, Report 2006/207, 2006.
http://eprint.iacr.org/. (Cited on page 7.)

[17] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 553–571. Springer-
Verlag, Berlin, Germany, August 2007. (Cited on page 4, 7, 8, 13.)

[18] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In Bruce Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284–299.
Springer-Verlag, Berlin, Germany, April 2000. (Cited on page 20.)

[19] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 426–442. Springer-
Verlag, Berlin, Germany, August 2004. (Cited on page 1, 2, 4, 7, 13.)

[20] Helger Lipmaa. On CCA1-Security of Elgamal and Damg̊ard cryptosystems. Cryptology
ePrint Archive, Report 2008/234, 2008. http://eprint.iacr.org/. (Cited on page 2.)

[21] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer-Verlag, Berlin, Ger-
many, August 2003. (Cited on page 2.)

[22] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In 22nd ACM STOC. ACM Press, May 1990. (Cited on page 1.)

[23] Duong Hieu Phan and David Pointcheval. About the security of ciphers (semantic security
and pseudo-random permutations). In Helena Handschuh and Anwar Hasan, editors, SAC
2004, volume 3357 of LNCS, pages 182–197. Springer-Verlag, Berlin, Germany, August
2004. (Cited on page 20.)

16



[24] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of
LNCS, pages 433–444. Springer-Verlag, Berlin, Germany, August 1992. (Cited on page 1,
3.)

[25] Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption and from
progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007.
http://eprint.iacr.org/. (Cited on page 7.)

[26] Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack. In Bart
Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 275–288. Springer-Verlag,
Berlin, Germany, May 2000. (Cited on page 1, 2.)

[27] Yiannis Tsiounis and Moti Yung. On the security of ElGamal based encryption. In Hideki
Imai and Yuliang Zheng, editors, PKC’98, volume 1431 of LNCS, pages 117–134. Springer-
Verlag, Berlin, Germany, February 1998. (Cited on page 12.)

[28] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22:265–279, 1981. (Cited on
page 19.)

[29] J. Wu and D.R. Stinson. On the security of the ElGamal encryption scheme and Damgard’s
variant. Cryptology ePrint Archive, Report 2008/200, 2008. http://eprint.iacr.org/.
(Cited on page 2.)

A A universal HPS from the QR assumption

Let N = pq be an RSA modulus, where p = 2P +1 and q = 2Q+1, for two primes P,Q. Let LN

denote the subgroup of elements in Z∗N with Jacobi symbol 1, and let QRN denote the unique
(cyclic) subgroup of Z∗N of order PQ (so in particular QRN ⊂ LN ). Let g be a generator of
QRN . We assume the existence of an RSA instance generator RSAgen that generates the above
elements. The quadratic residue (QR) assumption states that distinguishing a random element
from QRN from a random element from LN is computationally infeasible.

Define C = Z∗N and V = QRN = {gr : r ∈ ZPQ}. The value r ∈ Z is a witness of C ∈ V.
(Note that it is possible to sample an almost uniform element from V together with a witness by
first picking r ∈ ZbN/4c and defining C = gr.) Define SK = Z`

2PQ, PK = QR`
N , and K = {0, 1}k.

For sk = (x1, . . . , x`) ∈ Z`
2PQ, define µ(sk) = (X1, . . . , X`) = (gx1 , . . . , gx`). (Note that Xi does

not reveal whether 0 ≤ xi < PQ or PQ ≤ xi < 2PQ.)
We assume a family of hash functions HS with H : (LN )` → {0, 1}k. (In practice one can

use H : Z`
n → {0, 1}k, bearing in mind that perfect 4-wise independence of the latter only gives

rise to almost 4-wise independence of the former.) For C ∈ C define

Λsk (C) := Hτ (Cx1 , . . . , Cx`) .

This defines Priv(sk , C). Given pk = µ(sk), C ∈ V and a witness r ∈ ZPQ such that C = gr,
public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = Hτ (Xr
1 , . . . , X

r
` ) .

This completes the description of HPS. Under the QR assumption, the subset membership
problem is hard in HPS. For C ∈ C \ V, given pk = µ(sk), each of the Cxi contains exactly one
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Kg(1k)
(N,P,Q, g)←R RSAgen(1k)
For i = 1 to 4k do
xi ←R Z2PQ ; Xi ← gx

Pick random key τ for H
pk ← (N, g, (Xi), τ) ; sk ← ((xi))
Return (sk , pk)

Enc(pk ,m)
r ←R ZbN/4c
c← gr

K ← Hτ (Xr
1 , . . . , X

r
4k)

ψ ← EK(m)
Return C = (c, ψ)

Dec(sk ,C )
Parse C as (c, ψ)
K ← Hτ (cx1 , . . . , cx4k)
Return {m,⊥} ← DK(ψ)

Figure 4: The hybrid encryption scheme from the QR assumption.

bit of min entropy such that H∞((Cx1 , . . . , Cx`) | (pk , C)) = `. Therefore, if HS is a family
of 2-wise independent hash functions and ` ≥ 2k, then HPS is 1-universal. An application
of Theorem 4.3 immediately yields a 2-universal HPS. However, since the above HPS already
contains a family of universal hash functions, we may as well obtain a direct construction of a
2-universal HPS. Concretely, we can prove the following:

Lemma A.1 Assume the QR assumption holds, HS is a 4-wise independent hash function and
` ≥ 4k. Then HPS is a 2-universal HPS.

The resulting encryption scheme (which is depicted in Figure 4) has very compact ciphertexts
but encryption/decryption are quite expensive since they require ` = 4k exponentiations in Z∗N .
(Note that decryption can be sped up considerably compared to encryption by using CRT and
multi-exponentiation techniques.)

B Authenticated symmetric encryption schemes

B.1 Security notions

Ciphertext Indistinguishability. Let SE = (E,D) be a symmetric encryption scheme, and
let A = (A1,A2) be an adversary. The advantage of A in breaking the ciphertext indistinguisha-
bility security of SE is:

Advind-ot
SE,A (k) def=

∣∣∣∣Pr
[
b = b′ :

K∗ ←R KSE(k) ; (m0,m1,St)←R A1(1k) ;
b←R {0, 1} ; ψ∗ ←R EK∗(mb) ; b′ ←R A2(1k,St , ψ∗)

]
− 1/2

∣∣∣∣
The symmetric encryption scheme SE is one-time secure in the sense of indistinguishability
(IND-OT) if i for every adversary A with probabilistic PTA A1 and A2, the advantage Advind-ot

SE,A (·)
is negligible.

Ciphertext Integrity. This captures the property that no efficient adversary can produce
a new valid ciphertext after seeing the encryption of a single message. Let SE = (E,D) be a
symmetric encryption scheme, and let A = (A1,A2) be an algorithm.

Advint-ot
SE,A (k) def= Pr

[
ψ 6= ψ∗ ∧ DK∗(ψ) 6= ⊥ :

K∗ ←R KSE(k) ; (m,St)←R A1(1k) ;
ψ∗ ← EK∗(m) ; ψ ←R A2(1k,St , ψ∗)

]
The symmetric encryption scheme SE is one-time secure in the sense of ciphertext integrity
(INT-OT) if for every adversary A with probabilistic PTA A1 and A2, the advantage Advint-ot

SE,A (·)
is negligible.
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We also define weak ciphertext integrity (WINT-OT) where in the above security experiment
the adversary (in the second stage) never sees the ciphertext ψ∗. The corresponding advantage
function is denoted as Advwint-ot

SE,A .

One-time Authenticated Encryption. A symmetric encryption scheme is secure in the
sense of one-time authenticated encryption (AE-OT) iff it is IND-OT and INT-OT secure. For
the notion of weak one-time authenticated encryption (WAE-OT) we only require it to be IND-OT
and WINT-OT secure.

We now recall details of the encrypt-then-mac approach [1, 5] for constructing authenticated
symmetric encryption.

B.2 Building blocks

Key Derivation Functions. A key-derivation function KDF is a family of functions KDFk :
{0, 1}` → {0, 1}2k. We assume its output on a random input is computationally indistinguishable
from a random 2k-bit string (pseudorandomness), captured by defining the pr-advantage of an
adversary Bkdf as

Advpr
KDF,Bkdf

(k) = |Pr[Bkdf(KDF(K)) = 1]− Pr[Bkdf(X) = 1]|,

where K ←R {0, 1}` and X ←R {0, 1}2k.

Message Authentication Codes. A message authentication code MAC = (Tag,Vfy) with
keys mk ∈ {0, 1}k consists of a tag algorithm Tagmk (m) and a verification algorithm Vfymk (τ).
For consistency we require that for all messages M , we have Pr[Vfymk (M,Tagmk (M)) 6= ⊥] = 1,
where the probability is taken over the choice of coins of all the algorithms in the expression
above.

MAC needs to be strongly unforgeable against one-time attacks (SUF-OT) captured by defin-
ing the suf-ot-advantage of an adversary Bmac as

Advsuf-ot
MAC,Bmac

(k) = Pr[Vfymk (m
∗, τ∗) 6= ⊥ : mk ←R {0, 1}k ; (M∗, τ∗)←R B

Tagmk (·)
mac (1k)] .

Above, oracle Tagmk (·) returns τ ← Tagmk (m) and A may only make one single query to oracle
Tagmk (·). The target pair (m∗, τ∗) must be different from the pair (m, τ) obtained from Tagmk (·)
(strong unforgeability).

We remark that efficient MACs satisfying the above definition can be constructed without
any computational assumption (and secure against unbounded adversaries) using, e.g., almost
strongly-universal hash families [28].

B.3 Construction of AE-OT and WAE-OT secure ciphers

Let OTP = (Ẽ, D̃) be a symmetric encryption that inputs keys from {0, 1}k, let KDF a key-
derivation function that outputs bitstrings of length 2k, and let MAC be a MAC scheme with
keys mk ∈ {0, 1}k. Using the “Encrypt-then-MAC” paradigm we can construct SE = (E,D)
that inputs keys K ∈ {0, 1}` as follows.

EK(m)
(mk ||dk)← KDF(K), where mk , dk ∈ {0, 1}k
ψ′ ← Ẽdk (m)
τ ← Tagmk (ψ′)
Return ψ = (ψ′, τ)

DK(ψ = (ψ′, τ))
(mk ||dk)← KDF(K)
If Vfymk (ψ′, τ) = ⊥ return ⊥
M ← D̃dk (ψ′)
Return M
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Typically, a MAC tag (from a computationally secure MAC) has k bits, so the above construction
generates ciphertexts of size d(k) = |m|+ k. The following lemma [5, 18, 1] guarantees the AE
scheme is one-time secure.

Lemma B.1 Assume OTP is IND-OT, KDF is pseudorandom, and MAC is SUF-OT. Then SE
is AE-OT. In particlar, we have

Advind-ot
SE,t (k) ≤ Advpr

KDF,t(k) + Advind-ot
OTP,t(k), Advint-ot

SE,t (k) ≤ Advpr
KDF,t(k) + Advsuf-ot

MAC,t(k) .

We remark that for authenticated encryption is a strictly stronger security notion than
chosen-ciphertext security (using a separation example from [1]), whereas the latter is already
sufficient for the KEM/DEM composition theorem [5] (i.e., a IND-CCA2 secure KEM plus chosen-
ciphertext secure symmetric encryption implies IND-CCA2 secure PKE). On the other hand,
there exists redundancy-free chosen-ciphertext secure symmetric encryption [23] (with d(k) =
|m|) whereas redundancy-free authenticated encryption do not exist.

If we only require WAE-OT security, we can construct SE = (E,D) without a MAC as follows.

EK(m)
(mk ||dk)← KDF(K), where mk , dk ∈ {0, 1}k
ψ′ ← Ẽdk (m)
Return ψ = (ψ′,mk)

DK(ψ = (ψ′,mk ′))
(mk ||dk)← KDF(K)
If mk 6= mk ′ return ⊥
Returm m← D̃dk (ψ′)

Lemma B.2 Assume OTP is IND-OT and KDF is pseudorandom. Then SE is WAE-OT. In
particlar, we have

Advind-ot
SE,t (k) ≤ Advpr

KDF,t(k) + Advind-ot
OTP,t(k), Advint-ot

SE,t (k) ≤ Advpr
KDF,t(k) .
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