
Revocation Systems with Very Small Private Keys

Amit Sahai∗

sahai@cs.ucla.edu

Brent Waters †

bwaters@csl.sri.com

Abstract

In this work, we design a new public key broadcast encryption system, and we focus on a
critical parameter of device key size: the amount of the cryptographic key material that must
be stored securely on the receiving devices. Our new scheme has ciphertext size overhead O(r),
where r is the number of revoked users, and the size of public and private keys is only a constant
number of group elements from an elliptic-curve group of prime order. All previous work, even
in the restricted case of systems based on symmetric keys, required at least log n keys stored
on each device. In addition, we show that our techniques can be used to realize Attribute-
Based Encryption (ABE) systems with non-monotonic access formulas, where are key storage is
significantly more efficient than previous solutions. Our results are in the standard model under
a new, but non-interactive, assumption.

1 Introduction

In a broadcast encryption system [14], a broadcaster encrypts a message such that a particular set
S of devices can decrypt the message sent over a broadcast channel. Broadcast systems have a wide
range of applications including file systems, group communication, DVD content distribution, and
satellite subscription services. In many of these applications, the notion of revocation is important:
For example, if a DVD-player’s key material is leaked on the Internet, one might want to revoke
it from decrypting future disks. In another example, consider a group of nodes communicating
sensitive control and sensor information over a wireless network; if any of these nodes becomes
compromised we’d like to revoke them from all future broadcasts.

Over the years, this problem has received a great deal of attention, and a number of important
variants of the problem have been identified. One important restriction is that of stateless receivers
- where the secret keys stored in the receivers do not need to be updated over time. In such stateless
systems there is no need for a user’s device to continuously remain on-line to receive key updates.
The stateless feature is extremely useful for many applications, such as DVD players which only
receive input from the DVD’s that are seen by the user (and therefore cannot be relied on to receive
all key updates). Another important variant of the broadcast problem is one where a single system
can support multiple broadcasters: In the example of a DVD system, we would not want the DVD
encryption system designer to be an active participant in the creation of every valid DVD, and also
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we would not want to trust a large number of broadcasting entities with the master keys of the
system. For such systems, symmetric-key cryptography is not sufficient, and we need public-key
broadcast encryption schemes. These concerns arise in many applications beyond DVD systems,
and therefore it important to address these issues if possible.

Our results. In this work, we design new broadcast encryption schemes, and we focus on the
critical parameter of device key size: the amount of the cryptographic key material that must be
stored securely on the receiving devices. Keeping the size of private key storage as low as possible
is important as cryptographic keys will often be stored in tamper-resistant memory, which is more
costly. This can be especially critical in small devices such as sensor nodes, where maintaining low
device cost is particularly crucial.

All previous work, even in the restricted case of systems based on symmetric keys, required
at least log n keys stored on each device. In this work, we give the first secure broadcast system
in which device keys are only a small constant number of group elements (in fact, just 3 group
elements) from an elliptic-curve group of prime order. This is typically orders of magnitude smaller
than previous schemes for common parameter settings. Furthermore, our scheme is a public-key
stateless broadcast encryption scheme1, and we work with stateless receivers. We achieve this small
device key size without compromising on other critical parameters such as ciphertext length – our
ciphertexts will consist of just O(r) group elements, where r is the number of revoked users. This
is the same behavior as the previously best-known schemes for revocation.

In addition, we show how our techniques can be applied to achieving efficient Attribute-Based
Encryption (ABE) [28] schemes with non-monotonic access formulas. Ostrovsky, Sahai, and Wa-
ters [26] showed a connection between revocation schemes and how to achieving non-monotonic
access formulas in ABE; to negate an attribute in an access formula one applies a revocation
scheme using the attribute as an identity to be revoked. Ostrovsky, Sahai, and Waters give a par-
ticular instance by adapting the revocation scheme of Naor and Pinkas [25] to the ABE scheme of
Goyal et. al [18]. The primary drawback of their scheme is that the private key size of their scheme
blows up by a multiplicative factor of log n, where n is the maximum number of attributes. More
precisely, once the DeMorgan’s law transformation is made, each negated attribute in the private
key will have O(log n) group elements. By adapting our new revocation techniques to the Goyal
et. al ABE scheme each negated attribute will only cost take two group elements. In practice, for
many applications the private key storage will decrease by an order of magnitude.

Our Techniques. The primary challenge in constructing broadcast encryption schemes is to
achieve full collusion resilience – to make sure that if all the revoked users combine their key ma-
terial, that they still cannot decrypt ciphertexts. In our approach, we use techniques from bilinear
groups to directly achieve this collusion resilience. Our techniques have two major components.

First, we use a “two equation” method for decryption. A ciphertext will be encrypted such
that a certain set S = {ID1, . . . , IDr} will be revoked from decrypting it. Since the ciphertext
consists of O(r) group elements, there will be a ciphertext component for each IDi. Intuitively,
when decrypting, a user ID will apply his secret key to each component. If ID 6= IDi he will get
two independent equations and be able to extract the ith decryption share. However, if ID = IDi

1And in fact, our scheme is identity-based: Each device’s private key can be based on the device’s natural “identity,”
which could be an arbitrary string like a serial number or even an email address. In most previous schemes, every
device had to be assigned a specific number between 1 and n.
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(i.e. he is revoked), then he will only get two dependent equations of a two variable formula and
thus be unable to extract the decryption share.

Second, we need to make sure that multiple users cannot collude to decrypt the message. For
example, if there is a ciphertext that revokes S = {ID1, ID2}, these users might try to decrypt by
letting user ID2 get the first share and user ID1 obtain the second share. To prevent this attack
our key shares are randomized or “personalized” to each user to prevent combination of decryption
shares.

Our techniques are in contrast to all previous revocation schemes with small key sizes that we
are aware of, which used either combinatorial approaches (either with set systems or tree-based
approaches) or polynomial interpolation based approaches (see the related work section for more
details on previous work). Instead, we devise a new technique for achieving collusion resilience
using novel cancellation techniques based on the power of a bilinear map. A bilinear map of the
kind we need can be built, for example, from the Weil pairing on elliptic curve groups. Our new
collusion-resilience technique allows us to break the bottlenecks that existed in previous systems.

Our system is shown to be secure under a new non-interactive assumption that we call the deci-
sional q-Multi Exponent Bilinear Diffie-Hellman (q-MEBDH) assumption. We show the assumption
to hold in the generic bilinear group model in Appendix A2. We prove security in the standard
model, showing that a ciphertext that revokes up to r users is secure if the decisional r-MEBDH
assumption holds.

1.1 Related Work

Fiat and Naor [14] first introduced the problem of broadcast encryption. In their system they
proposed a scheme that is secure against a collusion of t users, where the ciphertext size was
O(t log2 t log n). This system and other following work [31, 32, 33, 22, 15, 16], used a combinatorial
approach. The this type of approach is that there is an inherent tradeoff between the efficiency
of the system and the number, t, of colluders that the system is resistant to. An attacker in the
system that compromises more than t users can compromise the security of the scheme.

For systems without a bound on the number of revoked users at setup, there have been two gen-
eral classes of revocation broadcast schemes. The first stateless tree-based revocation schemes were
proposed by Naor, Naor and Lopspeich [24] where they introduced the “subset cover” framework.
In their framework users were assigned to leaves in a tree and belonged to different subsets. An
encryptor encrypts to the minimum number of subsets that covers all the non-revoked users and
none of the revoked ones. The primary challenge is to structure the subsets so that they expressive
enough to allow for small ciphertext overhead, yet don’t impose large private key overhead on the
user. The NNL paper proposed two systems with ciphertext sizes of O(r lg n) and O(2r) and private
key sizes of O(lg n) and O(lg2 n) respectively. These methods were subsequently improved upon
in future works by Halvey and Shamir [19] and by Goodrich, Sun, and Tamassia [17], where the
GST system gives O(r) size ciphertexts and O(lg n) size private keys. Dodis and Fazio [13] show
how to make the the NNL and Halevy and Shamir systems public key by employing hierarchical
identity-based encryption methods. It is unknown how to realize the more efficient GST scheme in
the public key setting.

The second class of methods is based on polynomial interpolation in the exponents of group
2One might wonder if the security proof of our assumption in the generic group model suggests the need for much

larger security parameters, thereby negating the efficiency advantages claimed here; indeed we show that this is not
the case. See Section 4.1 and Appendix A for more details.
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elements and was given by Kurosawa and Desmedt [23] and Naor and Pinkas [25]. In these systems
the setup algorithm picks a polynomial of degree d, where d is the maximum number of users that
can be revoked. Both the public key and ciphertexts are of size d. Yoo et. al. [36] observe that
lg(n) parallel systems can be used to handle n users with O(r) size private keys, O(n) size public
keys and O(r) size ciphertexts.

We note that there are a class of stateful encryption schemes known as logical-tree-hierarchy
schemes independently discovered by Wallner et al. [34] and Wong [35], which are improved in
further work [9, 12, 30]. The drawback of stateful schemes is that if a receiver misses an update
it won’t be able to decrypt future messages (or this must be corrected somehow). Even so, our
stateless solution actually provides a more efficient way to revoke users in the stateful setting than
previous schemes.

We remark that two equation techniques are somewhat reminiscent of of those used for knowl-
edge extraction in discrete log proof of knowledge settings [29]. In addition, different types of two
equation techniques have been applied in ecash applications (see e.g., [8] and the references therein).

Finally, we also note that [7] proposed the first non-trivial fully collusion resistant broadcast
encryption scheme; broadcasts to a set of uncompromised users remain secure no matter how many
other keys the adversary obtained. (In contrast, our approach and those referenced above would
lead to very long ciphertexts if the number of revoked users were very large.) Their scheme allows
for broadcasts to an arbitrary set of users where the ciphertexts and private key material are both
a constant number of group elements, however, the public key material is linear in the number
of users in the system and, moreover, the public key must be accessible by any decryptor in the
system. This makes their solution unusable for small devices that cannot store the public key. In
comparison, our solution is appropriate for applications, like group encryption, where we expect
relatively few devices will be compromised and revoked from the encryption and where we need
very small storage.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we provide the relevant definitions
for revocation systems and background information on groups with efficiently computable bilinear
maps. We then give the construction of our revocation system in Section 3 and prove its security
in Section 4. Finally, we show how to realize a non-monotonic Attribute-Based Encryption system
with small private key sizes in Section 5.

2 Background

We begin by providing a security definition for a revocation system, in the identity-based framework.
We use definitions that are similar, for example, to the definitions for broadcast encryption used
by Boneh, Gentry, and Waters [7]; however we adapt our definition to the Identity-Based setting.
Later, we state our complexity assumption.

2.1 Identity-Based Revocation Systems

An encryption system is made up of three randomized algorithms: For simplicity of notation, we
assume an implicit security parameter of λ.
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Setup. An authority will run the setup algorithm. The algorithm outputs a public key PK and
master secret key MSK.

KeyGen(MSK, ID). The key generation algorithm takes in the master secret key MSK and an
identity, ID. It generates a private key SKID for the identity.

Encrypt(S,PK,M). The encryption algorithm takes as input a revocation set S of identities along
with the public key and a message M to encrypt. It outputs a ciphertext CT such that any
user with a key for an identity ID /∈ S can decrypt.

Decrypt(S,CT, ID, DID) The decryption algorithm takes as input a ciphertext CT that was gen-
erated for the revocation set S, as well as an identity ID and a private key for it. If ID /∈ S
the algorithm will be able to decrypt and recover the message M encrypted in the ciphertext.

We now define (chosen plaintext) security of an ID-based revocation encryption system against
a static adversary. Security is defined using the following “Revocation Game” between an attack
algorithm A and a challenger, for a revocation set S of identities.

Setup. The challenger runs Setup to obtain a public key PK and master secret key MSK.
It gives A the public key PK. In addition, it gives A the decryption keys dID for all
ID ∈ S.

Challenge. The attacker gives the challenger two messages M0,M1. Next, the challenger
picks a random b ∈ {0, 1}. The challenger runs algorithm Encrypt to obtain CT R←
Encrypt(S, PK,Mb). It then gives CT to algorithm A.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Definition 2.1. We say that a revocation system is (chosen-plaintext) secure if, for all revocations
sets S of size polynomial in the security parameter, no polynomial-time adversary can win the
“Revocation Game” (defined above) with non-negligible advantage over 1/2.

Our attack models the game where all users in the revoked set S get together and collude (this
is because the adversary gets all private keys from the revoked set).

Chosen-Ciphertext Security. We will also consider chosen-ciphertext (CCA) security, where
the adversary can also issue decryption queries for ciphertexts that it constructs (as long as the
challenge ciphertexts are not equal to the challenge ciphertext). The game is identical to the game
above, except decryption queries (for arbitrary revocation sets) are allowed. Our main construc-
tion will be chosen-plaintext secure; however it can be made CCA-secure using the techniques of
Cannetti, Halevi, and Katz [11].

2.2 Bilinear Maps

We briefly review the necessary facts about bilinear maps and bilinear map groups. We use the
following standard notation [20, 21, 4]:

1. G and GT are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e : G×G→ GT is a bilinear map.
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Let G and GT be two groups as above. A bilinear map is a map e : G × G → GT with the
following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently and there
exists a group GT and an efficiently computable bilinear map e : G×G→ GT as above. Note that
e(, ) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.3 Complexity Assumptions

To prove the security of our system we use a new assumption that we call the q-decisional Multi-
Exponent Bilinear Diffie-Hellman assumption. Our assumption falls within a class of assumptions
shown to be secure in the generic group model by Boneh, Boyen, and Goh []. While our assumption
is non-standard, we emphasize that it is non-interactive and thus falsifiable.

Let G be a bilinear group of prime order p. The q-MEBDH problem in G is stated as follows:

A challenger picks a generator g ∈ G and random exponents s, α, a1, . . . , ar. The attacker is
then given ~y=

g, gs, e(g, g)α

∀1≤i,j≤q gai gais gaiaj gα/a2
i

∀1≤i,j,k≤q,i 6=j gaiajs gαaj/a2
i gαaiaj/a2

k gαa2
i /a2

j

it must remain hard to distinguish e(g, g)α·s ∈ GT from a random element in GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional q-parallel BDHE
in G if ∣∣∣∣Pr

[
B
(
~y, T = e(g, g)αs) = 0

]
− Pr

[
B
(
~y, T = R

)
= 0
] ∣∣∣∣ ≥ ε

Definition 2.2. We say that the q decisional Multi- Exponent Bilinear Diffie-Hellman assumption
holds if no poly-time adversary has non-negligible advantage in winning the game.

Remark. It is tempting to try to simplify our assumption using previous techniques. For
example, we might consider letting choosing a single variable a and substituting all aj with aj .
Unfortunately, this substitution gives rise to an problem that is insecure.

3 Our Revocation System

We now present our revocation system. Our system has the following features: Both public and
private keys are of size independent of the number of users (i.e. only a constant number of group
elements3); the ciphertext only contains O(r) group elements, where r is the number of revoked
users.

3Indeed, since we are using elliptic curves of prime order, these elements can be quite short.
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Intuition. Our construction uses a novel application of a secret sharing in the exponent. Sup-
pose an encryption algorithm needs to create an encryption with a revocation set S = ID1, . . . , IDr

of r identities. The algorithm will create an exponent s ∈ Zp and split it into r random shares
s1, . . . , sr such that

∑
si = s. It will then create a ciphertext such that any user key with ID = IDi

will not be able to incorporate the i− th share and thus not decrypt the message.

Our approach presents us with two challenges. First, we need to make sure that a user with
revoked identity ID = IDi cannot do anything useful with share i. Second, we need to worry about
collusion attacks between multiple revoked users. Suppose a user with ID = IDi and a user with
ID = IDj collude to attack a ciphertext. The attack we need to worry about is where user j
processes ciphertext share i, while user i processes share j, and then they combine their results.

The first problem is addressed by the method of decryption. For each share, the ciphertext will
have two components. A user with ID 6= IDi can use these two components to obtain two linearly
independent equations (in the exponent) involving the share si ( and another variable), which he
will use to solve for the share si. However, if ID = IDi he will get two linearly dependent equations
and not be able to solve the system. We remark that these techniques are somewhat reminiscent of
of those used for knowledge extraction in discrete log proof of knowledge settings [29]. In addition,
different types of two equation techniques have been applied in ecash applications (see e.g., [8] and
the references therein).

To address the second challenge, we randomize each user’s private key by an exponent t such that
in decryption each user recovers shares t · si in the exponent. Thus, we disallow useful collusions in
a similar manner to some Identity-Based [10, 5] and Attribute-Based [28, 18, 3] encryption systems.
Our construction follows.

3.1 Construction

In the description of our construction we will use a bilinear group G of prime order p. We will
assume that identities are taken from the set Zp; in practice, of course, we can perform a collision
resistant hash from identity strings to Zp. We now give our construction as a set of four algorithms.

Setup The setup algorithm chooses a group G of prime order p. It then picks random generators
g, h ∈ G and picks random exponents α, b ∈ Zp. The public key is published as:

PK = (g, gb, gb2 , hb, e(g, g)α).

The authority keeps α, b as secrets.

Key Gen(MSK, ID) The key generation algorithm first chooses a random t ∈ Zp and publishes
the private key as:

D0 = gαgb2t, D1 = (gb·IDh)t, D2 = g−t.

Encrypt(PK,M, S) The encryption algorithm first picks a random s ∈ Zp. Then it lets r = |S|
and chooses random s1, . . . , sr such that s = s1 + . . . + sr. We let IDi denote the i-th identity in S.
It then creates the ciphertext CT as:

C ′ = e(g, g)αsM,C0 = gs
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together with, for each i = 1, 2, . . . , r:(
Ci,1 = gb·si , Ci,2 =

(
gb2·IDihb

)si
)

Decrypt(S,CT, ID, DID) If there exists ID′ ∈ S such that ID = ID′ then the algorithm aborts;
otherwise, the decryption algorithm computes:

e(C0, D0)

e
(
D1,

∏r
i=1 C

1/(ID−IDi)
i,1

)
· e
(
D2,

∏r
i=1 C

1/(ID−IDi)
i,2

)
which gives us e(g, g)αs; this can immediately be used to recover the message M from C ′. Note
that this computation is only defined if ∀i ID 6= IDi.

We can verify the correctness of the decryption computation.

e(C0, D0)/

(
e

(
D1,

r∏
i=1

C
1/(ID−IDi)
i,1

)
· e

(
D2,

r∏
i=1

C
1/(ID−IDi)
i,2

))

= e(C0, D0)/

(
r∏

i=1

(e (D1, Ci,1) · e (D2, Ci,2))
ID−IDi

)

= e(gs, gαgb2t)/

(
r∏

i=1

(
e
(
(gbIDh)t, gbsi

)
· e
(
g−t, (gb2IDihb)si

))ID−IDi

)

= e(g, g)sαe(g, g)sb2t)/

(
r∏

i=1

e(g, g)sib
2t)

)
= e(g, g)sα

4 Proof

We now prove the following theorem.

Theorem 4.1. Suppose the decisional q-MEBDH assumption holds. Then no poly-time adversary
can selectively break our system with a ciphertext encrypted to r∗ ≤ q revoked users.

Suppose we have an adversaryA with non-negligible advantage ε =AdvA in the selective security
game against our construction. Moreover, suppose attacks our system with a ciphertext of at most
q revoked users. We show how to build a simulator, B, that plays the decisional q-MEBDH problem.

The simulator begins by receiving a q-MEDDH challenge ~X, T . The simulator then proceeds in
the game as follows.

Init The adversary A declares a revocation set S∗ = ID1, . . . , IDr∗ of size r∗ ≤ q that he gives to
the simulator. (If r < q the simulator will just ignore some of the terms given in ~X).
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Setup The simulator now creates the public key PK and gives A the private keys for all identities
in S∗. Conceptually, it will set b as a1 + a2 + · · · ar. The simulator first chooses a random y ∈ Zp.

The public key PK is published as:(
g, gb =

∏
1≤i≤r∗

gai , gb2 =
∏

1≤i,j≤r

(gai·aj ), h =
∏

1≤i≤r∗

(gai)−IDigy, e(g, g)α
)

We observe that the public parameters are distributed identically to the real system and that
the revocation set S∗ is reflected in the simulation’s construction of the parameter h.

Now the simulator must construct all private keys in the revocation set S. For each identity
IDi the simulator will choose a random zi ∈ Zp and will (implicitly) set the randomness ti of the
ith identity as ti = −α/a2

i + zi.

Setting ti allows us to generate the private key components for two reasons. First, in the D0

component we need to cancel out the gα term that we do not know. Since gb2 contains a term of
ga2

i raising it to the −α/a2
i will cancel this term. Second, we need to make sure that we can still

realize the D2 component. To generate this we will have several terms of the form gαaj/a2
i , which

we have for i 6= j. Yet, if i = j this generates a term gα/ai that we do not have. However, by our
setting of the h parameter a term like this will never appear.

The private key for IDi is generated as follows:

D0 =

 ∏
1≤j,k≤n

s.t. if j=k then j,k 6=i

(g−αajak/a2
i )

 ∏
1≤j,k≤n

(gajak)zi

D1 =

 ∏
1≤j≤n

j 6=i

(g−α·aj/a2
i )(IDi−IDj)(g(IDi−IDj)·aj )zi

 (g−α/a2
i )ygyzi

D2 = gα/a2
i g−zi

Remark. Note that in the above construction, for any fixed coefficient µ, by changing ti =
−µα/a2

i + zi, and appropriately raising the relevant parts of the construction above to a µ factor,
one can create D0 = gµα+b2ti , while keeping D1 = (gbIDih)ti , and D2 = g−ti . This observation is
not relevant to this proof, but will be useful in the proof of our related ABE scheme.

Challenge The simulator receives M0,M1 and chooses random β ∈ {0, 1}. The simulator then
chooses random s′, s′1, . . . , s

′
r∗ ∈ Zp such that s′ =

∑
i s

′
i. For notational convenience let ui =

gb2IDihb, note this is computable from the public parameters, which were already set.

Conceptually, the ciphertext will be encrypted under randomness s̃ = s + s′ and be broken into
shares s̃i = ais/b + s′i. Recall, that b =

∑
j aj ; therefore,

∑
s̃i = s̃.

Our methodology is to split s into pieces such that we can simulate all ciphertext components.
Conceptually, we will look for a “hole” in each term. We will use the fact that from the simulator’s
view the function gbIDih has no term of gai by cancellation. Therefore, if we raise this to s · ai the
simulator will have all the necessary terms. In this manner we “spread” the different shares of s as
s · ai/b, each into its own “slot”.
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Our proof technique has two important points. First, in simulating the Ci,1 and Ci,2 components
the b−1 term from the shares will cancel out. Second, in generating the Ci,2 components we will
need elements of the form gsaiaj that we have for i 6= j. Yet, if i = j this creates an element that
we do not have. Again, by our setting of h we do not run into this case.

The challenge CT is created as

C ′ = Te(g, g)αs′ ·Mβ C0 = gsgs′ Ci,1 = gsai(
∏
j

gaj )s′i Ci,2 =

 ∏
1≤j≤r∗

i6=j

(gsaiaj )IDi−IDj

 (gais)yu
s′i
i

The Ci,2 equation can be understood by recalling that Ci,2 = (gbIDih)bs̃i and then noting that
bs̃i = sai + s′i.

Guess The adversary will eventually output a guess β′ of β. The simulator then outputs 0 to
guesses that T = e(g, g)αs if β = β′; otherwise, it and outputs 1 to indicate that it believes T is a
random group element in GT .

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(

~X, T = e(g, g)αs
)

= 0
]

=
1
2

+ AdvA.

When T is a random group element the message Mβ is completely hidden from the adversary and

we have Pr
[
B
(

~X, T = R
)

= 0
]

= 1
2 . Therefore, B can play the decisional q-MEBDH game with

non-negligible advantage.

4.1 Remark on Security Parameters

Our system is shown to be secure under a new non-interactive assumption. Our proof, in the
standard model, shows that a ciphertext that revokes up to r users is secure if the decisional r-
MEBDH assumption holds. We remark that generically, an adversary that makes n queries to a
group oracle will have advantage O(n2r/p) (see Appendix A for a group of prime order p. Equivalent
generic security to decisional Bilinear Diffie-Hellman can then be realized by increasing the size
of p by just an additive factor of lg(r) bits. We recognize, of course, that in general for concrete
groups a simpler assumption is desirable, and leave achieving comparable efficiency under simpler
assumptions as an important open problem.

5 Attribute-Based Encryption

Our new revocation scheme, as presented in the previous sections, also gives rise to a new efficient
Attribute-Based Encryption (ABE) scheme that allows access policies to be expressed in terms of
any access formula over attributes. Until the recent work of Ostrovsky, Sahai, and Waters [26], all
previous ABE schemes were limited to expressing only monotonic access structures. Our new ABE
scheme, however, achieves significantly superior parameters in terms of key size. In the random
oracle model, our new scheme will have the following key sizes: public parameters will be only O(1)
group elements, and private keys for access structures involving t leaf attributes will be of size O(t).

10



This is a significant improvement over previous work, which needed public parameters consisting
of O(n) group elements, and private keys consisting of O(t log(n)) group elements, where n is a
bound on the maximum number of attributes that any ciphertext could have. In our scheme, we
do not need any such bound.

For brevity, we only describe at a high level what makes our revocation scheme so amenable to
incorporation into ABE schemes. The essential property of our revocation scheme is that successful
decryption (if a non-revoked user tries to decrypt) allows the user to recover e(g, g)αs, where α is
a system parameter, while s is a random choice made at the time of encryption. This idea can be
applied with α replaced by a linear secret share of α that corresponds to a negated leaf node in an
access formula. By the properties of linear secret sharing schemes, and the randomization provided
by s, this allows for a secure ABE system to be built using our revocation scheme as a building
block.

Taken altogether, our revocation scheme gives a new and much more efficient instiantion of the
OSW framework for non-monotonic ABE. We now describe our construction. We refer the reader
to [26] for definitions. Our proofs appear in Appendix B.

5.1 Description of ABE construction

We follow the notation of [26] here, and describe our construction in the random oracle model to
highlight the most efficient form of our construction.

Setup. The setup algorithm chooses generators g, h and picks random exponents α′, α′′, b ∈ Zp.
We define α = α′ ·α′′, g1 = gα′

and g2 = gα′′
.) The public parameters are published as the following,

where H is a random oracle that outputs elements of the elliptic curve group:

PK = (g, gb, gb2 , hb, e(g, g)α,H(·)).

The authority keeps (α′, α′′, b) as the master key MK.

Encryption (M,γ, PK). To encrypt a message M ∈ GT under a set of d attributes γ ⊂ Z∗
p, choose

a random value s ∈ Zp, and choose a random set of d values {sx}x∈γ such that s =
∑

x∈γ sx.
Output the ciphertext as

E = (γ, E(1) = Me(g, g)α·s, E(2) = gs, {E(3)
x = H(x)s}x∈γ ,

{E(4)
x = gb·sx}x∈γ , {E(5)

x = gb2·sxxhb·sx}x∈γ)

Key Generation (Ã,MK,PK). This algorithm outputs a key that enables the user to decrypt
an encrypted message only if the attributes of that ciphertext satisfy the access structure Ã. We
require that the access structure Ã is NM(A) for some monotonic access structure A, (see [26] for a
definition of the NM(·) operator) over a set P of attributes, associated with a linear secret-sharing
scheme Π. First, we apply the linear secret-sharing mechanism Π to obtain shares {λi} of the
secret α′. We denote the party corresponding to the share λi as x̆i ∈ P, where xi is the attribute
underlying x̆i. Note that x̆i can be primed (negated) or unprimed (non negated). For each i, we
also choose a random value ri ∈ Zp.

The private key D will consist of the following group elements: For every i such that x̆i is not
primed (i.e., is a non-negated attribute), we have

Di = (D(1)
i = gλi

2 ·H(xi)ri , D
(2)
i = gri)

11



For every i such that x̆i is primed (i.e., is a negated attribute), we have

Di = (D(3)
i = gλi

2 gb2ri , D
(4)
i = gribxihri , D

(5)
i = g−ri)

The key D consists of Di for all shares i.

Decryption (E,D). Given a ciphertext E and a decryption key D, the following procedure is
executed: (All notation here is taken from the above descriptions of E and D, unless the notation
is introduced below.) First, the key holder checks if γ ∈ Ã (we assume that this can be checked
efficiently). If not, the output is ⊥. If γ ∈ Ã, then we recall that Ã = NM(A), where A is an access
structure, over a set of parties P, for a linear secret sharing-scheme Π. Denote γ′ = N(γ) ∈ A,
and let I = {i : x̆i ∈ γ′}. Since γ′ is authorized, an efficient procedure associated with the linear
secret-sharing scheme yields a set of coefficients Ω = {ωi}i∈I such that

∑
i∈I ωiλi = α. (Note,

however, that these λi are not known to the decryption procedure, so neither is α.)

For every positive (non negated) attribute x̆i ∈ γ′ (so xi ∈ γ), the decryption procedure
computes the following:

Zi = e
(
D

(1)
i , E(2)

)
/e
(
D

(2)
i , E

(3)
i

)
= e

(
gλi
2 ·H(xi)ri , gs

)
/e (gri ,H(x)s)

= e (g, g2)
sλi

For every negated attribute x̆i ∈ γ′ (so xi /∈ γ), the decryption procedure computes the following,
following a simple analogy to the basic revocation scheme:

Zi =
e
(
D

(3)
i , E(2)

)
e

(
D

(4)
i ,
∏

x∈γ

(
E

(4)
x

)1/(xi−x)
)
· e
(

D
(5)
i ,
∏

x∈γ

(
E

(5)
x

)1/(xi−x)
)

= e (g, g2)
sλi

Finally, the decryption is obtained by computing

E(1)∏
i∈I Zωi

i

=
Me(g, g)sα

e(g, g2)sα′ = M

Note on Efficiency and Use of Random Oracle Model. We note that encryption requires
only a single pairing, which may be pre-computed, regardless of the number of attributes associated
with a ciphertext. We also note that decryption requires two or three pairings per share utilized in
decryption, depending on whether the share corresponds to a non-negated attribute or a negated
attribute, respectively.

We also note that we use a random oracle for description simiplicity and efficiency of the
system. We can, alternatively, realize our hash function concretely as in other previous ABE
systems [28, 18, 26].
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A Generic Security of Multi-Exponent BDH

We briefly show that are decisional MEBDH assumption is generically secure. We use the generic
proof template of Boneh, Boyen, and Goh [6].

Using the terminology from BBG we need to show that f = αs in independent of the polynomials
P and Q. We have that Q = {1, α} In addition, we have

P = {1, s, ∀i,j∈[1,q] ai, ais, aiaj , α/(ai)2}
∪ {∀i,j,k∈[1,q],i6=j aiajs, αaj/a2

i , αaiaj/a2
k, αa2

i /a2
j}

We first note that this case at first might appear to be outside the BBG framework, since
the polynomials are rational function (due to the terms with inverses. However, by a simple
renaming of terms we can see this is equivalent to an assumption where we use a generator u and
let g = g

Q
j∈[1,q] a2

j . Applying this substitution we get a a set of polynomials where maximum degree
of any polynomial in the set P is 2q + 3.

We need to also check that f is symbolically independent of the of any two polynomials in P,Q.
To realize f from P,Q we would need to have a term of the form αs. We note that no such terms
can be realized from the product of two polynomials p, p′ ∈ P . If we use the polynomial s as p
then no other potential p′ has α. If we use ai · s as p then no other potential p′ has α/ai. Finally,
if we use aiajs with i 6= j for p then no other potential p′ is of the form α/(aiaj) for i 6= j. Any
dependence on f must have an a term of s in it, but we just eliminated all possibilities.

It follows from the BBG framework that the assumption is then generically secure. In particular,
for an attacker that makes at most n queries to the group oracle we have that its advantage is
bounded by

(n + 2(q3 + 4q2 + 3q) + 2)2 · (4q + 6)
2p

In the general case where n > q3 we have that the advantage is O(n2 · q/p).

B Proof of Security for ABE scheme

We prove that the security of our main construction in the attribute-based selective-set model
reduces to the hardness of the q-MEBDH assumption.

Theorem B.1. If an adversary can break our ABE scheme with advantage ε in the attribute-based
selective-set model of security, then a simulator can be constructed to play the q-MEBDH game with
advantage ε/2.
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Proof:

Our proof will follow the outline of, and include much of the text from, the proofs of previous
ABE schemes [28, 18, 26], but will incorporate the ideas from our new revocation scheme. We
note that our revocation scheme, which we will use to realize “negated” attributes in our ABE
scheme, is based on the q-MEDDH assumption. The technique we use to deal with ordinary, non-
negated attributes, is the same as [18], which was based on the BDDH assumption. To adapt that
part to the q-MEDDH assumption, we note that the BDDH assumption is embedded (in many
different ways) in the q-MEDDH assumption that we use. In the BDDH assumption, we are given
A = gã, B = gb̃, gs and must distinguish e(g, g)ãb̃s from a random element. We will implicitly set
ã = α/a2

1, and b̃ = a2
1. Note that in the q-MEDDH assumption, we are given A = gã and B = gb̃

for these settings of ã and b̃. Below we will use A and B to mean these values.

Suppose there exists a polynomial-time adversary A that can attack our scheme in the selective-
set model with advantage ε. We build a simulator B that can play the q-MEDDH game with
advantage ε/2. The simulation proceeds as follows:

The simulator begins by receiving a q-MEDDH challenge ~X,Z. Note that with probability 1/2,
Z = e(g, g)αs. We will denote this event as Ξ = 0. With probability 1/2, however, Z = e(g, g)z

where z is a random element of Zp. We will denote this event as Ξ = 1.

Init The simulator B runs A. A chooses the challenge set, γ, a set of d members of Z∗
p.

Setup The simulator assigns the public parameters g1 = A and g2 = B, thereby implicitly
setting α′ = α/a2

1 and α′′ = a2
1.

The simulator will also program the random oracle H(x) as follows. Suppose the adversary
queries the oracle on x. If the simulator already answered such a query, it simply returns the same
answer. Otherwise, it picks a random fx ∈ Zp and responds as follows:

H(x) =

{
gfx if x ∈ γ

g2g
fx if x /∈ γ

The simulator sets up the remainder of the public key exactly as in the proof of the revocation
scheme, where the revocation set S∗ = γ.

Phase 1 A adaptively makes requests for several access structures such that γ passes through
none of them. Suppose A makes a request for the secret key for an access structure Ã where
Ã(γ) = 0. Note that by assumption, Ã is given as NM(A) for some monotonic access structure
A, over a set P of parties (whose names will be attributes), associated with a linear secret-sharing
scheme Π.

Let M be the share-generating matrix for Π: Recall, M is a matrix over Zp with ` rows and
n + 1 columns. For all i = 1, . . . , `, the i’th row of M is labeled with a party named x̆i ∈ P, where
xi is the attribute underlying x̆i. Note that x̆i can be primed (negated) or unprimed (non-negated).
When we consider the column vector v = (s, r1, r2, . . . , rn), where s is the secret to be shared, and
r1, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of ` shares of the secret s according to
Π.

We make use of the following well-known observation about linear secret-sharing schemes (see,
e.g. [2]4): If S ⊂ P is a set of parties, then these parties can reconstruct the secret iff the column

4Here, we are essentially exploiting the equivalence between linear secret-sharing schemes and monotone span
programs, as proven in [2]. The proof in [2] is for a slightly different formulation, but applies here as well.
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vector (1, 0, 0, . . . , 0) is in the span of the rows of MS , where MS is the submatrix of M containing
only those rows that are labeled by a party in S. Note that since Ã(γ) = 0, we know that A(γ′) = 0,
where γ′ = N(γ). Thus, we know that (1, 0, . . . , 0) is linearly independent of the rows of Mγ′ .

During key generation, a secret sharing of the secret α′ = ã is supposed to be selected. In this
simulation, however, we will choose this sharing (implicitly) in a slightly different manner, as we
describe now: First, we pick a uniformly random vector v = (v1, . . . , vn+1) ∈ Zn+1

p . Now, we make
use of the following simple proposition [1, 27] from linear algebra:

Proposition B.2. A vector π is linearly independent of a set of vectors represented by a matrix
N if and only if there exists a vector w such that Nw = ~0 while π · w = 1.

Since (1, 0, . . . , 0) is independent of Mγ′ , there exists a vector w = (w1, . . . , wn+1) such that
Mγ′w = ~0 and (1, 0, . . . , 0) ·w = w1 = 1. Such a vector can be efficiently computed [1, 27]. Now we
define the vector u = v +(ã− v1)w. (Note that u is distributed uniformly subject to the constraint
that u1 = ã.) We will implicitly use the shares ~λ = Mu. This has the property that for any λi

such that x̆i ∈ γ′, we have that λi = Miu = Miv has no dependence on ã.

Now that we have established how to distribute shares to “parties”, which map to negated or
non negated attributes, we need to show how to generate the key material.

We first describe how to generate decryption key material corresponding to negated parties
x̆i = x′i. Note that by definition, x̆i ∈ γ′ if and only if xi /∈ γ.

• If xi ∈ γ, then since x̆i /∈ γ′, we have that λi may depend linearly on ã, and in general
λi = µã + θ, for some known constants µ and θ. However, by the simulator’s choices at
setup, we can invoke the proof of the revocation scheme to generate the appropriate key
material. Note that in our setting, the randomness ri is the name of the randomness ti from
the revocation scheme, and xi is the name of the identity IDi. Furthermore, note that with our
parameters, we have that D

(3)
i = gλi

2 gb2ri = gµαgb2ri · gθα′′
. Note that gθα′′

can be generated
immediately from gα′′

= ga2
1 which is given as part of the q-MEDDH assumption. The

remainder of the key material is generated exactly as specified in the proof of the revocation
scheme (see also the remark following the key generation part of the proof).

• If xi /∈ γ, then since x̆i ∈ γ′, we have that λi is independent of any secrets and is completely
known to the simulator. In this case, the simulator chooses ri ∈ Zp at random, and outputs
the following:

Di = (D(3)
i = gλi+b2ri

2 , D
(4)
i = gribxihri , D

(5)
i = g−ri)

Note that the simulator can compute all these elements using elements already computed as
part of the computation of the public key (gb2 , gb, h).

We now describe how to give key material corresponding to non negated parties x̆i = xi. The
simulated key construction techniques for non negated parties is similar to previous work [18, 28].

• If xi ∈ γ, then since λi has no dependence on any unknown secrets, we simply choose ri ∈ Zp,
and output Di = (D(1)

i = gλi
2 ·H(xi)ri , D

(2)
i = gri).

• If xi /∈ γ, then we work as follows: Let g3 = gλi . Note that the simulator can compute g3
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using A and g. Choose r′i ∈ Zp at random, and output the components of Di as follows:

D
(1)
i = g

−fxi
3 (g2g

fxi )r′i

D
(2)
i = g−1

3 gr′i

Claim B.3. The simulation above produces valid decryption keys, that are furthermore distributed
identically to the decryption keys that would have been produced by the ABE scheme for the same
public parameters.

Proof:

We will establish this claim by a case analysis. For key material corresponding to negated
parties x̆i, this has already been verified in the proof of the revocation scheme.

For key material corresponding to non negated parties x̆i:

• If xi ∈ γ, then the simulation produces key material using the same procedure as the ABE
scheme.

• If xi /∈ γ, then to see why the simulated key material is good, note that by our programming
of the hash function H(x) has a g2 component for all xi /∈ γ. Now let ri = r′i − λi. Note that
ri is distributed uniformly over Zp and is independent of all other variables except r′i. Then,

D
(1)
i = g

−fxi
3 (g2g

fxi )r′i

= g−λifxi (g2g
fxi )r′i

= gλi
2 (g2g

fxi )−λi(g2g
fxi )r′i

= gλi
2 (g2g

fxi )r′i−λi

= gλi
2 H(xi)ri

and
D

(2)
i = g−1

3 gr′i = gr′i−λi = gri

�

Challenge The adversaryA, will submit two challenge messages M0 and M1 to the simulator. Let
C denote gsgs′ , where s′ is chosen at random, and gs is as provided by the q-MEDDH assumption.
The simulator flips a fair binary coin ν, and returns an encryption of Mν . The ciphertext is output
as

E =
(
γ, E(1) = MνZ,E(2) = C, {E(3)

x = Cf(x)}x∈γ , {E(4)
x }, {E(5)

x }
)

where {E(4)
x }, {E(5)

x } are constructed exactly as Ci,1 and Ci,2, respectively, in the proof of the
revocation scheme.

If Ξ = 0 then Z = e(g, g)αs. Then by inspection, the ciphertext is a valid ciphertext for the
message Mν under the set γ.

Otherwise, if Ξ = 1, then Z = e(g, g)z. We then have E(1) = Mνe(g, g)z. Since z is random,
E(1) will be a random element of GT from the adversary’s viewpoint and the message contains no
information about Mν .
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Phase 2 The simulator acts exactly as it did in Phase 1.

Guess A will submit a guess ν ′ of ν. If ν ′ = ν the simulator will output Ξ′ = 0 to indicate that
it was given a valid q-MEDDH tuple; otherwise, it will output Ξ′ = 1 to indicate it was given a
random target element Z.

As shown above, the simulator’s generation of public parameters and private keys is identical
to that of the actual scheme.

In the case where Ξ = 1 the adversary gains no information about ν. Therefore, we have Pr[ν 6=
ν ′|Ξ = 1] = 1

2 . Since the simulator guesses Ξ′ = 1 when ν 6= ν ′, we have Pr[Ξ′ = Ξ|Ξ = 1] = 1
2 .

If Ξ = 0 then the adversary sees an encryption of Mν . The adversary’s advantage in this
situation is ε by assumption. Therefore, we have Pr[ν = ν ′|Ξ = 0] = 1

2 + ε. Since the simulator
guesses Ξ′ = 0 when ν = ν ′, we have Pr[Ξ′ = Ξ|Ξ = 0] = 1

2 + ε.

The overall advantage of the simulator in the q-MEDDH game is 1
2 Pr[Ξ′ = Ξ|Ξ = 0]+ 1

2 Pr[Ξ′ =
Ξ|Ξ = 1]− 1

2 = 1
2(1

2 + ε) + 1
2

1
2 −

1
2 = 1

2ε. �
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