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Introduction

This introduction is not part of IEEE P1363.1/DDdaft Standard for Public-Key Cryptographic Techrég Based or}
Hard Problems over Lattices.

The P1363 project started as the "Standard for ®RiShamir-Adleman, Diffie-Hellman, and Related
Public-Key Cryptography" with its first meeting ranuary 1994, following a strategic initiative ket
Microprocessor Standards Committee to develop staisdfor cryptography. Over the next eight yedrs, t
working group produced a broad standard reflectimg state of the art in public key cryptography,
including techniques from three major families afdhproblems. In addition, the working group draféa
addendum that provides additional techniques filoosé three major families. A more thorough histafry
the P1363 working group and its contributions belydhe IEEE Std 1363-2000 are given in the
Introduction to IEEE Std 1363-2000.

At the same time, new cryptographic research waslyming additional families of cryptographic
techniques. One of these families was the familigohniques based on hard problems over lattidessd
techniques enjoy operating characteristics that emakem attractive in certain implementation
environments, and thus they have received conditbesarutiny and deployment.

As a result, the working group proposed a new ptdje standardize techniques from this family. This
project was approved by the Microprocessor Starsd@ainmittee, and this current draft is the resiuthis
project.

The following people have contributed to this detétndard:

Mark Etze Daniel Lieman, Editor (2001 Nick Howgrave-Grahan

Joseph H. Silverman Ari Singer William Whyte, Edi{2001-)

Notice to users

Laws and regulations

Users of these documents should consult all apgpécédaws and regulations. Compliance with the
provisions of this standard does not imply comml@&nto any applicable regulatory requirements.
Implementers of the standard are responsible fareming or referring to the applicable regulatory
requirements. IEEE does not, by the publicationit®fstandards, intend to urge action that is not in
compliance with applicable laws, and these docusneraty not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is maVailable for a wide variety of both public and
private uses. These include both use, by refereimcéaws and regulations, and use in private self-
regulation, standardization, and the promotion ofileeering practices and methods. By making this
document available for use and adoption by puhlib@rities and private users, the IEEE does novevai
any rights in copyright to this document.

iv
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1 Updating of IEEE documents
2  Users of IEEE standards should be aware that thesaments may be superseded at any time by the
3 issuance of new editions or may be amended frore timtime through the issuance of amendments,
4 corrigenda, or errata. An official IEEE documentay point in time consists of the current editafrthe
5  document together with any amendments, corrigemderrata then in effect. In order to determine tivhe
6 a given document is the current edition and wheihdras been amended through the issuance of
7 amendments, corrigenda, or errata, Vvisit the IEEEan@ards Association web site at
8 hitp://ieeexplore.ieee.org/xpl/standards.jspcontact the IEEE at the address listed preWou
9 For more information about the IEEE Standards Aission or the IEEE standards development process,
10 visit the IEEE-SA web site diitp:/standards.ieee.org
11 Errata
12 Errata, if any, for this and all other standardsn che accessed at the following URL:
13  http://standards.ieee.org/reading/ieee/updatesdéindex.html Users are encouraged to check this URL
14  for errata periodically.
15
16 Interpretations
17  Current interpretations can be accessed at thewfimly URL: http://standards.ieee.org/reading/ieee/interp/
18 index.html
19 Patents
20  Attention is called to the possibility that implemation of this standard may require use of subjeatter
21  covered by patent rights. By publication of thigngtard, no position is taken with respect to thisterce
22  or validity of any patent rights in connection thith. The IEEE is not responsible for identifying
23  Essential Patent Claims for which a license maygelired, for conducting inquiries into the legalidity
24  or scope of Patents Claims or determining whethey kicensing terms or conditions provided in
25  connection with submission of a Letter of Assuratitany, or in any licensing agreements are realten
26  or non-discriminatory. Users of this standard aqgressly advised that determination of the validityny
27 patent rights, and the risk of infringement of suahts, is entirely their own responsibility. Foer
28 information may be obtained from the IEEE Stand#sisociation.
29 Participants
30  Atthe time this draft standard was completed,1tB&3 Working Group had the following membership:
31 William Whyte, Chair
32 Don Johnson, Vice Chair
33
34 Matt Ball 35 Xavier Boyen 36 Mike Brenner
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Daniel Brown 7 David Kravitz 13 Terence Spies
Mark Chimley 8 Michael Markowitz 14 Yongge Wang
Andy Dancer 9  Luther Martin 15 william Whyte
David Jablon 10 Jim Randall 16

Don Johnson 11 Roger Schlafly

Satoru Kanno 12 AriSinger

The following members of thgndividual/entity] balloting committee voted on this standard. Bal®
may have voted for approval, disapproval, or aligien

(to be supplied by IEEE)
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Draft Standard for Public-Key
Cryptographic Techniques Based on
Hard Problems over Lattices

1. Overview

1.1 Scope

Specifications of common public-key cryptographéchniques based on hard problems over lattices
supplemental to those considered in IEEE 1363 &ftEIP1363a, including mathematical primitives for
secret value (key) derivation, public-key encryptimentification and digital signatures, and cographic
schemes based on those primitives. Specificatiénelated cryptographic parameters, public keys and
private keys. Class of computer and communicatsystems is not restricted.

1.2 Purpose

The transition from paper to electronic media bsimgth it the need for electronic privacy and autiwity.
Public-key cryptography offers fundamental techggladdressing this need. Many alternative publig-ke
techniques have been proposed, each with its owefile The IEEE 1363 Standard and P1363a project
have produced a comprehensive reference definragge of common public-key techniques covering key
agreement, public-key encryption and digital signed from several families, namely the discrete
logarithm, integer factorization, and elliptic carfamilies.

This project will specify cryptographic techniquessed on hard problems over lattices. Thesaigaebs
may offer tradeoffs in operating characteristicewlcompared with the methods already specifie@EEl
1363-2000 and draft P1363a. It is also intended tiis project provide a second-generation frammewo
for the description of cryptographic techniques,campared to the initial framework provided in 1363
2000 and draft P1363a.

It is not the purpose of this project to mandatg particular set of public-key techniques or seguri
requirements (including key sizes) for this or &ayily. Rather, the purpose is to provide: (1) ference

for specification of a variety of techniques fronhieh applications may select, (2) the relevant nemb
theoretic background, and (3) extensive discussfaecurity and implementation considerations s ¢h

solution provider can choose appropriate secueityiirements for itself.
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2. Normative references

The following referenced documents are indispersétt the application of this document. For dated
references, only the edition cited applies. Forated references, the latest edition of the refe@nc
document (including any amendments or corrigengplies.

FIPS 180-2,Secure Hash Standardrederal Information Processing Standards Pulbicat80-2, U.S.
Department of Commerce/National Institute of Stadgand Technology, National Technical Information
Service, Springfield, Virginia, August 26, 2002 [eusedes FIPS PUB 180-1). Available at
http://csrc.nist.gov/CryptoTool ki t/Hash. htm .

ISO/IEC 10118-3:1998 Information Technology — Ségutechniques — Hash-functions — Part 3:
Dedicated hash-functions.

NOTE 1—The above references are required for implemersiimge of the techniques in this document, but ddhal
techniques.

NOTE 2—The mention of any standard in this document isréderence only, and does not imply conformancé wit
that standard. Readers should refer to the relestantard for full information on conformance wittat standard.

NOTE 3—Bibliography is provided in Annex B.

3. Definitions

For the purposes of this standard, the followimgteand definitions applythe Authoritative Dictionary
of IEEE Standards, Seventh Editishpuld be referenced for terms not defined in ¢tasse.

31 Algorithm: A clearly specified mathematical process for cotapon; a set of rules which, if
followed, will give a prescribed result.

3.2 Asymmetric Cryptographic Algorithm: A cryptographic algorithm that uses two relategske
public key and a private key; the two keys haveptuperty that, given the public key, it is
computationally infeasible to derive the privatg ke

3.3 Authentication (of a message): The act of determining that a message has not dleamged since
leaving its point of origin. The identity of theiginator is implicitly verified.

34 Authentication of Ownership: The assurance that a given, identified partynid$eto be
associated with a given public key. May also ineladsurance that the party possesses the
corresponding private key (see IEEE Std 1363-2000ex D.3.2, for more information).

35 Big Modulus: The big modulus q is used to define the largeymparhial ring. The modulus g can
generally be taken to be any value that is relbtiggme in the ring to the small modulus p.

3.6 Birthday Paradox: For a category size of 365 (the days in a ye&er anly 23 people are
gathered, the probability is greater than 0.5 ¢hd¢ast two people have a common birthday
(month and day). The reason is that among 23 pethpee are 23*(23-1)/2 = 253 pairs of people,
each with a 1/365 chance of having matching biged@he chance of no matching birthday is
therefore (364/365)253 ~ 0.4995. In general, asg eehere the criterion for success is to find a
collision (two matching values) rather than a bit€ value which matches a pre-selected one) will
display this pairing property, so that the siz¢hef space that must be searched for success is
about the square root of the size of the spac# pbssible values.

3.7 Bit Length: See: length.
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3.9

3.10

311

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

321

3.22
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Bit String: An ordered sequence of O's and 1's. The left-imibs the most-significant bit of the
string. The right-most bit is the least-significdittof the string. A bit and a bit string of lehgt
are equivalent for all purposes of this standard.

Blinding Polynomial: In this standard, the ciphertexis generated according to the equaton
r*h + m’, whereh is the public keym' is the message representative, and r is a psandomly
generated “blinding polynomial”

Blinding Polynomial Generation Methods: In the encryption schemes in this document, a
blinding polynomial generation method (LBP-BPGMu&ed to generate a blinding polynomial r
from the padded message pm in order to providatelei awareness.

Blinding Polynomial Space: The space that a LBP-BPGM selects from. Usualfindd
implicitly by the definition of the LBP-BPGM.

Certificate: The public key and identity of an entity togethgth some other information
rendered unforgeable by signing the certificatdnliie private key of the certifying authority,
which issued that certificate.

Ciphertext: The result of applying encryption to a messaget@st: plaintext. See also:
encryption.

Composite: An integer which has at least two prime factors.

Confidentiality: The property that information is not made avaiadyl disclosed to unauthorized
individuals, entities, or processes.

Conformance Region: a set of inputs to a primitive or a scheme oj@nebr which an
implementation operates in accordance with theiipation of the primitive or scheme operation

Cryptographic Family: A set of cryptographic techniques in similar matladical settings. For
example, this standard presents a single famitgainiques based on the underlying hard
problems of finding a short vector and a close »eict a lattice.

Cryptographic Hash Function: See hash function.

Cryptographic Key (Key): A parameter that determines the operation of ptographic function
such as: the transformation from plain text to eiptext and vice versa; synchronized generation
of keying material; digital signature computatiarvalidation.

Cryptography: The discipline which embodies principles, mears methods for the
transformation of data in order to hide its infotima content, prevent its undetected modification,
prevent its unauthorized use or a combination tfere

Data I ntegrity: A property whereby data has not been altered stralged.

Decrypt: To produce plaintext (readable) from ciphertextr@adable). Contrast: encrypt. See
also: ciphertext; encryption; plaintext.

Dimension: The dimension N identifies the dimension of thewaution polynomial ring used.
The dimension of the associated lattice probleBNs Elements of the ring are represented as
polynomials of degree N — 1.
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Domain Parameters. a set of mathematical objects, such as fieldsaus, and other
information, defining the context in which publidi@te key pairs exist. More than one key pair
may share the same domain parameters. Not allagsgphic families have domain parameters.
See also: public/private key pair; valid domaingpaeters.

Domain Parameter Validation: the process of ensuring or verifying that a $etamnain
parameters is valid. See also: domain parameteysy&idation; valid domain parameters.

Encrypt: to produce ciphertext (unreadable) from plainfesddable). Contrast: decrypt. See
also: ciphertext; encryption; plaintext.

Encryption Primitives: The encryption primitive is the fundamental builgliblock for the
encryption operation. In public key cryptography,emcryption primitive scrambles data using a
public key such that only the holder of the privieey can directly perform the unscrambling
operation; in other words, it provides securityiagaciphertext-only attacks by passive attackers.

Encryption Scheme: A means for providing encryption, based on angst@n primitive, that is
secure against both active and passive attackesscére encryption scheme will typically
provide semantic security (an attacker who knowas ¢eime of two messages has been encrypted
will find it computationally infeasible to determ@rwhich) against an attacker who can make
polynomially many queries to a decryption oracle.

Entity: A participant in any of the schemes in this stadda he words “entity” and “party” are
used interchangeably. This definition may adminyniaterpretations: it may or may not be
limited to the necessary computational elementsay or may not include or act on behalf of a
legal entity. The particular interpretation choseélh not affect operation of the key agreement
schemes.

Exclusive OR: A mathematical bit-wise operation, symhol, defined as:

00O 0=0,
o0 1=1,
10 0=1,and
10 1=0

Equivalent to binary addition without carry. Magalbe applied to bit strings: the XOR of two bit
strings of equal length is the concatenation ofXfdRs of the corresponding elements of the bit
strings.

Family: See: cryptographic family.

Fied: A setting in which the usual mathematical operatiaddition, subtraction, multiplication,
and division by nonzero quantities) are possib@ey the usual rules (such as the
commutative, associative, and distributive laws).

Finite Fidld: a field in which there are only a finite numbermpfantities.

First Bit: the leading bit of a bit string or an octet. Feample, the first bit of 0110111 is 0.
Contrast: last bit. Syn: most significant bit; fafist bit. See also: bit string; octet.

First Octet: the leading octet of an octet string. For examiple first octet of 1¢ 76 3b e4 is 1c.
Contrast: last octet. Syn: most significant odeftmost octet. See also: octet; octet string.
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Hash Function: A function which maps a bit string of arbitrarytgh to a fixed-length bit string
and satisfies the following properties:
It is computationally infeasible to find any inpuhich maps to any pre-specified output;
It is computationally infeasible to find any twistihct inputs which map to the same
output.

Hash Value: The result of applying a hash function to a mgssa

Index Generation Function: An IGF is a function that is seeded once, canadled multiple
times, and produces statistically independent aregn each call.

Key: See cryptographic key.

Key Confirmation: The assurance of the legitimate participantskeyaestablishment protocol
that the intended recipients of the shared keyadlgtposses the shared key.

Key Derivation: The process of deriving one or more session keys a shared secret and
(possibly) other, public information. Such a funatican be constructed from a one-way hash
function such as SHA-1.

Key Encrypting Key (KK): A key used exclusively to encrypt and decrypt keys

Key Establishment: A protocol that reveals a secret key to its |eggtie participants for
cryptographic use.

Key Generation Primitive: A method used to generate a key pair.

Key Management: The generation, storage, secure distribution gptiGation of keying material
in accordance with a security policy.

Key Pair: When used in public key cryptography, a privatg &ed its corresponding public key.
The public key is commonly available to a wide aundie and can be used to encrypt messages or
verify digital signatures; the private key is hblgdone entity and not revealed to anyone--it isluse
to decrypt messages encrypted with the public kelya produce signatures that can verified with
the public key. A public/private key pair can alsmused in key agreement. In some cases, a
public/private key pair can only exist in the cottef domain parameters. See also: digital
signature; domain parameters; encryption; key agee¢; public-key cryptography; valid key;

valid key pair.

Key Transport: A key establishment protocol under which the sekeg is determined by the
initiating party.

Key Validation: the process of ensuring or verifying that a kegyforms to the arithmetic
requirements for such a key in order to thwartaiertypes of attacks. See also: domain parameter
validation; public/private key pair; valid key; vélkey pair.

Keying Material: The data (e.g., keys, certificates and initialratectors) necessary to
establish and maintain cryptographic keying retetfops.

Known-K ey Security: Known-key security for Party U implies that theykegreed upon will not
be compromised by the compromise of the othersessys. If each ephemeral key is used only
to compute a single session key, then known-keyrggganay be achieved.

Last Bit: The trailing bit of a bit string or an octet. Fotample, the last bit of 0110111 is 1.
Contrast: first bit. Syn: least significant bitghtmost bit. See also: first bit; octet.
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Last Octet: The trailing octet of an octet string. For exame last octet of 1¢c 76 3b e4 is e4.
Contrast: first octet. Syn: least significant octeghtmost octet. See also: octet; octet string.

L attice Based Polynomial Public Key Encryption: The encryption mechanisms described in this
standard.

Least Significant: See: last bit; last octet.
Leftmost Bit: See: first bit.
Leftmost Octet: See: first octet.

Length: (1) Length of a bit string is the number of bitghe string. (2) Length of an octet string
is the number of octets in the string. (3) Lengthits of a nonnegative integer risg2 (n + 1)
(i.e., the number of bits in the integer’s binapresentation). (4) Length in octets of a
nonnegative integer n i0g256 (n + 1) (i.e., the number of digits in the integer’s regeatation
base 256). For example, the length in bits of tikeger 500 is 9, and its length in octets is 2.

Mask Generation Function: An MGF is a construction built around a hash figrcthat
produces an arbitrary-length output string, pogdifahger than the output of the underlying hash
function.

M essage Authentication Code (MAC): A cryptographic value which is the results of praga
financial message through the message authenticatjorithm using a specific key.

M essage L ength Encoding Length: In SVES, the length of the message that is tonoeypted is
encoded in the padded message. The length oietldettiat represents the length of the message,
called the message length encoding length, is septed by the parameter ILen. For all
parameter sets in this document ILen is set to 1.

M essage Representative: A mathematical value for use in a cryptographimjive, computed
from a message that is input to an encryptiondig#éal signature scheme and uniquely linked to
that message. See also: encryption scheme; diggtahture scheme.

Modular Lattice: A lattice in which (among other things) all valwee integers reduced mad
Most Significant: See: first bit; first octet.

Norm: A measure of the “size” of a vector or polynomial.

Octet: A bit string of length 8. An octet has an integalue between 0 and 255 when interpreted
as a representation of an integer in base 2. Agt cah also be represented by a hexadecimal
string of length 2, where the hexadecimal strinthérepresentation of its integer value base 16.
For example, the integer value of the octet 100114057; its hexadecimal representation is 9d.
Also commonly known as a byte. See also: bit gtrin

Octet String: An ordered sequence of octets. See also: octet.

Owner: The entity whose identity is associated with a jxaiy.

Parameters. See: domain parameters.

Plaintext: A message before encryption has been appliedttteitopposite of ciphertext.
Contrast: ciphertext. See also: encryption.
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Polynomial Index Generation Constant: A value used when generating a random numberein th
range [0, N-1], to eliminate bias without impactief§iciency.

Prime Number: An integer that is greater than 1 and divisibleyday 1 and itself.

Primitives: Cryptographic primitives used in the SVES encryptscheme include key generation
primitives, encryption primitives and decryptiorimitives.

Private Key: The private element of the public/private key p8iee also: public/private key pair;
valid key.

Private Key Space: The space from which a key generation primitiveds the private key.

Public Key: The public element of the public/private key p&ee also: public/private key pair;
valid key.

Public-key Cryptography: methods that allow parties to communicate secwvélyout having
prior shared secrets through the use of publicipeikey pairs. Contrast: symmetric cryptography.
See also: public/private key pair.

Public Key Space: The space from which a key generation primitidecs the public key.
Public Key Validation: See key validation.
Public/Private Key Pair: See key pair.

Salt Size: In this standard, the salt size db is the numbesralom bits that shall be used to pad
the message during encryption, to provide for seimapcurity.

Rightmost Bit: See: last bit.
Rightmost Octet: See: last octet.

Ring: a setting in which addition, subtraction, and rplittation are possible, and division by a
given nonzero quantity may or may not be possiblfeeld is a special case of a ring. See also:
field.

Ring Element: in generalan element in a ring. In the context of this staddabinary N-ring
elementefers to an element in the ring/22)[X]/(X" — 1), which is to say a binary polynomial of
degreeN-1 or an array oN binary elements. Ag( N)-ring elementefers to an element in the ring
(Z19Z)[X)/(XN - 1), which is to say a polynomial of degiéd with coefficients reduced maglor
an array ol elements each taken mqd

Scheme Options: Scheme options consist of parameters and algasithat do not affect the key
space (i.e. that are not domain parameters), atintiist be agreed upon in order to implement the
encryption scheme.

Secret Key: a key used in symmetric cryptography; needs tknmevn to all legitimate
participating parties involved, but cannot be kndwian adversary. Contrast: public/private key
pair. See also: key agreement; shared secret \eynstric cryptography.

Secret Value: a value that can be used to derive a secret keyypically cannot by itself be used
as a secret key. See also: secret key.
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Shared Secret Key: a secret key shared by two parties, usually ddras a result of a key
agreement scheme. See also: key agreement; segret k

Shared Secret Value: a secret value shared by two parties, usuallndw key agreement
scheme. See also: key agreement; secret value.

Signature: See: digital signature.

Small Modulus: In LBP-PKE, the small modulus p is used for kegpeyation and for modular
reduction during decryption.

Statistically Unique: For the generation of n-bit quantities, the pradlitgtof two values

repeating is less than or equal to the probalolityyvo n-bit random quantities repeating. More
formally, an element chosen from a finite set & efements is said to be "statistically unique” if
the process that governs the selection of thisetémprovides a guarantee that, for any integer L
n, the probability that all of the first L selecteléments are different is no smaller than the
probability of this happening when the elementsdresvn uniformly randomly from S. The latter
probability is equal L)!nLto n!(n

SVES: Short Vector Encryption Scheme — the encryptidreste defined in this document.

Symmetric Cryptographic Algorithm: A cryptographic algorithm that uses one shared &ey
secret key. The key must be kept secret betweetwih communicating parties. The same key is
used for both encryption and decryption.

Symmetric Cryptography: Methods that allow parties to communicate secuwaly when they
already share some prior secrets, such as the gegreContrast: public-key cryptography. See
also: secret key.

Symmetric Key: A cryptographic key that is used in symmetric togwaphic algorithms. The
same symmetric key that is used for encryptiorise ased for decryption.

User: A party that uses a public key.

Valid Domain Parameters: a set of domain parameters that satisfies thefgpemthematical
definition for the set of domain parameters ofasily. While a set of mathematical objects may
have the general structure of a set of domain petens) it may not actually satisfy the definition
(for example, it may be internally inconsistentjiahus not be valid. See also: domain
parameters; public/private key pair; valid key;iddey pair; validation.

Valid Key: a key (public or private) that satisfies the sfiechathematical definition for the keys
of its family, possibly in the context of its sdtdmmain parameters. While some mathematical
objects may have the general structure of keyy, ey not actually lie in the appropriate set (for
example, they may not lie in the appropriate subgraf a group or be out of the bounds allowed
by the domain parameters) and thus not be valid.Kege also: domain parameters; public/private
key pair; valid domain parameters; valid key pealjdation.

Valid Key Pair: a public/private key pair that satisfies the sfiechathematical definition for the
key pairs of its family, possibly in the contextitsf set of domain parameters. While a pair of
mathematical objects may have the general strucfusekey pair, the keys may not actually lie in
the appropriate sets (for example, they may ndhltbée appropriate subgroup of a group or be out
of the bounds allowed by the domain parameters)ay not correspond to each other; such a pair
is thus not a valid key pair. See also: domainpatars; public/private key pair; valid domain
parameters; valid key; validation.
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Validation: See: domain parameter validation; key validation.

Verify: In relation to a Digital Signature means to deieeraccurately: (1) that the Digital
Signature was created during the operational peri@dvalid Certificate by the private key
corresponding to the public-key listed in the Giedite; and (2) the message has not been altered
since its Digital Signature was created.
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4. Types of cryptographic techniques

4.1 General model

As stated in Clause 1, the purpose of this standaprovide a reference for specifications ofaety of
common public-key cryptographic techniques from alihiapplications may select. Different types of
cryptographic techniques can be viewed abstracttgr@ing to the following three-level general model

O Primitives— basic mathematical operations. Historicallyytivere discovered based on number-
theoretic hard problems. Primitives are not meardadhieve security just by themselves, but they
serve as building blocks for schemes.

0 Schemes- a collection of related operations combiningritives and additional methods (Clause
4.4). Schemes can provide complexity-theoretic sgcwhich is enhanced when they are
appropriately applied in protocols.

O Protocols— sequences of operations to be performed by phellgarties to achieve some security
goal. Protocols can achieve desired security fptiegtions if implemented correctly.

From an implementation viewpoint, primitives can biewed as low-level implementations (e.qg.,
implemented within cryptographic accelerators, aftvgare modules), schemes can be viewed as medium-
level implementations (e.g., implemented within ptographic service libraries), and protocols can be
viewed as high-level implementations (e.g., implated within entire sets of applications).

This standard contains only specifications of sabem

4.2 Schemes

The following types of schemes are defined in sémdard:

O Encryption Schemes (ES), in which any party camgr@ message using a recipient’s public key,
and only the recipient can decrypt the messageshmguits corresponding private key. Encryption
schemes may be used for establishing secret kdys tiged in symmetric cryptography.

Schemes in this standard are presented in a gefwral based on certain primitives and additional
methods. For example, the encryption scheme definethis standard is based on a key generation
primitive, a decryption primitive, and a blindinglgnomial generation method.

Schemes also include key management operationb, agiselecting a private key or obtaining another

party’'s public key. For proper security, a partyed® to be assured of the true owners of the kegls an

domain parameters and of their validity. Generatib domain parameters and keys needs to performed
properly, and in some cases validation also needset performed. While outside the scope of this

standard, proper key management is essential ¢oirige

An Encryption Schemis specified by providing the following:
Name

Type (e.g. Asymmetric Public-key Encryption Scheme)

Options (Key Type, Primitives, Parameters)

O o o d

Operations

10
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Key Pair Generation
Key Pair Validation
Public Key Validation

O o o od

Encryption Operation
0 Input

0  Output

0  Decryption Operation
0 Input

0  Output

An encryption scheme specification may also inclimefollowing:

0  Security Considerations
0 Implementation Considerations

0 Related Standards

The specifications are functional specificationst, imterface specifications. As such, the formatngiuts
and outputs and the procedure by which an impleatient of a scheme is invoked are outside the sobpe
this standard. See Annex E for more informationngmut and output formats.

4.3 Additional methods

This standard specifies the following additionaltinoels:

0 Blinding Polynomial Generation Methods, which aoenponents of encryption schemes.
O  Auxiliary Functions, which are building blocks fother additional methods.

O Index generation functions

O Mask Generation Functions

0 Hash Functions, which are used as the core of Imgneration functions and of Mask
Generation Functions.

The specified additional methods are required émfarmant use of the schemes. The use of an inatieq
message encoding method, key derivation functiomuailiary function may compromise the security of
the scheme in which it is used. Therefore, anylémentation which chooses not to follow the
recommended additional methods for a particulareseh should perform its own thorough security
analysis of the resulting scheme.

4.4 Algorithm specification conventions

When specifying an algorithm or method, this staddasses four parts to specify different aspectthef
algorithm. They are as follows:

11
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Components, such as choice of IGF, are parameters that @efsa before the beginning of the operation
and that are not specific to the particular aldgponitcall. Components tend to be kept fixed for iplét
users and multiple instances of the algorithm ealli need not be explicitly specified if they are
implicitly known (e.g. if they are defined withinslected object identifier (OID)).

Inputs, such as keys and messages, are values that ensigebified for each algorithm call.
Outputs, such as ciphertext, are the result of transfdonaton the inputs.

Operations specify the transformations that are performedhendata to arrive at the output. Throughout
the standard, the operations are defined as a isegw# steps. A conformant implementation may
perform the operations using any sequence of dtegtsalways produces the same output as the
sequence in this standard. Caution should be takensure that intermediate values are not regieale
however, as they may compromise the security oatperithms.

5. Mathematical conventions

5.1 Mathematical notation and abbreviated terms

When referring to mathematical objects and dataatbjin this standard, the following notation i®dis
Throughout the document, numbers at the end ofbkrinames are used to distinguish different, but
related values (e.gif1, df2, df3 or Dminl, Dmin2, etc.).

0 Denotes the integer 0, the bit 0, or the additiemtity (the element zero) of a ring

1 Denotes the integer 1, the bit 1, or the multgdiive identity (the element one) ofl a
ring

* Indicates the convolution product of two polynatsi and is also used to indicgte

multiplication of integers

0 or XOR Exclusive OR function

I Concatenation. A||B is the concatenation ofdttet strings A and B where the
leading octet of A is the leading octet of A||B ahe trailing octet of B is th¢
trailing octet of A||B.

D

= Initialization. a := b means initialize or sbe value of a equal to the value of b.

A Lower-bound decryption coefficient, used in dgitign process to reduce into
correct interval

BRE20OSP Binary Ring Element to Octet String Cosier Primitive
BS2IP Bit String to Integer Conversion Primitive

BS2REP Bit String to Ring Element Conversion Ptiwei

BS2ROSP Bit String to Right-padded Octet String ¥&vsion Primitive

12
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BPGM Blinding Polynomial Generation Method

ceil[] or[.] Ceiling function (i.e. the smallest integer gredtem or equal to the contents of [

db The number of random bits used as input for enmgpt

df An integer specifying the number of ones in theypomials that comprise th
private key valué (also specified adfl, df2, anddf3, or adF)

dg An integer specifying the number of ones in theypomials that comprise th
temporary polynomiaj (often specified adG)

DP Decryption Primitive

dr An integer specifying the number of ones in thadilig polynomialr in SVES.
(also specified adrl, dr2, anddr3)

e Encrypted message representative, a polynom@ahpoted by an encryptio
primitive

E Encrypted message, an octet string.

ES (Asymmetric) encryption scheme.

f Private key in SVES.

F In SVES, a polynomial that is used to calculatevtileef whenf=1+pF.

floor[.] or|.]

Floor function (i.e. the largest integer less tbaequal to the contents of [.])

g In SVES, a temporary polynomial used in the keyegation process.
GCD(a, b) Greatest Common Divisor of two non-negatintegers a and b.
h Public key

Hash() A cryptographic hash function computedrendontents of ()
hLen Length in octets of a hash value.

i An integer

12BSP Integer to Bit String Conversion Primitive

120SP Integer to Octet String Conversion Primitive

IGF() An index generation function seeded with tbatents of ()
IGF-MGF1 An index generation function based onM@F1 construction.
k Security level in bits.

KGP Key Generation Primitive

13
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LBP-BPGML1 Blinding polynomial generation method gmnerating binary blinding polynomia

LBP-BPGM2 Blinding polynomial generation method fgenerating product-form blinding
polynomials

LBP-DP1 Decryption primitive for use with latticased polynomial public key decryption

LBP-KGP1 Random Key Generation Primitive

LBP-KGP2 Random Low Hamming Weight Key GeneratioimRive

LBP-PKE Lattice-Based Polynomial Public Key Encigpt

m The message, an octet string, which is encrypt&MES.

M In SVES, the padded and formatted message repatisendctet string used durin
encryption and decryption.

m’ The message representative polynomial which is #tdmnto the encryption
primitive in the SVES encryption scheme.

MAC Message authentication code.

MGF() A mask generation function seeded with thietents of ()

MGF1 A mask generation function based on hashisgea concatenated with a counter.

modq Used to reduce the coefficients of a polynomitd some interval of lengtt

modp Used to reduce a polynomial to an element of tiignmmial ring mod p

MPM Message Padding Method

MRGM Message Representative Generation Method

N Dimension of the polynomial ring used (i.e. polyriat® are up to degred-1)

OS2BREP Octet String to Binary Ring Element Cosi@r Primitive

0Ss2IP Octet String to Integer Conversion Primitive

OS2REP Octet String to Ring Element ConversiomHikie

p “Small” modulus, an integer or a polynomial

q “Big” modulus, usually an integer

r In LBP-PKE, the encryption blinding polynomial (ggated from the hash of th
padded message M in SVES)

RE2BSP Ring Element to Bit String Conversion Ptiwei

RE20SP Ring Element to Octet String ConversiomiBikie

14

(7]

«Q



N

~Nooh~k W

10
11
12
13
14

15

16
17

18
19

20

21
22

IEEE P1363.1/D10, July 2008

ROS2BSP Right-padded Octet String to Bit String ¥&pgion Primitive
SVDP Short Vector Decryption Primitive

SVES Short Vector Encryption Scheme

X The integer input to or output from integer coni@ngrimitives
X The indeterminate used in polynomials

Z The ring of integers

Z, The ring of integers modq.

6. Polynomial representation and operations

6.1 Introduction

The cryptographic techniques specified in this ééad require arithmetic in quotient polynomial $ng
also called convolution polynomial rings. Intuitiyethese algebraic objects consist of polynomiaith
integer coefficients. Manipulation of these ringgmeents is accomplished by polynomial arithmetic
modulo a fixed polynomia™ — 1 in this standard.

6.2 Polynomial representation

Typically in mathematical literature, a polynomilin X is denoteda(X). In this standard, when the
meaning is clear from the context, polynomialg the variableX will simply be denoted. Further, all
polynomials used in this standard have degxiee 1, unless otherwise noted. In addition, given a
polynomiala, a variable denoted, wherei is an integer, represents the coefficientaif degred. In
other words, the polynomial denotadepresents the polynomialX) = ap + a;X + aX*+ agX® + ...+ aX +

... +ay1 XM unless otherwise specified.

6.3 Polynomial operations

6.3.1 Polynomial multiplication
Let Z be the ring of integers. The polynomial ring o¥erdenotedZ[X], is the set of all polynomials with

coefficients in the integers. Theonvolution polynomial ring (over) of degree Ns the quotient ring
Z[X/(XN — 1). The produat of two polynomialsa,b € Z[X]/(X" - 1) is given by the formula

c(X)=a(X)*b(X) with ¢, = > ab,.

i+j=k(modN)

All multiplications of polynomialsa andb, represented asb, are taken to occur in the rid@XJ/(X" — 1)
unless otherwise noted.

15
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6.3.2 Reduction of a Polynomial mod q

Throughout the document, polynomials are takedq, whereq is an integer. To reduce a polynomial
mod q one simply reduces each of the coefficients ieddentlymod ginto the appropriate (specified)
interval.

6.3.3 Inversion in (Z/ qZ)[XJ/(X" - 1)

For certain cryptographic operations such as keayegion, it is necessary to take the inverse of a
polynomial in g/qZ)[X]/(X" — 1). This clause describes the algorithms necgssr inversion in this ring.
6.3.3.1 The Polynomial Division Algorithmin Z  ,[X]

This algorithm divides one polynomial by anothedypomial in the ring of polynomials with integer

coefficients modulo a primp. All convolution operations occur in the ri@g[X] in this algorithm (i.e.
there is no modular reduction of the powers ofgblynomials).

Algorithm 1 — Polynomial Division Algorithm in Z plX]
Input: A primep, a polynomiala in Z,[X] and a polynomiab in Z,[X] of degreeN-1 whose
leading coefficienby is not 0.

Output: Polynomialsg andr in Z,[X] satisfyinga=b * q +r and deg < degb.

Operation: Polynomial Division Algorithm in gX] shall be computed by the following or an
equivalent sequence of steps;

a) Setr:=aandq:=0

b) Setu:=by*modp

c) While degr >=Ndo
1) Setd:=degr(X)
2) Setv:i=urrgtX@N
3) Setr:=r-v*b
4) Setq:=q+v

d) Returng,r

6.3.3.2 The Extended Euclidean Algorithm in Z  ,[X]

The Extended Euclidean Algorithm finds a greateshmon divisord (there may be more than one that are
constant multiples of each other) of two polynomi@landb in Z[X] and polynomialss andv such that
a*u+b*v=d. All convolution operations occur in the rigg[X] in this algorithm (i.e. there is no modular
reduction of the powers of the polynomials).

Algorithm 2 — Extended Euclidean AlgorithminZ ~ p[X]

16
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Algorithm 2 — Extended Euclidean AlgorithminZ  5[X]
Input: A primep and polynomials andb in Z,[X] with a andb not both zero.

Output: Polynomialsu, v, d in Z,[X] with d = GCD(@, b) anda*u + b*v =d.

Operation: Extended Euclidean Algorithm in,[X] shall be computed by the following or an
equivalent sequence of steps;

a) If b=0thenreturn (1,8)

b) Setu:=1
c) Setd:=a
d) Setv;:=0
e) Setv;:=b

f)  Whilevz;#0do
1) Use the division algorithm (6.3.3.1) to wrille= v3*q + t3 with degt; < degvs
2) Sett;:=u—-qg*vy

3) Setu:=wv;
4) Setd:=vz
5) Setv; =ty
6) Setv;:=t3

g) Setv:=(d-a*u)/b [This division is exact, i.e., the remainderjs 0
h) Return (,v,d)

6.3.3.3 Inverses in Z ,[X]/(X" - 1)

The Extended Euclidean Algorithm may be used td ftre inverse of a polynomialin Zp[X]/(XN -1)if
the inverse exists. The condition for the invesexist is that GC¥, X" — 1) should be a polynomial of
degree O (i.e. a constant). All convolution operat occur in the ringp[X]/(XN — 1) in this algorithm.

Algorithm 3 — Inverses in Z  ,[XJ/(Xy — 1)
Input: A primep, a positive integeN and a polynomiad in Zp[X]/(XN -1).

Output: A polynomialb satisfyinga*b = 1 ian[X]/(XN — 1) ifais invertible ian[X]/(XN -1),
otherwise FALSE.

Operation: Inverses in g[)(]/(x“ — 1) shall be computed by the following or an egqlént
sequence of steps;

a) Run the Extended Euclidean Algorithm (6.3.3.2) vifthuta and K" — 1). Let (1, v, d)
be the output, such thatu + (X" — 1)*v =d = GCDf, (X" — 1)).

b) Ifdegd=0
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Algorithm 3 —Inversesin Z ,[X)//(Xy—1)
c) Returnb=d™*(modp) *u
d) Else return FALSE

6.3.3.4 Inverses in Z p [X]/(X" - 1)

For key generation in this standard it is necessacalculate inverses inx]/(X" — 1), whereg is a power
of 2. In this case, the Inversion Algorithm (6.3)3may be used to find the inverseagk) in the quotient
ring (RI2R[X]J/(M(X)). Then the following algorithm may be used td lffto an inverse of(X) in the
quotient ring RIp°R)[XJ/(M(X)) with higher powers of the prime 2 (or any prip)e

Algorithm 4 — Inverses in Zp[X]J/(XN — 1)
Input. A primep in a Euclidean rindR, a monic polynomiaM(X) &€ R[X], a polynomiala(X) ¢
R[X], and an exponert

Output. An inverseb(X) of a(X) in the ring RIp°R)[X]/(M(X)) if the inverse exists, otherwis
FALSE.

D

a) Use the Inversion Algorithm 6.3.3.4 to compute &pomial b(X) € R[X] that gives an
inverse ofa(X) in (RIpR[X])/(M(X)). Return FALSE if the inverse does not exist.gT
Inversion Algorithm may be applied here becaB4R is a field, and soR/pR)[X] is a
Euclidean ring.]

b) Setn<& 2

c¢) Whilee>0do

d) b(X) € 2*b(X) —a(X)*b(X)*> (modM(X)), with coefficients computed moduf
e) Sete<| 2]

f)  Setn & 2*n

g) Returnb(X) modM(X) with coefficients computed modufs.

>

7. Data Types and Conversions

7.1 Bit Strings and Octet Strings

As usual, ait is defined to be an element of the set {0, 1} bifAstring is defined to be an ordered array
of bits. Abyte (also called amctet) is defined to be a bit string of length 8. b#te string (also called an
octet string) is an ordered array of bytes. The terfirst and last, leftmost and rightmost, most
significant and least significant, and leading and trailing are used to distinguish the ends of these
sequencesfif st, leftmost, most significant andleading are equivalenttast, rightmost, least significant
andtrailing are equivalent). Within a byte, we additionalljereto thehigh-order andlow-order bits,
wherehigh-order is equivalent tdirst andlow-order is equivalent tdast.
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Note that when a string is represented as a sequénoay be indexed from left to right or fromhigo
left, starting with any index. For example, consitte octet string of two octets: 2a 1b. This cgpands to
the bit string 0010 1010 0001 1011. No matter whdéxing system is used, the first octet is stl| the
first bit is still 0, the last octet is still 1Lbnd the last bit is still 1. The high-order bit bktsecond octet is 0;
the low-order bit of the second octet is 1.

When a bit string or a octet string is being encbui¢o a polynomial with coefficients reduced modag
“ring element”), where q is usually either 128 &62the integer coefficients are mapped individutdl bit
or octet strings, which are then concatenated. fi@ipping and its reverse are described in the ceiore
primitives OS2REP, BS2REP, RE20SP and RE2BSP iard5/.6.

This standard does not specify a single algoritton donverting from bit/octet strings to trinary
polynomials in an unbiased and reversible fashinstead, the standard uses two algorithms, whieh ar

defined inline in the techniques that use them. &lgerithm is reversible but biased; the otherribiased
but non-reversible.

7.2 Converting Between Integers and Bit Strings (I2 BSP and BS2IP)

7.2.1 Integer to Bit String Primitive (12BSP)

I20SP converts a nonnegative integer to a bitgiina specified length.

Algorithm 5 — 12BSP
Input: i, nonnegative integer to be convertbten intended length of the resulting bit string

Output: B, corresponding bit string of lengtiLen

Operation: The output shall be computed by the following@orequivalent sequence of steps:

n

a) If x=2"*" output “integer too large” and stop.

b) Write the integer x in its wunique xLenbit representation in base P:

X = XeLen1 " 2tent *+ Xelen2 ey +X 2 +X%
wherex, = 0 or 1 (note that one or more leading bits Wélzero ifx is less than -

l).
c) Output the bit String en1 XxLen2 «-- X1 Xo.

7.2.2 Bit String to Integer Primitive (BS2IP)

BS2IP converts a bit string to a nonnegative ieteg

Algorithm 6 — BS2IP
Input: B, bit string to be convertedbl(enis used to denote the lengthR)f

Output: X, corresponding nonnegative integer
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Algorithm 6 — BS2IP

a)
b)

c)
d)

Operation: The output shall be computed by the following@orequivalent sequence of steps:

If Bis of length 0, output O.
Let bpLent Borens --- by bo be the bits oB from leftmost to rightmost.

Letx= bbLen—l -2 blen-1 bbLen—Z -2 blen-2 4 +b1 -2 +b0.

Outputx.

7.3 Converting Between Integers and Octet Strings (  120SP and OS2IP)

7.3.1 Integer to Octet String Primitive (120SP)

I20SP converts a nonnegative integer to an oaiaegstf a specified length.

Algorithm 7 — 120SP

Input:
string

Output

a)
b)

X, honnegative integer to be convertedien intended length of the resulting oct

. O, corresponding octet string of lengthen

Operation: The output shall be computed by the followin@orequivalent sequence of steps:

If x> 256°-°", output “integer too large” and stop.

Write the integer x in its unique olLendigit representation in base 25
X = Oplens * 256 ™ + Openy ¢ 256 O 4+ . + 0 ¢ 256 + 0y

where 0< o < 256 (note that one or more leading digits wél zero ifo is less than
256)Len—1).

For for 1< x < oLen let the octeiO; be the concatenation of the bits in the inte|

representation oby.eni , Where left-most bit of the octet is the higlder bit of the

binary representation. Output the octet str]
O:O]_Oz OoLen-

n

ger

ng

NOTE—As an example, the integer 944 has the thigie-tbpresentation 944 = 92562 + 3 - 256 + 178. The
corresponding octet string, expressed in integkregais 0 3 178; as binary values, it is

00000000 00000011 10110010

and in hexadecimal it is 00 03 b2.

7.3.2 Octet String to Integer Primitive (OS2IP)

OS2IP converts an octet string to a nonnegatieget

Algorithm 8 — OS2IP

Input:
string

X, nonnegative integer to be convertedien intended length of the resulting oct

20
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Algorithm 8 — OS2IP
Output: O, corresponding octet string of lengihen

7]

Operation: The output shall be computed by the followinganrequivalent sequence of steps:

a) If Ois of length O, output 0.

b) LetO;0; ... Ogenbe the octets db from first to last, and let, ., be the integer valu
of the octetO, for 111 [1 oLen where the integer value is represented as ah Qcte,
an eight-bit string) most significant bit first.

D

C) OUtpULX = Ogrent * 256°°™ + Ogienn * 256°°™2 + ... +0, * 256 +0y.

1 7.4 Converting Between Bit Strings and Right-Padded Octet Strings (BS2ROSP
2 and ROS2BSP)

3 This clause gives the primitives used to convetwben bit strings and right-padded octet strings.

4  7.4.1 Bit String to Right-Padded Octet String Primi  tive (BS2ROSP)

Algorithm 9 — BS2ROSP
Input: B: bit string to be convertedlLen intended length of the resulting octet string

Output: O, corresponding octet string of lengihen

%)

Operation: The output shall be computed by the followinganrequivalent sequence of steps:

a) SetbLenequal to the length ofin bits.

b) If bLen> 8*oLen output “input too long” and stop.

c) Append (8bLen-blLen zero bits to the end of

d) Let bgb; ... byenobyent be the bits oB from first to last. For & i <olLen- 1, let the

octet O = bgi bgi+1 ... Dgisr. Output the octet string
O0=0, 0 ... OgLent -

5  7.4.2 Right-Padded Octet String to Bit String Primi  tive (ROS2BSP)

6 ROS2BSP converts an octet string to a bit string sppecified length.

Algorithm 10 — ROS2BSP
Input: O: octet string to be convertebl,en intended length of the resulting bit string

Output: B: corresponding bit string of lenghiiLen

7]

Operation: The output shall be computed by the followinganrequivalent sequence of steps:

a) SetolLenequal to the length @ in octets.
b) If bLen> 8*oLen output “input too short” and stop.

c) For0<i<olLen-1, consider the oct€}; to be the bitdg bgiss ... bgisr.
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Algorithm 10 — ROS2BSP

d) If any of the bitdy en.1 ... bgrolen—1 are non-zero, output “non-zero bits found aftedt
of bit string” and stop.

1%}

e) Output the bit string
B= bo bl bbLenl .

7.5 Converting Between Ring Elements and Octet Stri  ngs (RE20SP and OS2REP)

This clause gives the primitives for convertingvietn ring elements and octet strings.

7.5.1 Ring Element to Octet String Primitive (RE20S P)

RE20SP converts a ring element to an octet string.

Algorithm 11 — RE2OSP
Input: a: ring element to be converted, equalda-a X +a, X* + ... + a, X' ; N: dimension
of ring; g: larger modulus: all coefficients of the ring eksmh are between 0 aiggll.

Output: O: corresponding octet string

n

Operation: The output shall be computed by the followin@orequivalent sequence of steps:

a) Forj=0toN-1:
1) SetA equal to the smallest positive representatios ofod g.

2) SetQ; = 120SP A, ceilllogse q]). If any of the calls to 120SP output an errpr,
output that error and stop.

b) Output the octet string
O= Oo Ol ON-l-

NOTE—As an example, =128 and\=5, the polynomial
a[X] = 45 + X+ 77X% + 103X + 12X

is represented by the octet string 2d 02 4d 67 Oc.

7.5.2 Octet String to Ring Element Primitive (OS2RE  P)

OS2REP converts an octet string to a ring element.

Algorithm 12 — OS2REP
Input: O: octet string to be convertel; dimension of ringg: larger modulus: all coefficients
of the ring element are between 0 apdl.

Output: a: resulting ring element, equal tg-ea X +a, X2 + ... + a0 X!
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Algorithm 12 — OS2REP
Operation: The output shall be computed by the following@orequivalent sequence of steps:

2]

a) If the length ofO is not equal tN * ceil[logass ], output “octet string incorrect length’
and stop.

b) ConsiderO to be the series of octet string@s= Og O; ... On1., Where eacl; is of
length ceil[logse q] octets.

c) Forj=0toN-1, setay = OS2IP Q). If & >= g or if OS2IP outputs an error, outgut
“error”.

d) Outputa=a+aX+a X+ ... +a XL

7.6 Converting Between Ring Elements and Bit String s (RE2BSP and BS2REP)

While octet string representation may be most coi@re for ring element arithmetic in a microproaass
ring elements may be more compactly stored andstnédted as bit strings. This clause provides the
appropriate conversion primitives.

7.6.1 Ring Element to Bit String Primitive (RE2BSP)

RE2OSP converts a ring element to a bit string.

Algorithm 13 — RE2BSP
Input: a: ring element to be converted, equalda-a X +a, X* + ... + a, X' ; N: dimension
of ring; g: larger modulus: all coefficients of the ring elembare between 0 aiggll.

Output: B: resulting bit string.

Operation: The output shall be computed by the followin@orequivalent sequence of steps:

(2]

a) Forj=0toN-1:
b) SetA equal to the smallest positive representatios ofod g.

c) SetB; =12BSP 4, ceilllog q]). If any of the calls to I2BSP output an erroufput that
error and stop.

d) Output the bit string
B= Bo Bl BN_]_.

NOTE—As an example, =128 and\=5, the polynomial
a[X] =45 + X + 77X% + 103x3 + 12X*

is represented by the bit string 0101101 00000101101 1100111 0001010. (If this were subsequerthpe
converted to an octet string using BS2ROSP, it ditmeicome first the bit string 0101 1010 0000 1010001110 0111
0001 0100 0000, and then the octet string 5a (L &H).

7.6.2 Bit String to Ring Element Primitive (BS2REP)
BS2REP converts a bit string to a ring element.
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Algorithm 14 — BS2REP
Input: B: bit string to be converted: dimension of ringg: larger modulus: all coefficients of
the ring element are between 0 apdl.

Output: a: resulting ring element, equal tg-ea X +a, X2 + ... + g.4 X**

Operation: The output shall be computed by the followinganrequivalent sequence of steps:

%)

a) If the length ofB is not equal tiN * ceil[log, q], output “bit string incorrect length” and
stop.

b) ConsiderB to be the series of bit strin@s= By B; ... Byi., where eactB; is of length
ceil[log, q] bits.

c) Forj=0toN-1, seta; = BS2IP B)). If BS2IP outputs an error, output “error”.

d) Outputa=a+aX+a X+ ... + a4 XV

8. Supporting algorithms

8.1 Overview

In order to perform the operations securely, immgetars shall choose supporting algorithms thasfyati
the security needs of the schemes. The securigy t the supporting algorithm typically dependstbe
desired security level of the scheme (e.g. forsirdd security level of 80 bits, the SHA-1 hashoalthm is
typically chosen). This clause defines the alponi that shall be used to meet this standard.

8.2 Hash Functions

Hash functions are used in two distinct situatiomsthis standard: as the core of a mask generation
function, and as the core of a pseudo-random lieiggor. For security purposes, the hash functiaulsl

be chosen at a strength commensurate to the desicedity level. The recommended parameter sdtgsn
document specify hash functions appropriate ta tegurity levels.

The only currently supported hash functions for within this standard are SHA-1 and SHA-256 [FIP95,
NIST-SHA-2].

All hash functions in this standard take an octeéhg as an input and produce an octet string asugput.

For compatibility with other standards which spgcifiput and output as bit strings, the conversion
primitives ROS2BSP and BS2ROSP (clauses 7.4.1 an@) Mmay be used.

8.3 Encoding Methods

Before a message is encrypted, it must be proceesgahrantee certain desirable security propesties
as semantic security. In this clause, the auxilfagthods for manipulating data for the encryptiohesne
are listed. These currently consist of specifithods for generating the blinding polynomial
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8.3.1 Blinding Polynomial Generation Methods (BPGM)

In order to provide plaintext awareness, a blingiotynomial generation method (BPGM) shall be uwed

generate a blinding polynomiafrom the padded messagen This clause contains two BPGMs. The first
utilizes the standard polynomial convolution methadd the second utilizes the optimized polynomial
convolution method.

8.3.1.1 Ibp-bpgm-3

The blinding polynomiat shall be generated deterministically from the ragem and the random value
using a pseudo-random number generator.

Algorithm 15 — Blinding Polynomial Generation From dr

a)

b)

c)
d)

e)

f)

9)

Operation:
sequence of steps:

Components. The parameterdl anddr, the chosen index generation function IGF(), thsh
function Hash() chosen to parameterize IGF(), tignomial index generation constantand the
minimum number of hash calls for the IGF to mak&CallsR

Input: The seed, which is an octet strisged

Output: The blinding polynomial, which is a polynomial

The blinding polynomial shall be computed by tledowing or an equivalen

Call the IGF with hash function Hash() and inpaed N, ¢, minCallsRto obtain the IGH

states.
Setr:=0
Sett:=0
Whilet <dr do
1) Call the IGF with input s to obtain an integenodN.
2) Ifri=0
i) Setri:=1
i) Sett:=t+1
Sett:=0
Whilet <dr do
1) Call the IGF with input s to obtain an integenodN and the updated stagelf the
IGF outputs “error”, output “error”.
2) Ifrp=0
i) Setri:=-1
i) Sett:=t+1
Returnr
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8.4 Supporting Algorithms

In order to perform the operations securely, im@atars shall choose supporting algorithms thasfyati
the security needs of the schemes. The secuvigy t& the supporting algorithm typically dependstbe
desired security level of the scheme (e.g. forsirdd security level of 80 bits, the SHA-1 hashoalhm is
typically chosen). This clause defines the alponi that shall be used to meet this standard.

8.4.1 Mask Generation Functions

Mask Generation Functions (MGFs) are functions Isimto hash functions, except that instead of
producing a fixed-length output they produce arpatidf arbitrary length.

All mask generation functions are parameterizedhwgy choice of a core hash function. The only hash
functions supported for use with the MGFs in thendard are SHA-1 and SHA-256 [FIP95, NIST-SHA-
2].

This standard only permits the use of one maskrgéina function, MGF-TP-1. This function takes as
input an octet string and the desired degree ofaimput, and produces a trinary polynomial of the
appropriate degree. The only hash functions supgdddr use with this mask generation function afé\S

1 and SHA-256 [FIP95, NIST-SHA-2].

8.4.1.1 Mask Generation Function for Trinary Polyno  mials (MGF-TP-1)

Algorithm 16 — Mask Generation Function for Trinary Polynomials (MGF-TP-1)
Components: A hash functiorHashwith output lengtthLenoctets.

Input: an octet stringseedof length seedLenoctets; the degreBl, an integer; an argument
hashSeedtaking the values "yes" or "no"; and the minimaomber of callaminCallsMask an
integer

Output: An polynomiali of degreeN-1; or “error”.

Operation: The integer and state shall be produced by thevitig or an equivalent sequence|of
steps:

a) If seedLemd exceeds any input length limitation on the hésfction Hash output
“error” and exit

b) If minCallsMaskexceeds %, output “error” and exit.
c) Check the value diashSeed

1) If hashSeed- "yes", set the octet string to Hash(seed and the integeeLento
hLen

2) If hashSeed "no", set the octet stringto seedand the integezLento seedLen
d) Initialize the octet stringpufto be a zero-length octet string.
e) Initialize counter= 0.
f)  Initialize N andc with the provided values. Setten= ceil (c/8).

g) While counter< minCallsRdo

1) Convertcounterto an octet strin€ of length 4 octets using 120SP.
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h)

)

K)

2) ComputeHashZ || C) with the selected hash function to prodalcectet stringd of
lengthhLenoctets.

3) Letbuf=buf||H.
4) Incrementcounterby one.

Initialize i to be the null polynomial anclr, a pointer to the current coefficientioto be
0.

For each octet in buf:

1) Converto to an intege0.

2) If O>=243 (= 3) discardO, move to the next octet, and go to step d)1).

3) Set i, =0 mod 3; ifcur = N outputi; setcur =cur + 1; setO = (O—-O mod 3) / 3.
4) Set i, =0 mod 3; ifcur = N outputi; setcur =cur + 1; setO= (O—-0O mod 3) / 3.
5) Set i,=0 mod 3; ifcur = N outputi; setcur =cur + 1; setO = (O—-O mod 3) / 3.
6) Set i,,=0 mod 3; ifcur = N outputi; setcur =cur + 1; setO = (O—-O mod 3) / 3.
7) Set i, =0; if cur =N outputi; setcur=cur + 1

If cur<N:

1) Convertcounterto an octet strin@ of length 4 octets using 120SP.

2) ComputeHashZ || C) with the selected hash function to prodalcectet stringd of
lengthhLenoctets.

3) Letbuf=H.
4) Incrementcounterby one.
5) return to step i).

Outputi.

8.4.2 Index generation function

The term “index generation function”, as used iis tandard, applies to functions which are irited
with a seed in the form of an octet string and rttegn be called repeatedly, producing an integea in
specified range on each call.

An IGF may be deterministic or non-deterministic. d&terministic IGF is parameterized by a hash
function; the only hash functions supported for ustn the IGFs in this standard are SHA-1, SHA-256,
SHA-384, and SHA-512. On initialization, it takes iaput a seed, which is an octet string; a modMus

an index generation constant c¢; and the desire¢hmaim number of calls to the underlying hash funttio

minCallsR. It outputs an integer in the range [@1]\and the internal state On subsequent calls, it takes
as input the current staseand outputs an octet string of lengtbenand the updated internal state

This standard permits the use of a deterministiexngeneration function based on a hash functighaan
nondeterministic index generation function baseéoandom bit generator.
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1 8.4.2.1 Index generation function (IGF-2)

28

Algorithm 17 — Index generation function (IGF-2)

Components: A hash functiorHashwith output lengthhLenoctets.

Input:

EITHER: an octet stringeedof lengthseedLeroctets; the modulubl, an integer; an argument

hashSeedtaking the values "yes" or "no"; the index getieraconstantc, an integer; and th
minimum number of callminCallsR an integer

OR: the stats.
Output: An integeri and the state; or “error”.

Operation: The integer and state shall be produced by thevatlg or an equivalent sequence
steps:

a) If sis not provided:

1) If seedLemd exceeds any input length limitation on the hiastttion Hash output
“error” and exit

2) If minCallsRexceeds %, output “error” and exit.
3) Check the value diashSeed

i) If hashSeed "yes", set the octet stringjto Hash(seed and the integezLento
hLen

i) If hashSeed= "no", set the octet string to seedand the integeezlLento
seedLen

4) Initialize totLento 0. IntializeremLento 0.
5) Initialize the bit string buf to be a zero-lengthgiring.
6) Initialize counter= 0.
7) Initialize N andc with the provided values.
8) While counter< minCallsRdo
i)  Convertcounterto an octet strin@ of length 4 octets using 120SP.

i) ComputeHash(Z || C) with the selected hash function to prodaicectet stringd
H of lengthhLenoctets.

i) Letbuf=buf|| OS2BSH).
iv) Incrementcounterby one.
9) SetremLen=totLen=minCallsR* 8*hLen
b) Otherwise (ifsis provided):

1) Extract the valueg, totLen remLen buf, counter, N, drom the state. (The details
of how they are stored mmay be determined by the implementer).

c) SettotLen:=totLen + c.

D

of

d) If totLen exceeds hLer 8 x 2%, output “error” and exit.
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Algorithm 17 — Index generation function (IGF-2)

f)

9)
h)

)

K)

If remLen<c
1) Let the bit stringM be the trailingemLenbits inbuf.
1) LettmpLen=c-remLen
2) LetcThreshold= counter+ ceiltmpLerhLen.
3) While counter< cThresholddo
i)  Convertcounterto an octet strin@ of length 4 octets using 120SP.

i) ComputeHash(Z || C) with the selected hash function to prodaicectet string
H of lengthhLenoctets.

i) LetM=M || OS2BSH).
iv) Incrementcounterby one. IftmpLen> 8*hLen decrementmplLenby 8*hLen
4) SetremLen=8*hLen—tmpLen Setbuf=H.
else
1) SetM equal to the trailingemLenbits ofbuf.
2) SetremLen=remLen-c.
Set the bit strindp to the leading bits inM,
Convertb to an integer using OS2IP.
If i >= Z - (2 modN) go back to step 3.

Store the valueg, totLen remLen counter, N, cLerandc in the states. (The details of
how they are stored mmay be determined by the implementer).

Outputi modN ands.

2 8.4.2.2 Index generation function (IGF-RBG)

3 This IGF is based on any approved random bit géoera

29

Algorithm 18 — Index generation function (IGF-RBG)

Components: An Approved random bit generator RBG

Input:

The moduludN, an integer; the index generation constarin integer.

Output: An integeri

Operation: The integei shall be produced by the following or an equivasguence of steps:

ogahwnNE

SetcLen= ceil (c/8).

Obtain a bit stringp of length 8tLenbits from RBG.
Convertb to an octet string using BS20SP.

Set the leftmost@.en- c bits ofo to 0.

Converto to an integet using OS2IP.

If i >= Z - (2 modN) go back to step 3.
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Algorithm 18 — Index generation function (IGF-RBG)
7. Outputi modN.

9. Short Vector Encryption Scheme (SVES)

The following clause defines the supported encoypichemes. The only encryption scheme currently
supported is SVES. SVES stands for Short Vectartion Scheme (see for more information).

9.1 Encryption Scheme (SVES) Overview

The general encryption scheme is a sequence oiies that are performed based on the choiceseof t
parameters, primitives, encoding functions and stippg algorithms. In order to perform all of tB&ES
encryption scheme operations, all of the Componenist be specified.

9.2 Encryption Scheme (SVES) Operations

The SVES encryption scheme consists of the fiveaifmms key generation, key pair validation, pulky
validation, encryption and decryption. These ofi@na are defined generally in this clause without
assuming any specific choices of the Componentedisn Clause 9.1 Encryption Scheme (SVES)
Overview.

9.2.1 Key Generation
A key pair shall be generated using the followimganathematically equivalent set of steps. No#&t the

algorithm below outputs only the valuieandh. In some applications it may be desirable to stioeevalues
f~' andg as well. This standard does not specify the ouftat for the key as long as it is unambiguous

Algorithm 19 — Random Key Generation Primitive kgp- 3
Components. The parametertl, g, p, dF, dg EITHER an Approved random number generator
capable of generating unbiased output in the rédigN-1) OR an index generation function IGF
that takes an Approved random bit generator RBGthagolynomial index generation constant
c used by the IGF.

Input: None
Output: An key pair consisting of the private kiegnd the public kel

Operation: The key pair shall be computed by the followimgp equivalent sequence of steps:

a) Setthe polynomidf := 0.
b) Sett:=0
c) Whilet<dFdo

1) Call EITHER the RNG OR the IGF with input N, ¢, RBG obtain an integeir
,modN.
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2) IfF=0
i) SetF:=1
i) Sett:=t+1
d) Sett:=0 While <dF do
1) Call EITHER the RNG OR the IGF with input N, ¢, RB&Gobtain an integermod

N.

2) IfF=0
i) SetF:=-1
i) Sett:=t+1

e) Compute the polynomidl:= 1 +p*F in (Z/qZ)[X|/(X" - 1)

f)  Compute the polynomidl * (i.e. the polynomiaf ~* such thatf ™*f = f* f > = 1) in
(ZI9Z)[X)/(XN = 1). 1ff ™ does not exist, go to step 1.

g) Setthe polynomia := 0.
h) Sett:=0
i)  Whilet<dgdo
1) Call EITHER the RNG OR the IGF with input N, ¢, RB&Gobtain an integermod

N.
2) Ifg=0
i) Setg:=1
i) Sett:=t+1
j) Sett:=0

k) Whilet<dgdo
1) Call EITHER the RNG OR the IGF with input N, ¢, RB&Gobtain an integermod

N.
2) Ifg=0
i) Setg :=-1

i) Sett:=t+1
)  Check thagis invertible modj. If it is not, go back to step 8.
m) Compute the polynomidl :=f *g*pin (Z/qZ)[X)/(X" - 1)
n) Outputf, h

9.2.2 Encryption Operation

This clause defines the Encryption operation. Nt within the definition of the spaces may be
definitions of additional variables (e.g. when dafg D,, the valuedrl, dr2 anddr3 may be specified as
well as the appropriate method of combining them).

Algorithm 20 — Encryption Operation

31
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Algorithm 20 — Encryption Operation

Components:

O 0o oo ogooogoogo g

O
Inputs:

O
O

The length of the encoded lengtken.

The number of bits of random datl, which must be a multiple of 8.

The chosen Mask Generation Function and assoqgiateaneters.

The chosen Blinding Polynomial Generation Method #ire associated parameters
The OID, an octet string

The number of bits of public key to hagtklLen

The minimum message representative weigimQ

The minimum number of calls to generate the masgoignomial,minCallsMask
The maximum message lengttaxMsgLenBytes

The minimum number of calls to generate the bligginlynomialminCallsR

The length of the encoding buffénfferLenBits

The messagm, which is an octet string of lengtloctets
The public keyh

Output: The ciphertexe, which is a ring element, or "message too long"

Operation: The ciphertexe shall be calculated by the following or an equévellsequence @

steps:

a)
b)

c)

d)

e)

f)
9)

h)

CalculateoctL = thelLen-octet-long encoding of the message length
If | >maxLen output "message too long" and stop.

Randomly select an octet stribgf lengthbLenusing a random number generator w
at least 8bLenbits of entropy content.

Form the octet string0, consisting of the 0 byte repeatedakMsgLenBytes 1 -1)
times.

Form the octet string M of length bufferLenBit3 as
b ||octL ||m || pO.

ConvertM to a bit stringMbin using OS2BSP.

If Mbin is not a multiple of three bits long, append & b bring it up to a multiple o
three.

Convert Mbin to a trinary polynomial of degree Na$ follows. Treat Mbin as
concatenation of 3-bit quantities. Convert eachedHrit quantity to two trinary
coefficients as follows, and concatenate the riegpttinary quantities to obtain Mtrin.

0 {0, 0,0} ->{0, 0}
{0, 0, 1} -> {0, 1}

O
0 {0,1,0}->{0,-1}
0 {0, 1,1}->{1, 0}

ith
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Algorithm 20 — Encryption Operation
O {1,0,0}->{1,1}
O {1,0,1}->{1,-1}
O {1,1,0}->{1,0}
O {1,1,1}->{1,1}

i)  Convert the public kef to a bit stringbh using RE2BSP (7.6.1). Form the bit string
bhTrunc by taking the firstpkLen bits of bh. ConvertbhTruncto the octet string
hTrung of length pkLerd8 using BS20SP. FornsData as the octet string

OID ||m||b |[hTrunc

i) Use the chosen blinding polynomial generation meithvith the seedsData and the
chosen parameters to produceF the blinding polynomial generation method aup
“error”, output “error”.

k) CalculateR =r*h modq.
) CalculateR4=Rmod 4.
m) ConvertR4to the octet stringR4using BE2OSP.

n) Generate a masking polynomialaskby calling the given MGF with input©R4 N,
minCallsMask

0) Form m' by polynomial addition dfl andmaskmod p.
p) If the number of 1s, or -1s, or Os in m’ is lesartldmO, discard m’ and return to step 3.
gq) Calculate the ciphertext as e =R + m’' mod q.

r)  Output e.

1

2  Graphically, the encryption operation may be repnésd as follows:

b mLen

3
o
o
o

) — RE20SP "
| XOR_| MGF | rn

; OS2BEP
m ' +

33
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Figure 1: Encryption Operation

9.2.3 Decryption Operation

This clause defines the decryption operation. Nbgg within the definition of the spaces may be
definitions of additional variables (e.g. when dafg D,, the valuegrl, dr2 anddr3 may be specified as
well as the appropriate method of combining them).

Algorithm 21 — Decryption Operation

Components:

The LBP-PKE decryption primitive to use

The length of the encoded lendtten.

The number of bits of random datl, which must be a multiple of 8.

The chosen Mask Generation Function and Hash Famcti

The chosen Blinding Polynomial Generation Method tire associated parameters
The OID, an octet string

The number of bits of public key to hagtklLen

The lower bound

O 0Ooogogooogoo o

The minimum message representative wedlyi

0 The maximum message lengttaxMsgLenBytes
Inputs:

O The ciphertexg, which is a polynomial of degréd:1.
O  The private key or (, f,).

O  The public keyh
Output: The messagm, which is an octet string, or "fail".

Operation: The message m shall be calculated by the follgwanan equivalent sequence |of
steps:

a) Calculate:
1) nLen= ceil [N/8], the number of octets required to hdldbits.
2) bLen=db/8, the length in octets of the random data
3) maxLen=nLen-1 -lLen-bLen the maximum message length.

b) Decrypt the ciphertex¢ using the selected NTRU decryption primitive witlputs e
andf to get the candidate decrypted polynorgial

c) Ifthe number of 1s, or -1s, or Osdhis less than dmoO, set “fail” to 1.
d) Calculate the candidate value féh, cR=e-ci.

e) CalculatecR4=cRmod 4.

f)  ConvertcR4to the octet stringoR4using BE2OSP.

g) Generate a masking polynomialaskby calling the given MGF with inputcdR4 N,
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Algorithm 21 — Decryption Operation

h)

0)

p)

q)

s)

Y

minCallsMask
Form cMtrin by polynomial subtraction ofn’ andmaskmod p.

Convert cMtrin to a bit string as follows. Treat tM as a concatenation
polynomials each containing 2 trinary coefficien®onvert each set of two trina
coefficients to three bits as follows, and concaterthe resulting bit quantities to obtg
cMbin

{0, 0} -> {0, 0, 0}

{0, 1}->{0, 0, 1}

{0, -1} -> {0, 1, O}

{1,0}->{0, 1, 1}

{1,1}->{1, 0, 0}

{1,-1}->{1,0, 1}

{-1,0}->{1, 1, 0}

{-1,1}->{1,1, 1}

O {1, -1} -> set "fail" to 1 and set bit string td.{ 1, 1}

If cMbin is not a multiple of 8 bits long, removeetfinal (length — length mod 8) bits.
Convert &bin to an octet stringM using BS20SP.

O 0O o ogooo g o

ParsecM as follows.
The firstbLenoctets are the octet strigh.

The nextlLen octets represent the message length. Convertahe wtored in thes
octets to the candidate message lergth cl > maxMsglLenBytesetfail = 1 and setl
= maxL

The nextcl octets are the candidate messagge the remaining octets should be 0,
they are not, set fail = 1.

Convert the public kew to a bit stringbh using RE2BSP (7.6.1). Form the bit stri

bhTrunc by taking the firstpkLen bits of bh. ConvertbhTrunc to the octet string

hTrung of length pkLerl8 using BS20SP. FornsData as the octet strin
OID ||m||b |[hTrunc

Use the chosen blinding polynomial generation meitivith the seedsData and the
chosen parameters to produce

CalculatecR =h * cr modq.
If cR!=cR seffail =1

If fail = 1, output "fail". Otherwise, outpagmas the decrypted message

2008

nf

y
1]

f

J

9.2.4 Key Pair Validation Methods

A key pair validation method determines whetheaadidate LBP-PKE public-key/private-key pair meets
the constraints for key pairs produced by a pdeickey generation method.
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9.2.4.1 kpv3: Key Pair Validation for Trinary Keys

This key validation method corresponds to the kayegation operation in 9.2.1.

Algorithm 22 — kpv3, Key Pair Validation for Trina  ry Keys
Components:. The parametem, g, dF, dg,

Input: The private key componeRtand the public kefj.
Output: “valid” or “invalid”.

Operation:

a) Check that- andh are polynomials of degree no greater thah. If either of them has
greater degree, output “invalid” and stop.

b) Check that all of the coefficients &f lie in the range [0, g-1]. If any coefficients lie
outside this range, output “invalid” and stop.

c) Check thatF is trinary with exactlydF 1s anddF -1s If it is not, output “invalid” and
stop.

d) Setf=1+3F modaq.

e) Setg=fh*3" modq.

f)  Check thag is trinary with exactlydg 1s anddg -1s. If it is not, output “invalid” and stop
g) Output “valid”.

9.2.5 Public-key validation

9.2.5.1 Full public-key validation

A full public-key validation method determines wiet a candidate public key satisfies the definitéma
public key and meets any additional constraintsoseg by a given key pair generator. Such methods
provide the highest assurance to a relying pay.eéxample, for keys generated using the key gépara
operation in 9.2.1, full public-key validation walgbrove thah = f*g modq, wheref = 1+pF andF, g have

dF, dg 1s respectively. Currently there are no known mésithat provide full public-key validation for the
LBE-PKE schemes in this standard.

9.2.5.2 Partial public-key validation and plausibil ity tests

9.2.5.2.1 Overview

A partial public-key validation method determinegth some level of assurance, whether a candidate
public key meetsomeof the properties of a public key. As with fullldic-key validation methods, partial
public-key validation methods may be interactive nmn-interactive. This standard supports only non-
interactive methods.

Non-interactive methods for LBP-PKE public keysttta not require a witness are calf@dusibility tests
The name reflects the fact that while examiningydhk public key, the tests only determine whether
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public key is plausible, not necessarily whethes iralid. Plausibility tests can detect unintenéiberrors
with reasonable probability, though not with certgi (See Note.)

This is still an active research area; further mdthmay be described in future versions of thisidied.

NOTE—There are other ways to detect unintentiomabrs; a checksum on the key will detect storagd an
transmission errors, and the signature on a aztdiwill likely fail if the public key is modifiedThe checks in this
clause provide an additional level of assurancebeyhe other methods, or an alternative when éineyot available.

9.2.5.2.2 Example suite of plausibility tests

The following is an example of a plausibility tesgrresponding to the the key generation operdtion
9.2.1.

a) Check thath(1) =g(1)/(1 +pF(1)) modg. (For binary polynomialsi-(1) = dF; for product-form
polynomials,F(1) = dfi*df2+df3. In both casegy(1) =dg). If it is not, output “invalid” and stop.

b) Fort=0tog-1:
1) Reduceninto the ranget[t+g-1].
c) Calculate the centered nortj||forh reduced into this range.
d) Set ||h}}in equal to the minimum value df]|obtained in the previous step.

e) Set ||r]] =/ [ r(1)*(N-r(1))/N ]. (For binary polynomials;(1) = dr; for product-form polynomials,
r(1) =drl*dr2+dr3).

f)  If [|h]kin > g &N) / (3 [|r]]), output “plausible public key” antbg. Otherwise, output “invalid” and
stop.

Steps 2-4 are motivated by the considerations 4f2Afor a valid public kef, the calculation oh*r mod
g will involve a large number of reductions mgdThe test checks thatf|| >qv(N)/2, in other words that
the centered norm of h*r is with high likelihoodegter than the centered norm of a polynomial ctingis
of N/2 coefficients with the valug/2 andN/2 coefficients with the valuegf2 (this calculation uses the
pseudo-multiplicative property of the centered natefined in A.1.1). For genuing the typical value of
[In]kin Will be slightly underq V(N/12). For binary polynomials, the centered nomijp ill be v(dr (N-
dr)/N), which is considerably greater thaii3) for all parameter sets in this standard. A dsddi will
therefore pass this test with high probability. pooduct-form polynomials, the value of ||r|| widlry, but
its minimum value will be/(d (N-d)/N), whered= dr1*dr2+dr3. This will also be considerably greater than
V(3) for all parameter sets in this standard, amélia h will pass this test with high probability.
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Annex A (Informative) Security Considerations

A.1 Lattice Security: Background
This section provides an overview of the propeniEttices, as a necessary preliminary to comsigehe
security of cryptosystems based on hard latticelpros.
A.1.1 Lattice Definitions
A lattice is of dimensiom is a maximal discrete subgroup of realimensional spacR". A latticeL may
be specified by a spanning setrofinearly independent vectordd,...,b,} called abasis for L. in which
casel is the set of vectors

L={xby+ ... +Xby:X,... %1€ Z }.
A lattice has many bases. A lattice is calile@gral if it is contained inZ" and it is calledational if it is
contained inQ". A (row) matrix for L is a matrix whose rows form a basis forThediscriminant of L.
denoted DisdY), is the determinant of any matrix foy the value is independent of the choice of bagis.
discriminant is also characterized as the voluma fafndamental domain for the quotient spRE&., so it

is also sometimes called tkielume(really co-volume)pf L.

TheL?*normand thecentered E-normof a vectora are given by the respective formulas

1a0O1L= (Y82 and fla(X)lle = Za—ﬁ[iaj

Let a,,4 be the vector whose coordinates are all equalgtea(+...+ay_1)/N, the average of the coordinates
of a. Then the centered™dnorm ofa may also be defined byal} ¢, = |B— @avgl b

A vectora is said to beenteredf ag+a;+...+ay1 = 0, that is, if the average of its coordinate8.iglf the
vectorsa and b represent polynomials, the suafX)+b(X) and the product(X)*b(X) of centered
polynomialsa(X) andb(X) are themselves centered).

The L%-norm of the (convolution) product of two indepentieentered polynomials(X) andb(X) may be
estimated by the formula

l(X) * bX)[k = [R)[E * [P} b-
This is known as thpseudo-multiplicative propertyf the centered norm.
The first minimum of |- denoted\(L) or A4(L), is the length of the smallest nonzero vectoLirMore
generally, for each 4 i <n, thei™ successive minimum of tlenotedy(L), is the infimum of all numbers
such thatL containsi linearly independent vectors of length at mbst Hermite's constanty, is the
infimum of the ratioky(L)*/Disc(L)®" asL runs over all lattices of dimension It is known thaty, 6(n),
although the exact value gfis only known for I<n < 8.

Letae R". The distance froma to L, denoted\(L,a), is the distance frora to the closest vector in
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A.1.2 Hard Lattice Problems

The shortest vector problerf8VP) for a latticel is to find a vectowr ¢ L satisfying ¥|| =24(L), that is, to
find a vector of shortest nonzero length. Tdpmproximate short vector problefapprSVP) is to find a
vectorv g L satisfying ¥]| < f(n)L,(L) for some (slowly growing) functiohof the dimensiom.

Theclosest vector problefCVP) for a latticeL and vectom € R" is the problem of finding a vecteore L
satisfying || —a|| =A(L,a), i.e., minimizing the distancer } a||. Theapproximate closest vector problem
(apprCVP) is to find a vectare L satisfying §f —a|| < f(n)A(L,a) for some (slowly growing) functiofiof
the dimensiom.

The smallest basis probledSBP) for a latticd. has many different formulations depending on haw o
measures the “smallness” of a basis. A common itiefinis to minimize the length of the longest etarh
of the basis. Another common definition is to miiaenthe product of the lengths of the elementshin t
basis.

A.1.3 Theoretical Complexity of Hard Lattice Proble ms

It is known that SVP is NP-hard under randomizetuiotions Annex B, and the same is true for apprSVP
with approximating factox2 [B75]. It is known that CVP is NP-hard [B21]. Atiugh CVP appears to be
somewhat harder than SVP, it is known that an dlgorto solve apprSVP with approximating function
f(n) can be used to solve apprCVP with approximatimgfionn®?(n) [B60], so the two are polynomially
equivalent. In practice, a CVP in dimensioncan often be solved by transforming it into an SviP
dimensionn+1. In the other direction, it is very unlikely thapprSVP or apprCVP is NP-hard for the
approximating functiori(n) ~ (n/log n)*? [B24].

A.1.4 Lattice Reduction Algorithms

Let L be an integral (or rational) lattice of dimensiorAn exhaustive search can be used to solve SVP or
CVP, with expected running time exponentiahirThere are algorithms for solving apprSVP and apfirC
with polynomial (inn) running time and (slightly better than) exponahéipproximating factof(n). More
precisely, the LLL algorithm [B69] runs in polynoahitime and is guaranteed to return a nonzero vecto

ve L satisfying f]|< 2"%.(L); the approximating factor can be improved %99 °9 r?fog [B89]. More
generally, [B89][B90][B91] describe block variardéthe LLL algorithm called BKZ-LLL whose running
time and approximating factor depend on the choica block sizef. Larger values of lead to better
results and longer running times. The BKZ-LLL aliggom with block sizeB is guaranteed to find a nonzero
vectorv ¢ L satisfying

M| < (2.48)" Ay(L) intime at most QP*?P +n?).

Thus in order to obtain a provable polynomial appration factor, the block sizg must be proportional
to the dimensiom, in which case the running time is (at least) exgial in the dimension.

In practice, the LLL algorithm and its BKZ-LLL vaits tend to return answers that are somewhatr bette
than the upper bounds given by theory. Howeveg, @ practice, the shortest vector returned by BHZ-
tends to be considerably longer tha(L) until the block sizg is an appreciable fraction of the dimension
n. Also in practice, the running time of BKZ-LLL i&t least) exponential in the block sigeln other
words, even in practice, BKZ-LLL is unlikely to fira vector as short @ in time less than ®¢p*?).

Recent research [B92] suggests another block-bakgithm known as Random Sampling Reduction
(RSR), which is guaranteed to find a nonzero vectok satisfying

IM] < (KI6)**Ay(L) in time approximately ®@F(k/6)).
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For exact solutions to SVP and CVP, there are sxpenential algorithms [B59][B61] with running time
208 M and a more recent algorithm with exponential rogntime [B3]. Other lattice reduction
algorithms are described in [B68][B101][B13][B8d]he review [B39] considers known lattice attackd an
concludes that no better attack is currently kntlvam straightforward BKZ.

For solving a CVP of dimensiam the best method in practicis to embed it into an SVP of one higher
dimension [B25][B80]. Let I(,a) be a CVP. Then one takes a basis {.,b,} for L, forms the lattica&* in
R™* with basis {py,0]....,[b.,0].[a,c]} for an appropriate constamtand hopes that a shortest vectot.in
has the formu,c], in which case the vecter+u is inL and is likely to be a closest vectorato

A.1.5 The Gaussian Heuristic and the Closest Vector Problem

Let L be a lattice and let ¢ R" be a vector. Th&aussian heuristisays that all other things being equal,
the distance from to the closest vector inis probably approximately equal to the valudkadpecified by
following condition:

Volume of a ball of radiuR arounda > Discriminant ol.

The intuition underlying the Gaussian heuristi¢hat all of R" can be covered by disjointdimensional
parallelopipeds of volume Didc) centered at the points &f so any nicely shaped region with the same
volume is likely to contain a point &f Using the formula?(n/2)! for the volume of am dimensional
ball (h even) and using Stirling’s formula to approximéetorials ask! ~ (k/e)(2rk)?, the Gaussian
heuristic says that in a lattice of large dimensipthe critical radius is given by

Re(L) = (V2re)? Disc()* ™.

If Ris somewhat larger thaR,(L), then the Gaussian heuristic predicts that thdltdoe many vectors of
L that are within a distand® of a; while if R is smaller tharR(L), then the Gaussian heuristic predicts
that there will be few or no vectors lothat are within a distand®of a.

Let L be a lattice of dimension and leta £ R". In many situations of cryptographic interest, dnges a
vectorv ¢ L that is a known (short) distanddrom the known vectoa. Thus the latticé, the vector, and
the distance are public knowledge, while the vectois the private information. The Gaussian heuristic
can be used to predict ¥ is likely to be a closest vector & in which case recovery of the private
information is probably equivalent to solution b&tCVP for [,a). More precisely, the Gaussian heuristic
says that ifs = |V — a| is significantly smaller tham/@re)? Disc(L)*", say less than ¥ ot4 of this
quantity, therv is probably a solution to the CVP fdr,4) ands = A(L,a).

A.1.6 Modular Lattices: Definition

A Modular Lattice (ML) with dimension parameten = 2N and modulus parametey is a lattice of
dimensiomn generated by the rows of arby-n matrix of the form

b - 0 hy, - hy
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The entries of the ML matrix are integers. Withimsts of generality, it may be assumed that thegamsh;

all satisfy l;| < /2, since this may be achieved by subtracting gmjate multiples of the bottofN rows
from the topN rows. The integeb is called thebalancing constantlt is selected to balance the two halves
of the target vector.

It is often convenient to write an ML matrix in abbiated form a{ } , Wherel denotes alN-by-N

gl

identity matrix, O denotes atby-N zero matrix, anth denotes ailN-by-N matrix with integer entries.

A.1.7 Modular Lattices and Quotient Polynomial Ring s

It is convenient to identify a polynomiB{X) = Fo + F1X + FoX2 + ... + Fy_ XV of degree less thad with
its vector of coefficient§ = [Fq, Fq, F», ..., Fnod]. If F(X) andG(X) are two polynomials, leH, G] be the
vector of dimension® formed by concatenating their coefficients.

Let M(X) & Z[X] be a monic polynomial of degréd. Then each polynomidi(X) in the quotient ring
ZX)/(M(X)) can be used to form a modular lattigeas follows:

Ly = {[F, G] : F(X) * h(X) = G(X) inZ [X]/(M(X)) }.
In other words, the lattick, is formed from all polynomials(X),G(X) € Z[ X] satisfying
F(X) * h(X) = G(X) (modulog andM(X)).

Thei" row of theN-by-N upper righthand block of the matrix fby, is formed from the coefficients of the
remainder whenX'h(X) is divided byM(X). In the important case thaf(X) = X" — 1, this block is the
circulant matrix formed from the coefficientsix) (See A.1.12).

The following procedure will create a modular ledticontaining a preselected vectiorg]. Chooseh(X) to
satisfy h(X) = f(X)™ * g(X) (moduloq and M(X)). [This assumes thdtX) has an inverse in the ring

Z[X)/(M(X)).]

A.1.8 Balancing CVP in Modular Lattices

Let (L,a) be a closest vector problem in a modular latticend letv ¢ L be a solution. Write asa =
[a1,a], soa; anda, each havéN coordinates, and similarly writeasv = [v,v,]. If the balancing constait
(see A.1.8) in the matrix df is replaced by a new balancing constajt, to form a new modular lattice
L.ew then the closest vector problemd,anen) has the solutiom,e,, Whereanew = [(bhew/b)as,a2] andvyey =
[(Brewb)V1,V5]. (More preciselyvhew Will be very close ta,., and the Gaussian heuristic can be used to
verify that it is likely to be a closest vector.has for any given modular lattice closest vectarbpem
(L,a), one solves the problem by choosing a balancorgtantb and modified lattice and vecterthat
make the problem easiest,

In practice, it is easiest to solve a modular dettclosest vector problenh,f) if the two halves of the
problem have approximately equal length. A ML C\éRsaid to bdalancedif a solutionv = [v3,v,] € L to
the CVP satisfies

[lvi—ay [|=]|va—az ||.

It is often possible to use general knowledge alibatform of the solution vector to determine a
balancing constant that makes the problem balar{€&d. example, one might know thet is a binary
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vector withd; ones and that, is a binary vector witld, ones.) Thus in analyzing the difficulty of solgin
the CVP, it is advisable to always assume thaattaeker knows how to balance the problem.

An equivalent definition of a balanced closest wegiroblem says that among all choices of balancing
constantb, the ratio of the target distance 4 a| to the root-discriminant Didc™™® = (bg)*? is
minimized. Thus in order to balance a closest veaatoblem, it is only necessary to know (approxiehgt
the distance from a closest vectomatdt is not necessary to actually know a closestare

A.1.9 Fundamental CVP Ratios in Modular Lattices

If the latticeL were to have a basis consistingnagqual length, pairwise orthogonal vectors, thersém
basis vectors would each have length equal todbediscriminant Disd()*“™V). Lattices that have such a
basis are particularly easy to work with. For asekt vector probleni(a) in which the target vector is

quite close ta (i.e., closer than predicted by the Gaussian kgclyj the ratio of the root-discriminant to
the target distance is one measure of the diffiafitsolving the problem. This ratio is denoted by

p =p (L,a) = A(L,a)/Disc(L)™V
In general, the smaller the value @fL,a), the easier it will be to find a closest vectorat This is true
because a small value pfmeans that the target vectois probably much closer #than it is to any other
vector inL, so a lattice search algorithm will have an easiee distinguishings from the other vectors
in L.

Experimentally [B36], we observe that a more usgfidntity to hold constant as the dimension in@eés
not g, but the related quantity

c=p* V(2N).
Let L be a modular latticé of dimensionn = 2N and modulugg. A second quantity that affects the
difficulty of solving a closest vector problemlinis the ratio of the dimension to the modulus. Thiso is
denoted by

a=a(L) =N/q.
Experiments have suggested that holdangonstant and increasing increases lattice breaking times
considerably, and that holdirgconstant and increasigdecreases lattice breaking times very slightly.
A.1.10 Creating a Balanced CVP for Modular Lattices  Containing a Short Vector
A typical problem of cryptographic interest is fad a short target vectar = [vq,v5] in a given modular
lattice L of dimension2N, modulusg, and balancing constaht= 1. Assuming that is actually a shortest
vector inL, it can be found by solving the SVP far but one frequently knows some additional

information about; andv, that allows an easier CVP to be solved.

Write v; = [Vig,Va2,...,Van] @nd Vo = [Vor, Voo, ..., Von]. 1N Many situations one knows (or can approximtie
quantities

_ _., 2 2 2
Y1=Vii tVip + ...tV Oy = V" Vi + L,

_ _., 2 2 2
Y2 =Vo1 t Voo + ... FVoy, Op = Vor™ +Vop + L. A\

Example.If v; andv, are binary vectors with a specified number of gemod ones, then it is easy to
computeyy,01,y2,92.] The length ¥|| is larger than the distance franto the known vector
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d= [dl,az] = ['Yl/N,'Yl/N, ...,’Yl/N, 'Yz/N, 'Yz/N, ...,’Yz/N],

so it will generally be easier to findby solving the CVP forl(,d) than it will be by solving SVP fdt. The
precise formulas for the relevant distances are

IMF=8,+5, and Y—d|f =8, —ys*/N +3, —,°IN.

In order to balance the problem, one uses the balgrconstanb = |V, — dy||/|[\, — dy| for L. Then the
closest vector tadd;,d,] will probably be the vectory,v,]. Thep parameter for this balanced CVP is

p = [201 —72IN) 482 — v22IN) ] 2.
The Gaussian heuristic predicts that the balance® @ill have a unique solution (up to obvious
symmetries of the lattice) provided that the vadfip is significantly smaller thar\{2ze)"?, which implies
that the value of is significantly smaller than N( ne).
A.1.11 Modular Lattices Containing (Short) BinaryV  ectors
Let

Bn(d) = { binary vectors of dimensioN with d ones andN —d zeros }.

For exampleB,(2) = { [0,0,1,1], [0,1,0,1], [0,1,1,0], [1,0,0,111,0,1,0], [1,1,0,0] }. In general the B{,(d)
hasN!/d!(N-d)! elements.

Let L be a modular lattice of dimensioiN 2nd modulug and balancing constabt= 1, and suppose that it
is known thal contains a vector = [vq,V,] with v; € By(dy) andv, € By(dp). Then it is known that

y1=0di, 81 =dy, y,=0d,, 8, =0d,.
The best method to search fois to solve a balanced CVP with fundamental ratios
p = (21)"4(dy(1 —di/N)dy(1 —d/N))* and  a NN/q.
If d; =d, =d, then the CVP is already balanced and the fornfolahe fundamental ratios simplify to

p = (20(1 -dIN)/g)** and aNq.

A.1.12 Convolution Modular Lattices

A Convolution (or Circulant) Modular Lattice (CML) is a modular lattice in which the matrixis a
circulant matrix, that i is a matrix of the form

ho h1 hN—l
pe | Moo e
hl h2 h0

whereh,...,hy are integers, taken without loss of generalitgatisfy h| < g/2.
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A simple way to generate a convolution modulaidattontaining a short vector of a specified lerigtto
use the convolution ring, = Zq[X]/(XN—l). First choose two polynomiaix),g(X) € R, whose vectors of
coefficients are short. For exampf€X) might have binary coefficients witth ones andy(X) might have
binary coefficients wittd, ones. Then find a solutidi(X) € R, to the equatiofi(X)*h(X) = g(X). A solution
will generally exist provided gch(1),g9) = 1; and if a solution exists, it is easily cortgml using the
Euclidean algorithm and (d is composite) the Chinese Remainder Theorem am3$éfe Lemma. If the
coefficients ofh(X) = ho+thyX+h,X?+...+hy. X" are used as the upper righthand quadrant of aobatinn
modular latticel;,, then the lattic&,, contains the vector

[ forf fo oo face 00y 1, G -, Ot ] € B(dy) X Byy(d).

The cyclic nature of a convolution lattitemeans that for every vector

V= [aOI ala a21 "'!aN-la bOa bly b21 "'!bN-l] 8L1

all of the vectors obtained by cyclically shiftittge two halves of are inL. In other words, the vectors

[ Ay, A1y Aksy ooy A1,y bk, bk+1, bk+2, ceey bk—l]v k= 1, 2, 3, ...N—l,

are also irL.

A.1.13 Heuristic Solution Time for CVP in Modular L attices

Let L be a modular lattice of dimension= 2N and modulugy, and let [,v) be a balanced closest vector
problem. Then experimental evidence [B36] [B44] grajs that the average tirieto solve the closest
vector probleml(,a) is exponential in the dimension, with constar@pehding on the quantities.¢§) and
a(L) introduced in A.1.9. In other words,

log(T) = o N + 3,
wherea = a(c, a) andp = B(c, a) depend ot =c(L, v) anda=a (L).

This heuristic allows experimental determinatioritef constanta andp for given values of anda. After

a andp are determined, then the formula [@g¢ o N + B can be used to extrapolate the time needed to
solve a balanced closest vector problémyv*) whose dimension I€* is too large to solve directly. Thus
the following steps can be used to estimate the tb solve a modular lattice CVP:

a) Replacel(*,a*) by an associated balanced CVP if it is not alselbalanced.
b) Compute the anda constantg* = ¢(L*,v*) and p* = p(L*) for the given CVP.

c) Perform experiments to solve many balanced ML C{{R§ whosec anda constants satisfg(L,a)
=c* anda(L) = a*. Do this for many different problems in each ohumy different dimensions\, i
=1,2,3,.... Record the average tifido solve the problems in each dimension.

d) Plot the pointsi,log(Ty)), i = 1,2,3,..., and compute the regression W¥rea X + f.

e) Extrapolate the solution timiE* for the original problem by the formula I0B{) = o N* + f.

A.1.14 Zero-forcing

If f or g have a large number of zero entries, then the fogoing algorithms of May and Silverman [B72]
[B73] for modular convolution lattices may allowdrection of the lattice dimension. In the case that
hasdls and\-d Os, the speedup in performingrafold zero-force is approximately
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1—(1— ij(l—ﬁ)]N 22

where the running time for the given class of ¢ai isT ~ 2 * P, The optimal value of may be
determined using this formula. ¢gfhas more Os thaf) an attacker may invelt modq and attempt zero-
forcing in the lattice defined Hy* to recover g, f). For all the parameter sets in this standahés more Os
thang, so this approach will not advantage the attacker.

A.2 Experimental Solution Times for NTRU lattices —  full key recovery

A.2.1 Experimental Solution Times for NTRU lattices using BKZ reduction

A private key consists of a pair d{X),g(X)). The associated LBP-PKE public kk¢X) is formed via the
relation

f) * h(X) =p* g(X) (modq)

The associated CML CVP formed from the coefficiesfth(X)/p modq has target vector= [v;,v,] formed
from the coefficients off(X),g(X)]. The selection of(X) andg(X) should follow the guidelines described in
this Annex for the selection of target vectors k. CVPs. In the case thd{X) has the fornfy(X) +
p*F(X) for a known polynomiafy(X) (e.g.,fo(X) = 1), then the CML CVP target vector is the vecto
[F(X),9(X)]. The security must be computed using the smaltem bound associated t6(K),g(X)].

The CML formed using the coefficients of the pulkiey h(X) may also be used to formulate a CVP in
which the target vector = [vy,v;] is formed from the coefficients of (X),m(X)]. This lattice problem can
also be described in terms of the valaemndc. For the parameter sets given in this standaediiéssage-
recovery lattice problem is slightly easier thae kiey-recovery lattice problem.

Table 1gives the relationship betwddmnd lattice security levels in bits as determiagperimentally for
convolution modular lattices. Experiments were using Victor Shoup’s NTL library [B95]. Lattices thi
the given values aof anda were successfully reduced at low dimension, aeditiures given below were
obtained by a least-squares fit to the points spwwading to the values 6fthat required more than 35 bits
of effort to reduce (this value varied dependingcaanda). It was observed that holdirgconstant and
increasingc increased lattice breaking times considerably, #vad holdingc constant and increasiray
decreased lattice breaking times very slightly.eiler

c=V(4e|FIl bl /0.

The experiments were run on 400 MHz Celeron mashialed the time in seconds converted to the time in
MIPS-years by first multiplying by 400 (to accouiatr the 400 MHz machines) and then dividing by
31557600, which is the number of seconds in a yB@aking times were converted to bit security gsin
the identification of 80-bit security with ¥oMIPS-years [B70].

Table 1 — Lattice Security

c a Bit Security
1.73 | 0.53] 0.3563N - 2.263
2.€ 0.8 0.4245N- 3.44(
3.7 2.7 0.4512N + 0.218
5.2 14 0.6492N- 5.43¢
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Figure 4: Lattice Breaking Times and Linear Extrapo  lations

There is some variation among published estimatesrming time due to the particular definition af
MIPS-Year and to the difficulty of estimating adtuarocessor utilization. (How many arithmetic
instructions a modern processor performs in a geeonen running an actual piece of code depends
heavily not only on the clock rate, but also on phecessor architecture, the amount and speedscbis
and RAM, and the particular piece of code.) Thhse,estimates given here may differ from otherthin
literature, although the relative order of growdmains the same. We note that the current estinohtes
lattice strength allow a large margin for error #dimprovements in lattice reduction techniques.

NOTE—The strength of any cryptographic algorithm rebesthe best methods that are known to solve the
hard mathematical problem that the cryptographjorhm is based upon. The discovery and analysis o
the best methods for any hard mathematical prolitem continuing research topic. Users of LBP-PKE
should monitor the state of the art in lattice r&dwn, as it is subject to change.

A.2.2 Alternative Target Vectors

Examination of the NTRU decryption process revéladd any sufficiently smallf(, g’), with the property
thatf - h =p - g modq, will allow decryption. [B19] observes that, wisltightly longer vectors, it might
be possible to decrypt with sufficient accuracyatow an attacker to complete the decryption bytdoru
force. Neither of these attacks appears to be HkasAlthough NTRUSIign [B32] makes use of the
existence of short vectors that are linearly indeleat off andg, it has been observed experimentally
[B30][B36] that lattice reduction techniques thidf any vector shorter thaqpwill in fact terminate with

(f, g) or one of its trivial “rotations™f(- X*, g - X¥). Thus, there is not currently known to be anckea who
can mount an attack based on slightly longer shextors but does not know the short vectors therasel
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A.3 Combined Lattice and Combinatorial Attacks on L BP-PKE Keys and Messages

A.3.1 Overview

[B39] presents a method for combining lattice reducand combinatorial attacks. We refer to thiagk
as a “hybrid” attack. In this approach, an attagkenforms a certain amount of work to reduce thraé
part of an NTRU lattice. Following the reductionys 1 to y -1, v < N, are unreduced, rows o y2, N
<y, < 2N, are reduced, and rowgt+§ to 2N are unreduced. Let K = 2N-ge that part of the lattice
containing the private kefythat remains unreduced. The attacker can perfooonabinatorial search for
the part of the key containined in the K-dimensl@wubspace. The attacker guesses the coefficiénteo
part off in this subspace and sums the lower K rows ofdttee to construct a 2N-dimensional vector.If
the guess is correct, the first y2 entries in thetor will be very close to a point in the-dimensional
transformed lattice that was output by the origirealuction process.

The attack thus has two stages: the lattice remlustiage and the combinatorial stage. The tota fonthe
attack is the sum of the time for these stages 3taindard requires that for a security l&yddoth of these
stages shall take more thibits of work.

A.3.2 Lattice Strength

In a hybrid attack, the lattice is not completedguced. Instead, the attacker selects a sublattittes main
lattice and applies a lattice reduction algoritlintitat sublattice. This sublattice will, with highobability,

not include any vector with length shorter than @aussian value discussed in A.1.5. The latticaing
times given in A.2 are for full key recovery; inigtcase, a short vector is present, and this rediattice
reduction times. In the hybrid case, where no skedtor is present, the experiments of A.2 no longe
apply and, rather than measuring the running timesessary to recover the short vector, the new
experiments measure the amount of reduction thmabegerformed in a given amount of time. In thise;

the amount of reduction is measured by the numbdragonal entried; in the lattice that can be altered
by the reduction process so they take a value diiagig or 1.

Figure 5 presents the results of a number of &#ixperiments for q = 2048, also presented in [BBHg
experimental results fall into three clusters cgponding to three different experimental techniques
standard BKZ, given by the points in the bottont ¢efrner; the isodual technique described in [BgBlen

by the points in the top half of the graph arouinel iniddle; and a refinement of the isodual techaiu
which the output from each blocksize (where bloogss a fundamental tuning parameter) is used s th
input into the next blocksize rather than runniagleblocksize on the original, unreduced latticB(JB As
demonstrated by Figure 5, this final techniqudéshiest one known to date.
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Figure 5: Time to remove X q vectors by different lattice reduction
techniques, experimentally determined.

Based on this data, it appears the running titeeremove a given numbé, of g-vectors using the best
currently known method is given by

t=0.950N;—-31In (2 N) —123.58
A.3.3 Reduced lattices and the “cliff”

A.3.3.1 Running time to obtain a given profile

An attacker’'s chance of successfully recovering pihigate key depends on the values on the diagonal
entries of the reduced lattice. We refer to theasehe logs of these values as the lattice’s ‘itf For
convenience we take logs bageso a profile goes from 1 to 0. Figure 6 presanget of reduced profiles.

If a profile does not go continuously to 0, we #dyas a “cliff” of heighta..

The running time to obtain a slopeif there is no cliff can be related straightfordigrto the time to
remove N, g-vectors: if there is no cliff, the reduction sgmmetric aboutN (in order to keep the
determinant constant) so the sld@pe 1/(, —y1) = 1/2N,.

The time to obtain a cliff of height, occurring at location N <)< 2N in the profile, is related to the time
to obtain a slopé with no cliff as follows [B30]: if

log, (t) =m/ J + 3In(1/ J) +c, where in this case= 0.47506 + 3 In (1/8) — 123.58,

then
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_ o (Y2 = N) _ _
log, (t) =2m 1-a)? +3In(y, -y,) +c

Since lattice attacks are continually improvinge tharameter sets in this standard are generated by
assuming the following extrapolation line:

t=0.2/5 -3 In (1/3) - 50.

This grants the attacker considerably more powean they are currently known to have.

A.3.3.2 The cliff height aand ps

For a given amount of work, the attacker may chdioma a range of ¢y a) pairs.

NTRU lattice, different profiles with the same reduction cost

0 1000 2000

Figure 6 Lattice Profiles

Having performed the reduction, the attacker hasview of the lattice shown in Figure 7. The middle
section of the lattice contains some rotation pag of g and a part of f. The attacker will moantattack
consisting of an enumeration through the substoh§in the unreduced part of the lattice on thght;j
combined with reduction against the reduced patheflattice in the middle and the unreduced parthe
left. The enumeration of the substring of f is gfeEtup using meet-in-the-middle techniques.
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2 Figure 7 The attacker's view of the lattice followi ng reduction
3 If the attacker has correctly guesseandf” such thatf’ + f* makes up the part of the kdyhat lies in the
4 unreduced sectiop <i < 2N, they can confirm this guess by reducing agalmstést of the lattice, 0i<<
5 vy, The most efficient way of carrying out this retion is by using Babai’'s method [B9], which has a
6  running time of aboul\®>. However, this reduction method has a chance ahégilf any term in the part of
7  the key that lies in the reduced area is greatam the corresponding diagonal term, the Babai témhuc
8  will not be successful. Figure 8 gives an exampiens the Babai reduction will fail. This illustratthat if
9 thereis a “cliff” in the profile, the Babai redimm is much more likely to succeed.
10C00
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1 | R Y. W
1 w d 2000
0.1 v 1 ' I
0o
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11 Figure 8: A case where Babai reduction will not be successful
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The probability of success at this stage, giveri’ amd andf”’ that should makd, is denoted byp.. This
value p; depends om, g, the height of the clifty, and the boundaries of the reduced ayeayf), and is
given by [B30]:

9 Y1 Y2—
Ps = 1_ - H 1_f alyg—yp)+i(l—a)
3(] =0 q Yz —¥1 Nes

2N —yg(1+a) M
1—

2 o —
B (13_1> 11 (1f HS)

i=0 a

where

v . D ov?2 _ D?)
Ipe = erfe (n—\/?> 5 (6 207 — 1) )

A.3.4 Combinatorial Strength

This section considers the effort that the attackast expend in the combinatorial phase of the ¢oeab
attack.

A.3.4.1 Combinatorial Attacks on LBP-PKE Keys and M essages

An exhaustive search algorithm tries all allowabtdues forv,, computes the value af = v,*h, and
checks ifv, is an allowable value. L&, denote the sample space Yor The exhaustive search method has
average running time %| for general modular lattices and average runtimg (1/2N)$,| for convolution
modular lattices (since a convolution modular ¢attwill generally haveéN target vectors). An exhaustive
search algorithm has no storage requirements.

A collision search algorithm of Odlyzko is descdhia [B43][B44].

If S = By(d) is the space of binary vectors of dimensirwith d ones, then the running time of the
collision search method is approximate§fC(N/2,d/2) operations. (Here @) = n!/k!(n-K)! is the usual
combinatorial symbol.) The storage requiremenpgaximately 2C{/2,d/2).

If S, =Ty(d) is the space of trinary vectors of dimensidwith d 1s andd -1s, then the running time of the
collision search method is approximatel?C(N,d) operations. The storage requirement is approxiyat
2C(N,d).

It is not known if there is a collision search nwththat does not require substantial storage, thist i
recommended that security be computed under thergdg®on that storage requirements are not an iGsue
contrary view is given in [B99]).

A.3.4.2 Combinatorial Strength in the hybrid case

In the hybrid case the attacker is searching aesphsize K for a trinary polynomial with e¢1s and g-1s.
The amount of work the attacker must do to sedrishsipace using a standard collision search method
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s
(cl / 2](02 / ZJ

Wagner's generalized birthday paradox search [Bpd@}ents an attack that may potentially improwe th

running time of this stage to
) o2 |
/2 /2
w_=\al2k iz ),

'search — Cl C2
c/2)c, /2

It is not clear exactly how this attack would beplemented against the current form of LBP-PKE.
Nevertheless, the parameter sets presented istdngard for a given security ledehssume the attacker
can mount this generalized birthday paradox attaks® use the second form forMyn

Wsearcncontributes to the full security level of the cdndiorial search phase. Two additional contribigion
to this security level are: first, the chance tihegt search is not successful; second, the costrédnming
the reduction against the rest of the lattice.

The chance that the search is not successful dementivo quantities:

The chance that the lattice reduction allows aemirguess to be confirmed, p_s. The value for g given
above. For the standard attack, the search workrbes Weacn/ Vp_s. For the generalized attack, the
search work becomes M./p_s. We express the total search work asMWW,

The chance that the attacker has guessed thevadis for c1, c2, Bi(ci, & N, K, dy, dy). Here the

analysis is complicated by the fact that the latticfact contain®\ rotations of the private key. The chance
that the attacker has guessed the right valueslfand c2 for a single rotation of the key is

Y G 1 ey
) o)

If the attacker can take advantage of the factttatattice contains N rotations of the key,F#mproves
to become

Ppitn = 1 — (1 = By )™
It is currently believed that the form of the ptiw&key,f = 1 =pF, requires the attacker to solve a CVP
problem that “locks in” a single rotation of theykeand so the appropriate measure gfitfs Ry, 1.

However, for safety against an improved reductilgodthm that would let an attacker search agadtist
rotations of the key, the parameters in this stethdaere generated withyfp = Pygiit, .

Finally, in the specific setting of the hybrid aftathe reduction using Babai’'s method involvestiplying
by a 2Nx2N transformation matrix; experimentallysifound that this multiplication has bit securyout

2 106
Wreducnon N7/2
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Since the matrix is the same in all cases, thiarégdevel can probably be optimized, and for pnsgs of
estimating security it is taken to have the value

Wieduction= N/2-%° .

This time must be multiplied by the search timehs meet-in-the-middle part of the attack to obthia
full running time of this phase of the hybrid akac

The total expected work of this phase for a giveaiee of g, ¢, given the values Kg, y;, and y that
resulted from the lattice reduction phase, is tioeee

V\/mitm (Clv CZ) = Wreduction* Wsearch* Wp_s/ I:)split-
Finally, the security level due to this phase ietato be

Wmitm = min:l,cz Wmitm (Cly CZ)-

A.3.5 Summary

A hybrid attack involves the lattice reduction woll,;, and the meet-in-the-middle work, . The
attacker will attempt to balance these two phasehat they take equal amounts of time. A paramsder
has a strength of greater thabits if, for all profiles produced by performitkgoits of lattice reduction, the
value of Whim > k.

A.4 Other Security Considerations for LBP-PKE Encry  ption

A.4.1 Entropy Requirements for Key and Salt Generat  ion

The security of a parameter set will be less ti@nctaimed level if an attacker can guess eithek#y or

the random padding with less effort than a brutedosearch. One means of doing this would be fer th
attacker to guess the internal state of the randomber generator used in key generation and salt
generation. These RNGs must be seeded with theopaie amount of entropy, which ke-64 for a
claimed security level.

A.4.2 Reduction mod ¢

If the calculation offh mod q involves little or no reduction mayl an attacker can attempt to use their
knowledge ofh to solvee = rh + m' using linear algebra. For the parameter setsis standard, it is
vanishingly unlikely that this will occur ifiis a valid public key. The public key partial \ddtion method
given in 9.2.5.2.2 checks that it is highly likehat the calculation af*h will involve significant reduction
modq.

A.4.3 Selection of N
It is required that the security parametebe prime (i.e., the dimensionof the lattice be twice a prime).

If N is highly composite (e.g., Ml is a power of 2), then Gentry [B23] has shown th&blding method
allows the private key and plaintext to be recogidrem a lattice of dimension much smaller tiin
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A.4.4 Relationship between g and N

It is recommended that for each prime divisgrof g, the polynomialX" — 1 modulag, should have no
factors of small degree (aside from the obviousofaX — 1). IfN is prime, therX" — 1 modulog, factors as
X =1A(X)...A(X), where eacl\(X) has degree equal to the multiplicative ordeggfoduloN. If h(X)
orr(X) is zero in the field mod;(X), it will leak the value of m’(X) in this field.fIA(X) has degreg the
probability thath(X) or r(X) is divisible by A(X) is presumably 1¢f. To avoid attacks based on the
factorization ofh orr, we will require that for each prime divisBrof g, the order oP (modN) must be N-

1 or (N-1)/2. This requirement has the useful sffeet of increasing the probability that a randgml
choserf will be invertible inR,.

A.4.5 Form of

So long as the factors gfhave sufficient order mol (A.4.5), there are no known security issues whith t
form of g it may be chosen to be either prime or compo3ités standard selectsto be 2 for somel to
increase the efficiency of the modular reductioeragions.

A.4.6 Leakage of m’(1)
Because&X"-1 is always divisible bX-1, the mapping ¥) - (1) is a ring homomorphisi.e

(fg) (1) = f(1)g(D).

Note thatf(1) is simply the sum of the coefficientsfofSince an attacker will be able to calculagt), and
sincer(1) is part of the parameter set, this means thatgcker can recoven'(1) from e=r*h+m'’. The
attacker could potentially distinguish between twe by their Hamming weight. This is addressed tg th
masking process, which ensures théfl) does not leak information about(1); see A.4.8 for further
details.

For binary keys, m'(1) reveals the number of IminSince lattice and combinatorial attacks ignn() get
easier asn’ gets more unbalanced (in other words, as the murabls gets further and further frawg),

an attacker can select (n’) pairs that are more vulnerable to these attaakedbon the revealed value of
m'(1). However, for trinary keys and messages (idiclg product-form trinary keys), m'(1) is simphet
number of 1s minus the number of -1s and doesirsttty reveal information about more versus less
vulnerable message representatives.

A.4.7 Relationship between p, qand N

If the smaller modulup divides the large modulug then reduction modulp of an expressiop*r*h + m
modulo g will immediately recovem. More generally, ifp and q are not relatively prime in the ring
Z[X)/(X" = 1), then reduction modulo a common factor vélleal information aboun. For this reason it is
required that the large modulgsand the smaller modulysbe relatively prime in the ring[X])/(X" — 1).
This is equivalent to the condition that the thge@ntitiesg, p, andX" — 1 must generate the unit ideal in
the ringZ[ X].

The large modulug is required to be i#, but the smaller modulysneed not be i@. For example, iN is
odd and if is a power of 2, them could equaX + 2 orX — 2, since the three quantiti$— 1, %, andX +
2 generate the unit ideal in the rid§X].
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A.4.8 Adaptive Chosen Ciphertext Attacks

If the same is used to encrypt two different message reprasgasm’y; andm’, under the same key, then
the difference of the two ciphertexds—e, = m’y —m’, (modq) will reveal a large portion afy; andm’,.
With the encryption schemes in this standand= M O MGF(r*h) = M + MGF({*h) mod 2, soe; — &
(mod g)(mod 2) =M; O M,. With the key establishment schemes in this stahdbere are two ways that
anr could be repeated:

a) The same messagecould be encrypted twice with the same balt

b) Two different (n, b) pairs could produce the same

If the same messageis encrypted twice with the same dalian attacker will know that this has happened
but will not obtain any additional information altam or b. Since this standard is a key establishment
standard and the should therefore be chosen at random for eachagessent, the chance that am )

pair will be used twice should be the chance obkision in the entire iy, b) space, which requires the
sending of about"® messages.

The chance that two differenin( b) pairs will produce the sameis the chance of a collision when
selecting from the space of all possible blindildypomials,D,. In order to have a significant chance of a
collision, the attacker must observe abei@# D,) messages, o (C(N,d)/N), where C is the usual
combinatorial symbol. For the parameter sets is tlicument, this number of messages is alwaysegreat
than the number of operations an attacker musbperfo mount a combinatorial attack against a key o
ciphertext (see A.3.4.1).

A single message elemem(X) should not be encrypted using two different higdelements. Ifn(X) is
encrypted using;(X) andr,(X), then the quantity

(Ph(X))™(ex(X) —&x(X)) = r1(X) ~r5(X) (moda)

will reveal a large portion of;(X) andr,(X). (Even if h(X)™ mod q does not exist, one may still gain
considerable information using a partial inverse).

In general, as with all public-key cryptosystente LBP-PKE primitives must be within an appropriate
encryption scheme to provide security against amgsaintext, chosen ciphertext and adaptive chosen
ciphertext attacks [B37] [B45] [B57] [B81]. The she used in this standard has a proof of securitiye
random oracle model presented in [B45]. In this elothe saltb that is added to the message before
encryption is not vulnerable to birthday paradogetyattacks, but only to exhaustive search-typekata
For ak-bit security level, it is therefore appropriatetdie the salt lengttib to bek bits.

A.4.9 Invertibility of g in Rq

The proof of security in [B45] requirds and thereforg, to be invertible irR,. This is the reason for the
check in step j) of the key generation operatio®.i21. There are no specific known attacks thatyap
only if g is not invertible. Note that, eventifis not invertible, there will often be a “pseudwmrse” which
plays the same role [B81]; this is not taken irtocunt in the proof in [B45].

A.4.10 Decryption Failures

On decryption, the decryptor calculates
a=f*emodq

=prg + m’ + pFm’ mod q
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Decryption depends on this equality holding over ithtegers, not simply mogl Presentations of LBP-
PKE in other fora in the past have used parametr for which the value af or the modq reduction
method would not always make it possible to satitifis equality. Therefore, decryption would
occasionally fail. An attacker who observed dedoypfailures could recover the private key [B41b[B
[B74] [B85] [B97] even if the underlying encryptioacheme was CCA2-secure in the absence of
decryption failures.

For trinary polynomials with d +1s and the same hanof -1s, the chance of a decryption failureiieigy
by [B30]:

Prohy, ¢, n(Decryption fails) = R ny((q-2)/6)

Where
Pa.ny(c) = N * erfc (¢ / 6V[2N]))
and
o(d, N) =V(8d/3N)
A.4.11 OID

The OID is included in step j) of encryption andps]) of decryption to give an assurance that gnery
are using the encryption scheme specified in thisuchent. This protects againstodified parameter
attacks[B42], in which an attacker persuades an encrytencrypt with an encryption scheme other than
the one the decrypter specifies use with that kieyler certain circumstances, modified parametechst
can recover information about the ciphertext. Tingusion of the OID ensures that a message wily onl
decrypt correctly if it was encrypted with the exparameter set expected by the receiver.

A.4.12 Use of Hash Functions by Supporting Function s

The security requirements on a hash function whsad was the core of a random bit string generator ar
different from those on a fixed-length hash funati®his standard follows common practice in usihbtpAS
1 in Random Bit Generators at security levels uk=tb28, and SHA-256 at security levels up to k=256.

A.4.13 Generating Random Numbers in [0,  N-1]

The BPGM method83.1.1) converts a random bit or byte stream to a sexiéategers. These integers
must be uniformly distributed in the range [8,1]. If they were not, an attacker could exploi¢ thias to
speed up an attack based on guessifithe method given in this document ensures treantimbers are
unbiased by:

selecting a set of bits;
converting the bits to an integer;

only reducing the integer mad if it falls into a range [OkN-1] for some parameter-set-specific
valuek, and otherwise selecting a fresh set of r randibsn b

The output of the random bit string generator nlagsstatistically random; there should be no sinfpte
linear) relationship between the sets of bits chdeereduction.
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The number of bytes chosen pre-reduction is themuim number necessary to hdld The number of bits
chosen from these bytes (denotedchy the parameter sets) is selected to give thénmim value of (2
modN). There are no known security implications to ¢heice ofc, so long as 2> N.

A.4.14 Attacks based on variation in decryption tim es

The papel{B98] demonstrates that a naive implementation of th&M® in this standard (without the
minimum IGF output parameteninCallsR leaks private key information because the deayptime
depends on the ciphertext. To prevent these attéédksnecessary to ensure that decryption takestent
time (or at least that variations in time occurtwiegligible probability).

The papefB98] suggests that effectively constant decryption $irm@n be obtained by choosiogenMin
such that the chance that more tld®nMin octets of output are needed is less th&nveherek is the
security parameter anoLenMin = minCallsR* hLen hLenthe length in octets of output from the hash
function. The chance that greater tlhenMinindividual octets are needed is given by

1- Y P.,.(oLenMin/c’,d)

dr<d<oLenMin/ ¢’

where Ry N(L,d) is determined by the recursive formula

Fona(Ld) =R, (L-1d-1) Eén(N_CMj +P. (L —1,d) Eél—n(Nc_d)]'

Penn(L,d)=0ifL<d,

nNY"
P. v n(L0O) =(1_cj :

and
C =7, ¢ = ceil[c/8].

minCallsRshould be taken to be the smallest integer suaththie chance that more thabenMinoctets of
output are needed is less thah 2

A.4.15 Choosing to attack r orm

An attacker may choose to mount an attack on aecipkt to recover either r or i; recovering onelafse
trivially recovers the other. The attacker will dse to attack whichever is thinner. Siricis chosen at
random from the space of trinary polynomials, i thick (as is the case for the size-optimizecapaters
in this standard), will in general be thinner and may be easier tmver than the intended security level.

To mitigate this risk, the encryption scheme irstsiandard requires that an sender discards agptedr
message if the message representativas fewer thamr +1s, -1s, or 0s. If the sender generates such a
message representative, they must discard thatagesgpresentative and restart the encryption psoce
with a different salb. If the receiver receives a ciphertext that detsyp a message representaiiveth
fewer thandr +1s, -1s, or 0s, the receiver must treat the gieny as having failed (though the receiver
should complete all the stages of decryption ireotd avoid leaking timing information about theaisa of

the decryption failure).
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A.4.16 Quantum Computers

All cryptographic systems based on the problemstafger factorization, discrete log, and elliptiere
discrete log are potentially vulnerable to the depment of an appropriately sized quantum computer,
algorithms for such a computer are known that cdvesthese problems in time polynomial in the ste
the inputs. For LBP-PKE [B71], proposes a quantwtiide reduction algorithm that may improve
reduction speeds while remaining exponential-tiarej [B86][B100][B66][B87][B46] consider potential
sub-exponential algorithms for certain lattice peots.

A.4.17 Other Considerations

The private-key representation does not affect rigcin general, although the effectiveness of ptgis
attacks may vary according to the representatidre private key should be stored securely, and the
encryption blinding polynomial should be erasecrafise. The domain parameters should be protected
from unauthorized modification.

A.5 A Parameter Set Generation Algorithm

This section describes an algorithm that may bel tisegenerate parameter sets with a desired Idvel o

security.
a) Set adesired security level
b) Setq=2048.
c) Choose a performance metric. Possible metrics diechize = N* log(q); operation time = N*d; or
some combination of the two, such as sptsize.
d) Set N equal to the first prime greater than k siett the order of 2 mod N is (N-1) or (N-1)/2 and
enter the following loop
1) Foreachd,1<d<N/3:
i)  For each possible N < ¥ 2N:
i) ForeachO<y<N:
i)  Calculate the profile produced kyits of lattice reduction for thg y;.
i)  If such a profile exists, calculate M, using the formula given in A.3.4.2
i) If Whim < k, that value of d does not give sufficient ségulncrement d by
one and re-enter the lpop.
i)  We have now obtained the minimum value of d for ¢gisen N that gives k bits of
security. Check that the value of d in questionddscryption failure probability of < 2
¥ using the formula given in A.4.10.
iii) If the decryption failure probability is >*2increase N to the next prime such that the
order of 2 mod N is (N-1) or (N-1)/2 and re-entez t loop
iv) Returnd.
2) Calculate the “goodness” of the parameter set (i) dsing the chosen metric.
3) Increase N to the next prime such that the ordé& wiod N is (N-1) or (N-1)/2 and re-enter
the d loop
e) Output the stored (N, d, q) that give the bestescmder the chosen metric.
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The parameter sets in this standard were generatednimize running time and to minimize size. With
this parameter generation algorithm it is possiblgenerate parameters that satisfy arbitrary pmdace
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criteria, such as “the fastest operations withyadiee of less than 5000 bits”.

A.6 Possible Parameter Sets

This section defines specific sets of parametarghi® encryption scheme (SVES) that give a speldfiel

of security according to the metrics in this stadda

A.6.1 Size-Optimized

These parameter sets are optimized for size ates giecurity level.

A.6.1.1 ees401epl

This parameter set is suitable for use at the itl@elourity level

Table 2 — ees401epl

N =401
p=3
q=2048
Key generation: KGP-3 with
df =113
dg =133
ILen=1
db =112
maxMsgLenBytes = 60
bufferLenBits = 600
bufferLenTrits = 400
dm0 =113
MGF-TP-1 with
SHA-1 (MGF)
BPGM2 with
IGF-MGF-1 with SHA-1 (IGF)
dr=113
c=11
minCallsR = 32
minCallsMask =9
OID =00 02 04
pkLen =114

NOTE— If a message representative m’' has fewer thafl 1s, -1s, or 0s, it must be rejected. The aharfichis

happening with a legimitately generated m’ is 0228

A.6.1.2 ees449epl

This parameter set is suitable for use at the 1@8elourity level

Table 3 — ees449epl
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Table 3 — ees449epl

N =449
p=3
q=2048
Key generation: KGP-3 with
df =134
dg =149
ILen=1
db =128
maxMsgLenBytes = 67
bufferLenBits = 672
bufferLenTrits = 448
dm0 =134
MGF-TP-1 with
SHA-1 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-1 (IGF)
dr=134
c=9
minCallsR = 31
minCallsMask =9
OID =00 0303
pkLen = 12i

1 NOTE— If a message representative m’ has fewer thafl 1s, -1s, or Os, it must be rejected. The ahafichis
2 happening with a legimitately generated m’ is 01104

3  A6.1.3 ees653epl

4 This parameter set is suitable for use at the i9&elurity level

Table 4 — ees653epl

N =653
p=3
q=2048
Key generation: KGP-3 with
df =194
dg =217
ILen=1
db =192
maxMsgLenBytes = 97
bufferLenBits = 976
bufferLenTrits = 652
dmo0 = 194
MGF-TP-1 with
SHA-256 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-256 (IGF)
dr=194
c=11
minCallsR = 34
minCallsMask = 9
OID =00 05 03
pkLen = 19:

5 NOTE— If a message representative m’ has fewer thafl 1s, -1s, or Os, it must be rejected. The ahafichis
happening with a legimitately generated m’ is 0Z8R
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1 A6.1.4 ees853epl

2  This parameter set is suitable for use at the 266eiurity level

Table 5 — ees853epl

N =853
p=3
q=2048
Key generation: KGP-3 with
df =268
dg =284
ILen=1
db =256
maxMsgLenBytes = 126
bufferLenBits = 1272
bufferLenTrits = 852
dmO = 268
MGF-TP-1 with
SHA-256 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-256 (IGF)
dr =268
c=10
minCallsR = 42
minCallsMask = 11
OID =00 06 03
pkLen = 256

3 NOTE— If a message representative m’' has fewer thafl 1s, -1s, or 0s, it must be rejected. The aharfichis
4 happening with a legimitately generated m’ is 0626

5 A.6.2 Cost-Optimized

6  These parameter sets are optimized to give thesiovedue of (operation tim&kize.

7 A.6.2.1 ees54lepl

8  This parameter set is suitable for use at the itl@elurity level

Table 6 — ees541epl
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Table 6 — ees541epl

N =541
p=3
q=2048
Key generation: KGP-3 with
df =49
dg =180
ILen=1
db =112
maxMsgLenBytes = 86
bufferLenBits = 808
bufferLenTrits = 540
dmO = 49
MGF-TP-1 with
SHA-1 (MGF)
BPGM3 with
IGT-MGF-1 with SHA-1 (IGF)
dr=49
c=12
minCallsR = 15
minCallsMask = 11
OID =00 02 05
pkLen = 11:

1 NOTE— If a message representative m’ has fewer thafl 1s, -1s, or Os, it must be rejected. The ahafichis
2 happening with a legimitately generated m’ f$%*°

3  A6.2.2 eesb13epl

4 This parameter set is suitable for use at the iP8eburity level

Table 7 — ees613epl

N =613
p=3
q=2048
Key generation: KGP-3 with
df =55
dg =204
iLen=1
db =128
maxMsgLenBytes = 97
bufferLenBits = 912
bufferLenTrits = 612
dm0 =55
MGF-TP-1 with
SHA-1 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-1 (IGF)
dr=55
c=11
minCallsR = 16
minCallsMask = 13
OID =00 03 04
pkLen = 12{

5 NOTE— If a message representative m’ has fewer thafl 1s, -1s, or Os, it must be rejected. The ahafichis
happening with a legimitately generated m’' 1828
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1 A6.2.3ees887epl

2  This parameter set is suitable for use at the i9&ekurity level

Table 8 — ees887epl

N = 887
p=3
q=2048
Key generation: KGP-3 with
df =81
dg =295
iLen=1
db =192
maxMsgByteLen = 141
bufferLenBits = 1328
bufferLenTrits = 886
dmO0 =81
MGF-TP-1 with
SHA-256 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-256 (IGF)
dr=81
c=10
minCallsR =13
minCallsMask = 12
OID =00 05 04
pkLen =192

3 NOTE— If a message representative m’' has fewer thafl 1s, -1s, or 0s, it must be rejected. The aharfichis
4 happening with a legimitately generated m' 8425

5 A6.24eesll71epl

6  This parameter set is suitable for use at the 266ckurity level

Table 9 —eesl1171epl
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Table 9 —eesl1171epl

N=1171
p=3
q=2048
Key generation: KGP-3 with
df =106
dg =390
ILen=1
db =256
maxMsgLenBytes = 186
bufferLenBits = 1752
bufferLenTrits = 1170
dmO =106
MGF-TP-1 with
SHA-256 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-256 (IGF)
dr =106
c=10
minCallsR =20
minCallsMask = 15
OID =00 06 04
pkLen = 25

NOTE— If a message representative m’ has fewer thafl 1s, -1s, or Os, it must be rejected. The ahafichis
happening with a legimitately generated m’ /€%

A.6.3 Speed-Optimized

These parameter sets are optimized for speediaéa security level.

A.6.3.1 ees659epl

This parameter set is suitable for use at the itl@elourity level

Table 10 — ees659epl
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Table 10 — ees659epl

N = 659
p=3
q=2048
Key generation: KGP-3 with
df =38
dg =219
ILen=1
db =112
maxMsgLenBytes = 108
bufferLenBits = 984
bufferLenTrits = 658
dmO = 38
MGF-TP-1 with
SHA-1 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-1 (IGF)
dr=38
c=11
minCallsR =11
minCallsMask = 14
OID =00 02 06
pkLen = 11:

1 NOTE— If a message representative m’ has fewer thafl 1s, -1s, or Os, it must be rejected. The ahafichis
2 happening with a legimitately generated m’ %3

3 A6.3.2ees76lepl

4 This parameter set is suitable for use at the iP8eburity level

Table 11 — ees761epl

N =761
p=3
q=2048
Key generation: KGP-3 with
df =42
dg = 253
ILen=1
db =128
maxMsgLenBytes = 125
bufferLenBits = 1136
bufferLenTrits = 760
dm0 =42
MGF-TP-1 with
SHA-1 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-1 (IGF)
dr=42
c=12
minCallsR =13
minCallsMask = 16
OID =00 03 05
pkLen = 12{

5 NOTE— If a message representative m’ has fewer thafl 1s, -1s, or Os, it must be rejected. The ahafichis
happening with a legimitately generated m’ 8%

66



IEEE P1363.1/D10, July 2008

1 A6.3.3eesl087epl

2  This parameter set is suitable for use at the i9&ekurity level

Table 12 — ees1087epl

N = 1087
p=3
q=2048
Key generation: KGP-3 with
df =63
dg =362
ILen=1
db =192
maxMsgLenBytes = 178
bufferLenBits = 1624
bufferLenTrits = 1086
dm0 =63
MGF-TP-1 with
SHA-256 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-256 (IGF)
dr=63
c=13
minCallsR =13
minCallsMask = 14
OID =00 05 05
pkLen =192

3 NOTE— If a message representative m’' has fewer thafl 1s, -1s, or 0s, it must be rejected. The aharfichis
4 happening with a legimitately generated m’' #2°

5 A6.3.4 ees1499epl

6  This parameter set is suitable for use at the 266ckurity level

Table 13 — ees1499epl
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Table 13 — ees1499epl

N = 1499
p=3
q=2048
Key generation: KGP-3 with
df =79
dg =499
ILen=1
db =256
maxMsgLenBytes = 247
bufferLenBits = 2240
bufferLenTrits = 1498
dm0 =79
MGF-TP-1 with
SHA-256 (MGF)
BPGM3 with
IGF-MGF-1 with SHA-256 (IGF)
dr=79
c=13
minCallsR =17
minCallsMask = 19
OID =00 06 05
pkLen = 25

NOTE— If a message representative m’ has fewer thafl 1s, -1s, or Os, it must be rejected. The ahafichis
happening with a legimitately generated m’ %%°

A.7 Security levels of Parameter Sets

A.7.1 Assumed security levels versus current knowle dge

These security considerations have noted seveealeplwhere the assumptions used to generate the
parameter sets are more cautious than the besksttiaat are currently known. As a result of tlise
parameter sets given in this standard for use aitlertain security levéd would in fact have a security
level k' >k against an attacker using the best techniques kriowuly 2008. This section summarizes the
assumptions that have been made that favour thekatt and compares the known July 2008 security
levels of the parameter sets with the securitylef@ which those parameter sets are recommended.
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Area

Current experimental strength

Assumed strength

Lattice reduction tim

t=0.47505 + 3 In (1.8) —123.5¢

t=0.25+31In(L3)-50

Combinatorial search
time for c1 1s, c2 -1s
in a space of size K

e ‘o
SN

K YK-¢/2
c/2) c,/2

C
ol ea
c/2)c,/2

Time to perform Babai N2 N
reductior
Pspii [N - K](N -K—-(d, - cl)J [ﬁK][K - clJ Papiitn = 1 — (1 — Bui.)"-
P _ d-c d, -c, G G,
split,1 - N N _ q-
[qj( c J
Table 14 Assumptions used to generate parameters in this
standard vs current best known attacks
Parameter set N q df Known strength Recommended security
level
ees40lepl 401 2048 113 154.88 112
eeb4lepl 541 204¢ 49 141.76t 112
ees659epl 659 2048 38 137.861 112
eed4Cepl 44¢ 204¢ 134 179.89¢ 12¢
ees613epl 613 2048 55 162.385 128
ees76lepl 761 2048 42 157.191 128
ee653ep] 653 204¢ 194 276.73t 192
ees887epl 887 2048 81 245.126 192
ee108iepl 1087 204¢ 63 236.58€ 192
ees853epl 853 2048 268 376.32 256
ee!ll7lep] 1171 204¢ 10€ 327.88: 25€
ee149¢ep] 149¢ 204¢ 7S 312.94¢ 25€

Table 15 Strengths of recommended parameter sets in

A.7.2 Potential research

standard vs best current attacks

this

As detailed above, the parameter sets in this atdndre designed to be secure against incremental
improvements in attack techniques. As these impnares occur, future versions of the standard waltk
the “current known” strength of each parametemasdt descends towards the recommended securéy lev

There are potential breakthroughs in researchitheg not been considered in generating these ptgame
sets, because it is not clear that these brealghsowill ever come. Such breakthroughs, which would
require an in-depth re-evaluation of the securitthe algorithm, include:

O Improvement in lattice reduction techniques for tybrid case beyond the current extrapolation
line

A sub-exponential or otherwise massively improviedck on the whole NTRU lattice

An improvement in the reduction step of the medhigrmiddle phase of the hybrid attack that
would allow an attacker to significantly increasesp

69



IEEE P1363.1/D10, July 2008

Annex B
(informative)
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