
On CCA1-Security of Elgamal And Damgård’s Elgamal

Helger Lipmaa

Cybernetica AS, Estonia, http://research.cyber.ee/˜lipmaa

Abstract. We establish the complete complexity landscape surrounding CCA1-security of Elgamal and Damgård’s
Elgamal (DEG). Denote by XY [i] the assumption that the adversary, given a non-adaptive oracle access to the Y
oracle with i free variables cannot break the assumption X . We show that the CCA1-security of Elgamal is equiv-
alent to the DDHCDH[1] assumption. We then give a simple alternative to Gjøsteen’s proof that DEG cryptosystem
is CCA1-secure under the DDHDDH[2] assumption. We also provide several separations. We show that DDH can-
not be reduced to DDHCDH[1] in the generic group model. We give an irreduction showing that DDH cannot
be reduced to DDEGCDEG[2] (unless DDH is easy), DDEGCDEG[2] cannot be reduced to DDHDDH[2] (unless
DDEGCDEG[2] is easy) and DDHDDH[2] cannot be reduced to the DDHCDH[1](unless DDHDDH[2] is easy). All
those irreductions are optimal in the sense that they show that if assumption X can be reduced to Y in polynomial
time then X has to be solvable in polynomial time itself and thus both assumptions are broken.
Keywords. CCA1-security, DEG cryptosystem, DDH, Elgamal cryptosystem, irreduction.

1 Introduction

While the Elgamal cryptosystem [Elg85] is one of the best-known public-key cryptosystems, results on its security
have been slow to come. Only in 1998, it was proven that Elgamal is CPA-secure [TY98], that is, secure against chosen
plaintext attacks. On the other hand, it is clearly not CCA2-secure, that is, secure against adaptive chosen ciphertext
attacks, because it is homomorphic. However, not much is known about its CCA1-security, that is, security against
non-adaptive chosen ciphertext attacks.

Denote by XY [i] the assumption that no adversary, given a non-adaptive oracle access to the Y oracle with i
free variables can break the assumption X (w.r.t. some fixed ordering of the variables). We show that Elgamal is
CCA1-secure if and only if the DDHCDH[1] assumption is true. In some sense, this result just states that Elgamal is
CCA1-secure if and only if it is CCA1-secure, but it serves as an introduction to the second main result. Moreover,
this is the weakest assumption up to now under which Elgamal has been proven CCA1-secure.

In 1991, Damgård proposed what we call the DEG (Damgård’s Elgamal) cryptosystem [Dam91] and proved it to
be CCA1-secure under a knowledge-of-the-exponent assumption. Only recently, Gjøsteen proved [Gjø06] that DEG
is CCA1-secure under a more standard DDHDDH[2] assumption. Gjøsteen’s proof consisted of a relatively long chain
of games.
OUR CONTRIBUTIONS. In the current paper, we establish the complete complexity landscape of CCA1-security of El-
gamal and DEG. We establish precise security assumptions under which these cryptosystems are CCA1-secure. More-
over, we show that the CCA1-security of DEG does not follow from DDH (unless DDH is the concrete group is easy)
and that the CCA1-security of Elgamal does not follow from DDHDDH[2] and thus from the CCA1-security of DEG
(unless DDHDDH[2] is not true). Moreover, we give a simpler proof of Gjøsteen’s result and show that DDHDDH[2]

does not follow from the CCA1-security of DEG either (unless DEG is insecure), and is thus unnecessarily strong.
The rest of the introduction gives a more technical exposure of our results.

We first give a simple proof that DEG is CCA1-secure if and only if the DDEGCDEG[2] assumption holds,
where both CDEG and DDEG are new but standard-looking assumptions. We also show that one can derive the
DDEGCDEG[2] assumption under the more traditional DDHDDH[2] assumption. The proof is a simple hybrid argu-
ment following the general guideline “if X ⇒ X ′ and Y ′ ⇒ X ′ then XY ⇒ (X ′)Y

′
”, though it also uses a recent

trapdoor trick from [CKS08]. (Here and in what follows, X ⇒ Y means that the assumption Y can be reduced to the
assumption X .) Both this and analogous direct proof that DEG is CCA1-secure under the DDHDDH[2] assumption
consist of two game hops, and are thus considerably simpler than the proof given in [Gjø06]. Our proof technique may
be a contribution by itself.

http://research.cyber.ee/~lipmaa

2 Helger Lipmaa

We then concentrate on showing that the used assumptions are all (potentially) different. Following the approach
of [Che06], we show that in the generic group model, DDHCDH[1] 6⇒ DDH. That is, we show that there is no reduction
from DDHCDH[1] to DDH. The corresponding irreducibility notion in the generic group model seems to be novel. This
result also means that CCA1-security of Elgamal cannot directly be proven from the DDH assumption alone by using
low-degree polynomial reductions. It is not clear whether this is true for the DEG.

In addition, we give an irreduction [Bro07,BMV08] showing that DDH cannot be reduced to DDEGCDEG[2] (un-
less DDH is easy), DDEGCDEG[2] cannot be reduced to DDHDDH[2] (unless DDEGCDEG[2] is easy) and DDHDDH[2]

cannot be reduced to the DDHCDH[1](unless DDHDDH[2] is easy). All those irreductions are optimal in the sense that
they show that if assumption X can be reduced to Y in polynomial time then X has to be solvable in polynomial time
itself and thus both assumptions are broken.

That is, we prove that:

Elgamal-CCA1
⇐

DDHCDH[1]
⇐

DDHDDH[2]
⇐

DDEGCDEG[2]
⇐

DEG-CCA1
⇐

DDH
⇒ 6⇒DDHDDH[2] 6⇒DDEGCDEG[2] ⇒ 6⇒DDH

Therefore, we give a complete map of the security reductions and irreductions between these security assumptions.
ROAD-MAP. In Sect. 2, we lay out the preliminaries. In Sect. 3, we study the CCA1-security of DEG. In Sect. 4, we
study the CCA1-security of Elgamal. Finally, in Sect. 5, we provide irreductions between DDH, the CCA1-securities
of DEG and Elgamal, and DDHDDH[2].

2 Preliminaries

2.1 Reductions And Irreductions

We say that security assumption Y can be reduced to assumption X , X ⇒ Y , if there exists a reduction R, such
that: for every adversary A that breaks assumption X , R can break assumption Y by using A as an oracle. Follow-
ing [Bro07], we call an algorithm I an irreduction X 6⇒Y Z, if it can, given as an oracle an arbitrary reduction
algorithm X ⇒ Z, solve problem Y . If Y = Z then we say that I is an optimal irreduction algorithm and write
X 6⇒! Z.

2.2 Assumptions

Let the value of the predicate [a ?= b] be 1, if a = b, and 0 otherwise. Denote

cdh(g, gx, gy) := gxy ,

ddh(g, gx, gy, gz) := [gz ?= cdh(g, gx, gy)] .

Fix a groupG = 〈g〉 of order q. The CDH game is defined as follows:

Setup phase. Challenger sets sk← Zq , pk← gsk. He sends pk to the adversary A.
Challenge phase. Challenger sets bA ← {0, 1}, y∗ ← Zq , h∗ ← gy

∗
. He sends h∗ to A.

Guess phase. A returns a group element h∗A ∈ G. A wins if h∗A = cdh(g,pk, h∗), that is, if h∗A = pky
∗
.

GroupG is a (τ, ε)-CDH group if for any adversary A working in time τ , Pr[A wins in the CDH game] ≤ 1
q + ε.

Fix a groupG = 〈g〉 of order q. The DDH game is defined as follows:

Setup phase. Challenger sets sk← Zq , pk← gsk. He sends pk to the adversary A.
Challenge phase. Challenger sets bA ← {0, 1}, y∗ ← Zq , z∗ ← Zq , h∗1 ← gy

∗
. He sets h∗2 ← gz

∗
if bA = 0 and

h∗2 = cdh(g,pk, h∗1) = pky
∗

if bA = 1. Challenger sends (h∗1, h
∗
2) to A.

Guess phase. A returns a bit bA ∈ {0, 1}. A wins if b′A = bA, that is, if b′A = ddh(g,pk, h∗1, h
∗
2).

On CCA1-Security of Elgamal And Damgård’s Elgamal 3

GroupG is a (τ, ε)-DDH group if for any adversary A working in time τ , Pr[A wins in the DDH game] ≤ 1
2 + ε.

Based on arbitrary assumptions X = X(x1, . . . , xm) and Y = Y (y1, . . . , yn) we define a new assumption XY [i].
In the XY [i] game, adversary has oracle access to an oracle solving assumption Y with parameters yj , and she has to
break a random instance of the X assumption with parameters xi. In addition, the queries are restricted so that only
the i last variables (yn−i+1, . . . , yn) in any query are chosen by the adversary, while the first variables (y1, . . . , yn−i)
must coincide with the first variables (x1, . . . , xn−i) of the instance of X assumption she is trying to solve. We denote
XY [n] just by XY . For example, DDHDDH = DDHDDH[4].

A group is (τ, ε)-XY [i] group if for any adversary A working in time τ , Pr[A wins in the XY [i] game] ≤ 1
δ + ε,

where δ is an assumption-dependent constant (usually 1
2 or 1

q). Note that the order of the arguments is important, and
thus we have to always explicitly define X and Y . Many versions of the XY [i] game for different values of X , Y and
i, have been used before. For the sake of clarity, we now give a precise definition of the DDHDDH[2] game, and we
state its relation to some of the existing assumptions.

Fix a groupG = 〈g〉 of order q. The DDHDDH[2] game is defined as follows:

Setup phase. Challenger sets sk← Zq , pk← gsk. He sends pk to adversary A.
Query phase. A has an access to oracle ddh(g,pk, ·, ·).
Challenge phase. Challenger sets bA ← {0, 1}, y∗, z∗ ← Zq , h∗1 ← gy

∗
. He sets h∗2 ← gz

∗
if bA = 0 and

h∗2 ← pky
∗

= cdh(g,pk, h∗1) if bA = 1. Challenger sends (h∗1, h
∗
2) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, that is, if b′A = ddh(g,pk, h∗1, h
∗
2).

Group G is a (τ, ε)-DDHDDH[2] group if for any adversary A working in time τ ,
Pr[A wins in the DDHDDH[2] game] ≤ 1

2 + ε.
Clearly, XY [i] ⇒ (X ′)Y

′[i′] when X ⇒ X ′, Y ′ ⇒ Y and i ≥ i′. This can be proven by using a hybrid argument,
showing say that XY [i] ⇒ XY ′[i], that XY ′[i] ⇒ (X ′)Y

′[i], etc. We use such a hybrid argument later.
The gap DH assumption of [OP01] is equal to CDHDDH[3]. The strong DH assumption of [ABR01] is slightly dif-

ferent, giving first access to h∗1 and the oracle ddh(g, ·, ·, sk), and then asking to compute cdh(g,pk, h∗1). DDHDDH[2]

assumption has been used before say in [Gjø06]. Some other papers deal with the so called one-more DDH assumption,
whereA has to answer correctly to t+1 DDH challenges after making only tDDH queries. See, for example, [Bro07].

2.3 Cryptosystems

A public-key cryptosystem Π is a triple of efficient algorithms (G,E,D), where G(1k) outputs a key pair (sk,pk),
Epk(m; r) returns a ciphertext and Dsk(c) returns a plaintext, so that Dsk(Epk(m; r)) = m for any (sk,pk) ∈ G(1k).
Here, k is a security parameter that we will just handle as a constant.

Fix a cyclic groupG = 〈g〉 of order q. The Elgamal cryptosystem [Elg85] in groupG is defined as follows:

Key generation G(1k). Select a random sk← Zq , set pk← gsk. Publish pk.
Encryption Epk(m; ·). Return ⊥ if m 6∈ G. Otherwise, select a random r ← Zq , set Epk(m; r)← (gr,m · pkr).
Decryption Dsk(c). Parse c = (c1, c2), return ⊥ if ci 6∈ G for some i. Otherwise, return Dsk(c)← c2/c

sk
1 .

Fix a groupG = 〈g〉 of order q. The Damgård’s Elgamal (DEG) cryptosystem [Dam91] in groupG is defined as
follows:

Key generation G(1k). Select random sk1, sk2 ← Zq , set pk1 ← gsk1 ,pk2 ← gsk2 . Publish pk ← (pk1,pk2), set
sk← (sk1, sk2).

Encryption Epk(m; ·). Return⊥ ifm 6∈ G. Otherwise, select a random r ← Zq , setEpk(m; r)← (gr,pkr1,m·pkr2).
Decryption Dsk(c). Parse c = (c1, c2, c3), return ⊥ if ci 6∈ G for some i. Return ⊥ if c2 6= csk1

1 . Otherwise, return
Dsk(c)← c3/c

sk2
1 .

Let Π = (G,E,D) be a public-key cryptosystem. The CCA1-game for Π is defined as follows:

Setup phase. Challenger chooses (sk,pk)← G(1k) and sends pk to adversary A.
Query phase. A has access to an oracle Dsk(·).

4 Helger Lipmaa

Challenge phase. A submits (m0,m1) to the challenger, who picks a random bit bA ← {0, 1} and a random r ← Zq ,
and returns Epk(mbA ; r).

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA.

A public-key cryptosystem is (τ, γ, ε)-CCA1-secure if for any adversary A working in time τ and making γ queries,
Pr[A wins in the CCA1-game] ≤ 1

2 + ε. A (τ, 0, ε)-CCA1-secure cryptosystem is also said to be (τ, ε)-CPA-secure.
The DEG cryptosystem was proven to be CCA1-secure under the DDHDDH[2] assumption in [Gjø06]. More pre-

cisely, Gjøsten proved the CCA1-security of a generalization of the DEG cryptosystem under a generalization of the
DDHDDH[2] assumption. Elgamal’s cryptosystem is known to be CPA-secure [TY98] but not known to be CCA1-
secure for γ = poly(k).

3 CCA1-Security of DEG

In this section we investigate the CCA1-security of DEG.

3.1 DEG Is CCA1-Secure ⇔ DDEGCDEG[2]

First, we prove that the security of DEG is equivalent to a new but standard-looking assumption DDEGCDEG[2] that—
as one can interpret the results—basically states that DEG is CCA1-secure. This result itself is thus not so interesting,
but combined with the result from the next subsection it will provide a reduction of the CCA1-security of DEG to the
more standard (but as we will also see later, a likely stronger) DDHDDH[2] assumption.
THE DDEGCDEG[2] ASSUMPTION. We first define the new assumption. For implicitly defined g,pk1,pk2, let
DEG0 := {(gy,pky1,pkz2) : y, z ← Zq} and DEG1 := {(gy,pky1,pky2) : y ← Zq}. Define the next oracles
cdeg(g,pk1,pk2, ·, ·) and ddeg(g,pk1,pk2, ·, ·, ·):

– cdeg(g,pk1,pk2, h1, h2) first checks if ddh(g,pk1, h1, h2) = 1. If this is not true, it returns ⊥. Otherwise, it
returns h3 ← cdh(g,pk2, h1).

– ddeg(g,pk1,pk2, h1, h2, h3) has to distinguish between DEG0 and DEG1. That is, on the promise that
ddh(g,pk1, h1, h2) = 1, ddeg(g,pk1,pk2, h1, h2, h3) ← [ddh(g,pk2, h1, h3)

?= 1]. The oracle is not required
to output anything if ddh(g,pk1, h1, h2) = 0.

Fix a groupG = 〈g〉 of order q. The DDEGCDEG[2] game in groupG is defined as follows:

Setup phase. Challenger sets sk1, sk2 ← Zq , pk1 ← gsk1 , pk2 ← gsk2 . He sends pk ← (pk1,pk2) to adversary A,
and sets sk← (sk1, sk2).

Query phase. A has access to the oracle cdeg(g,pk1,pk2, ·, ·).
Challenge phase. Challenger sets bA ← {0, 1}, y∗, z∗ ← Zq , h∗1 ← gy

∗
, and h∗2 ← pky

∗

1 . If bA = 0, then h∗3 ← G.
If bA = 1, then h∗3 ← pky

∗

2 . Challenger sends (h∗1, h
∗
2, h
∗
3) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA.

Group G is a (τ, γ, ε)-DDEGCDEG[2] group if for any adversary A working in time τ and making γ queries,
Pr[A wins] ≤ 1

2 + ε. Note that this definition does directly follow from the definition of the cdeg and ddeg ora-
cles.
SECURITY RESULTS. In all next results, small denotes some unspecified small value (usually O(1) group operations)
that is dominated by some other addend in the same formula.

Theorem 1 (DEG-CCA1⇔ DDEGCDEG[2]). Fix a groupG = 〈g〉 of order q.
(1) Assume thatG is a (τ, γ, ε)-DDEGCDEG[2] group. Then DEG is (τ−γ·(τcdeg+small)−small, γ, 2ε)-CCA1-secure
where τcdeg is the working time of the cdeg(g,pk1,pk2, ·, ·) oracle.
(2) Assume that DEG is (τ, γ, ε)-CCA1-secure. ThenG is a (τ −γ · (τD+ small)− small, γ, ε)-DDEGCDEG[2] group,
where τD is the working time of the decryption oracle D.

On CCA1-Security of Elgamal And Damgård’s Elgamal 5

Proof. 1) First direction (DEG-CCA1⇒ DDEGCDEG[2]): Assume A is an adversary who can (τ ′, γ′, ε′)-break the
CCA1-security of DEG with probability ε′ and in time τ ′, making γ′ queries. Construct the next reductionR that aims
to break DDEGCDEG[2]:

– Challenger generates new sk← (sk1, sk2)← Z2
q , pk1 ← gsk1 , pk2 ← gsk2 and sends pk← (pk1,pk2) to R. R

forwards pk to A.
– In the query phase, whenever A asks a decryption query (c1, c2, c3), R rejects if either c1, c2 or c3 is not a

valid group element. Otherwise R makes a cdeg(g,pk1,pk2, c1, c2) query. R receives a c′ such that c′ ← ⊥, if
c2 6= csk1

1 , and c′ ← csk2
1 otherwise.R returns ⊥ in the first case, and c3/c′ in the second case.

– In the challenge phase, wheneverA submits her challenge (m∗0,m
∗
1),R asks the challenger for his own challenge.

The challenger sets bR ← {0, 1}, y∗ ← Zq , h∗1 ← gy
∗
, h∗2 ← pky

∗

1 . If bR = 0 then he sets h∗3 ← G, otherwise
h∗3 ← pky

∗

2 .R picks a random bit bA ← {0, 1}, and sends (h∗1, h
∗
2,m

∗
bA
· h∗3) to A. A returns a bit b′A.

– In the guess phase, if b′A = bA, thenR returns b′R ← 1, otherwiseR returns b′R ← 0.

Now,

Pr[R wins] = Pr[b′R = bR] = Pr[A wins|bR = 1] · Pr[bR = 1] + Pr[A wins|bR = 0] · Pr[bR = 0]

=
(

1
2

+ ε′
)
· 1
2

+
1
2
· 1
2

=
1
2

+
ε′

2
.

ClearlyR works in time τ = τ ′ + γ · (τcdeg + small) + small. ut
2) Second direction (DDEGCDEG[2] ⇒ DEG-CCA1): Assume A is an adversary who can (τ ′, γ′, ε′)-break

the DDEGCDEG[2] assumption. Construct the next reduction R that aims to break the CCA1-security of the DEG
cryptosystem:

– Challenger generates new sk← (sk1, sk2)← Z2
q , pk1 ← gsk1 , pk2 ← gsk2 , and sends pk = (pk1,pk2) to R. R

forwards pk to A.
– In the query phase, whenever A asks a query cdeg(g,pk1,pk2, h1, h2), R makes a decryption query (h1, h2, 1),

and receives back either ⊥ or k ← h− sk2
1 .R returns h3 ← ⊥ in the first case, and h3 ← k−1 in the second case.

– In the challenge phase, whenever A asks for a challenge, R sends his challenge pair (m∗0,m
∗
1) ← (gr

∗
1 , 1), for

r∗1 ← Zq , to the challenger. Challenger picks a random bit bR ← {0, 1} and a random r∗2 ← Zq , and sends
(c∗1, c

∗
2, c
∗
3)← (gr

∗
2 ,pkr

∗
2

1 , g
r∗1 (1−bR) · pkr

∗
2

2) toR.R forwards (c∗1, c
∗
2, c
∗
3) to A, who returns a guess b′A.

– In the guess phase,R returns b′R ← b′A to challenger.

Now, Pr[R wins] = Pr[b′R = bR] = Pr[A wins] = ε′. ClearlyR works in time τ ′+ γ · (τD + small)+ small. ut

The next theorem and its corollary show that DEG’s CCA1-security can be based on a more traditional (albeit a
stronger) assumption. The proof is a hybrid argument of the type we already mentioned in Sect. 2.2 but we will bring
it here for the sake of completeness. In the proof we use the trapdoor test trick from [CKS08].

Theorem 2 (DDEGCDEG[2] ⇒ DDHDDH[2]).
1) Any (τ, γ, ε)-DDEGDDH[2] group G = 〈g〉 is also a (τ − γ · (τcdeg + small) − small, γ, ε)-DDEGCDEG[2]

group, where τcdeg is the working time of the cdeg(g,pk1,pk2, ·, ·, ·) oracle and the ddh oracle has parameters
ddh(g,pk2, ·, ·).
2) Any (τ, γ, ε)-DDHDDH[2] groupG = 〈g〉 is also a (τ−γ ·(τddh +small)−small, γ, ε)-DDEGDDH[2] group, where
τddh is the working time of the ddh(g,pk2, ·, ·) oracle and the ddh oracle has parameters ddh(g,pk2, ·, ·).

Proof. 1) First claim (DDEGCDEG[2] ⇒ DDEGDDH[2]): Fix a group G = 〈g〉 of order q. Assume A is an adver-
sary who can (τ ′, γ′, ε′)-break the DDEGCDEG[2] assumption. Construct the next reduction R that aims to break
DDEGDDH[2] in the same group:

– Challenger generates new (sk ← Zq,pk ← gsk), and sends pk to R. R sets pk1 ← pk, u ← Zq , v ← Zq ,
pk2 ← gu/ pkv1 . Thus pk2 = gsk2 for sk2 ← u− v · sk1. He forwards (pk1,pk2) as the public key to A.

6 Helger Lipmaa

– In the query phase, whenever A asks a query cdeg(g,pk1,pk2, h1, h2), R makes a ddh(g,pk, h1, h2) query. If
this query returns 0, thenR returns⊥. Otherwise,R computes h3 ← hu1/h

v
2 and outputs h3. Note that in this case

h3 = hu1/h
v
2 = hu1/h

v·sk1
1 = hsk2

1 , and thus A gets the correct output.
– In the challenge phase, if A asks for a challenge from R, then R asks for a challenge from the challenger.

Challenger sets bR ← {0, 1}, y∗ ← Zq , h∗1 ← gy
∗
, h∗2 ← G. If bR = 0 then he sets h∗3 ← G, otherwise

h∗3 ← pky
∗

2 . Challenger sends (h∗1, h
∗
2, h
∗
3) toR.R sends (h∗1, h

∗
2, h
∗
3) to A. A returns a bit b′A.

– In the guess phase,R returns b′R ← b′A.

Clearly,R wins if and only if A wins.
2) Second claim (DDEGDDH[2] ⇒ DDHDDH[2]): Fix a group G = 〈g〉 of order q. Assume A is an adversary who
can (τ ′, γ′, ε′)-break the DDEGDDH[2] assumption. Construct the next reductionR that aims to break DDHDDH[2] in
the same group:

– Challenger generates new (sk ← Zq,pk ← gsk), and sends pk to R. R sets pk2 ← pk, sk1 ← Zq , pk1 ← gsk1 .
He forwards (pk1,pk2) as the public key to A.

– In the query phase, wheneverA asks a query ddh(g,pk2, h1, h2),Rmakes the same query and forwards the reply
toR.

– In the challenge phase, if A asks for a challenge from R, then R asks for a challenge from the challenger.
Challenger sets bR ← {0, 1}, y∗ ← Zq , h∗1 ← gy

∗
. If bR = 0 then he sets h∗2 ← G, otherwise h∗2 ← pky

∗

2 .
Challenger sends (h∗1, h

∗
2) toR.R sets h∗3 ← (h∗1)

pk1 .R sends (h∗1, h
∗
3, h
∗
2) to A. A returns a bit b′A.

– In the guess phase,R returns b′R ← b′A.

Clearly,R wins if and only if A wins. ut

Corollary 1 (DEG-CCA1 ⇒ DDHDDH[2]). Assume that G = 〈g〉 is a (τ, γ, ε)-DDHDDH[2] group. Then the DEG
cryptosystem is CCA1-secure in groupG.

By following a very similar proof, a variant of the DEG cryptosystem where the decryption, given an invalid
ciphertext, returns a random plaintext instead of ⊥, is CCA1-secure under the DDH assumption.
RELATION WITH DDH.

Theorem 3 (DDH⇒ DDEGCDEG[2]). Any (τ, γ, ε)-DDEGCDEG[2] group G = 〈g〉 is also a (τ − small, ε)-DDH
group.

Proof. Fix a group G = 〈g〉 of order q. Assume A is an adversary who can (τ ′, γ′, ε′)-break the DDH assumption.
Construct the next reductionR that aims to break DDEGCDEG[2] in the same group:

– Challenger generates new (sk1 ← Zq, sk2 ← Zq,pk1 ← gsk1 ,pk2 ← gsk2) and sends pk = (pk1,pk2) to R. R
forwards (g,pk2) to A as her system parameters.

– In the challenge phase, if A asks for a challenge then R asks for a challenge. Challenger sets bR ← {0, 1},
y∗ ← Zq , h∗1 ← gy

∗
, h∗2 ← pky

∗

1 . If bR = 0 then he sets h∗3 ← G, otherwise h∗3 ← pky
∗

2 . He sends (h∗1, h
∗
2, h
∗
3)

toR.R sends (h∗1, h
∗
3) to A. A returns a bit b′A.R returns b′R ← b′A to the challenger.

Clearly,R wins if and only if A wins. ut

4 CCA1-Security of ElGamal

To prove the security of ElGamal we need the next assumption. As we will see from the security proofs, this assumption
basically just asserts that Elgamal is CCA1-secure.

Fix a groupG = 〈g〉 of order q. The DDHCDH[1] game is defined as follows:

Setup phase. Challenger sets sk← Zq , pk← gsk. He sends pk to adversary A.

On CCA1-Security of Elgamal And Damgård’s Elgamal 7

Query phase. A has access to oracle cdh(g,pk, ·), that is, cdh(g,pk, h) := hsk.
Challenge phase. Challenger sets bA ← {0, 1}, y∗ ← Zq , h∗1 ← gy

∗
. He sets h∗2 ← G if bA = 0 and h∗2 ← pky

∗
=

cdh(g,pk, h∗1) if bA = 1. Challenger sends (h∗1, h
∗
2) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, that is, if bA = ddh(g,pk, h∗1, h
∗
2).

Group G is a (τ, γ, ε)-DDHCDH[1] group if for any adversary A working in time τ and making γ queries,
Pr[A wins in the DDHCDH[1] game] ≤ 1

2 + ε.

Theorem 4 (Elgamal-CCA1⇔ DDHCDH[1]). Fix a groupG = 〈g〉 of order q.
(1) Assume that G is a (τ, γ, ε)-DDHCDH[1] group. Then ElGamal is (τ − γ · (τcdh + small) − small, γ, 2ε)-CCA1-
secure, where τcdh is the working time of the cdh(g,pk, ·) oracle.
(2) Assume that ElGamal is (τ, γ, ε)-CCA1-secure. ThenG is a (τ−γ ·(τD+small)−small, γ, ε)-DDHCDH[1] group,
where τD is the working time of the D oracle.

Proof. 1) First direction (Elgamal-CCA1 ⇒ DDHCDH[1]): Assume A is an adversary who can (τ ′, γ′, ε′)-break
the CCA1-security of Elgamal in group G with probability ε′ and in time τ ′, making γ′ queries. Construct the next
reductionR that aims to break DDHCDH[1] in groupG:

– Challenger generates a new keypair (sk← Zq,pk← gsk) and sends pk toR.R forwards pk to A.
– In the query phase, whenever A asks a decryption query (c1, c2), R rejects if either c1 or c2 is not a valid group

element. OtherwiseR asks a CDH query c3 ← cdh(g,pk, c1).R returns c2/c3.
– In the challenge phase, wheneverA gives a pair (m∗0,m

∗
1) of messages,R asks his challenge from the challenger.

The challenger sets bR ← {0, 1}, y∗ ← Zq , h∗1 ← gy
∗
. If bR = 0 then he sets h∗2 ← G, otherwise h∗2 ← pky

∗
.R

picks a random bit bA ← {0, 1} and sends (h1,mbA · h2) to A. A returns a bit b′A.
– In the guess phase, if b′A = bA thenR returns b′R = 1, otherwiseR returns b′R = 0.

Now, Pr[R wins in the DDHCDH[1] game] = Pr[b′R = bR] = Pr[A wins|bR = 1]·Pr[bR = 1]+Pr[A wins|bR =
0] · Pr[bR = 0] = (1

2 + ε′) · 1
2 + 1

2 ·
1
2 = 1

2 + ε′

2 . ClearlyR works in time τ ′ + γ · (τcdh + small) + small. ut
2) Second direction (DDHCDH[1] ⇒ Elgamal-CCA1): Assume A is an adversary who can (τ ′, γ′, ε′)-break the

DDHCDH[1] assumption in groupG. Construct the next reductionR that aims to break the CCA1-security of Elgamal:

– Challenger generates a new keypair (sk← Zq,pk← gsk) and sends pk toR.R forwards pk to A.
– In the query phase, whenever A asks a CDH query cdh(g,pk, h), R asks a decryption query (h, 1), and receives

back c← h− sk.R returns c−1 to A.
– In the challenge phase, whenever A asks for a challenge,R sends his challenge (m∗0,m

∗
1)← (g, 1) to challenger.

Challenger pick a random bit bR ← {0, 1} and a random r∗ ← Zq , and sends (c∗1, c
∗
2) ← (gr

∗
, g1−bR · pkr

∗
) to

R.R forwards (c∗1, c
∗
2) to A, who returns a guess b′A.R returns b′R ← b′A to challenger.

Now, Pr[R wins] = Pr[b′R = bR] = Pr[A wins] = ε. ClearlyR works in time τ ′ + γ · (τD + small) + small. ut

5 Irreductions

IRREDUCTIONS IN THE GENERIC GROUP MODEL. The DDHCDH[1] assumption is a direct opposite of the well-
known StrongCDH assumption [OP01] where one has initial access to the DDH oracle and then has to compute CDH.
Thus, DDHCDH[1] is probably stronger than the StrongDH assumption. We can formally prove the next result:

Theorem 5. In the generic group model where one also knows the factorization of q − 1 for group order q,
DDHCDH[1] 6⇒ DDH.

8 Helger Lipmaa

Proof. According to [Che06], if q − 1 has a polynomially small divisor d then sk can be found from (g, gskd

) in
O(log q · (

√
(q − 1)/d +

√
d)) group operations and with Θ(

√
p/d +

√
d) memory. Because only the knowledge

of (g, gskd

) is necessary, the adversary can obtain gskd

by querying the group oracle Θ(log d) times with inputs
pkmsb(d,i), where msb(d, i) denotes the i most significant bits of d. (Recall that [Che06] said that the oracle has to be
applied d times!)

On the other hand, one needsΘ(log q ·√q) group operations in the generic group model [Sho97] to solve the DDH
assumption. For d, superpolylogarithmic in the security parameter, DDHCDH[1] is thus strictly stronger than DDH in
the generic group model. ut

What this theorem does say is that there does not exist a polynomial-time reduction DDH ⇒ DDHCDH[1] that uses
group operations only: if such a reduction existed, it could be used to derive an algorithm to compute DDH in the
generic group model with the same complexity as stated in this theorem. This would be in contradiction with [Sho97].
Moreover, there may exist groups where DDH 6⇒ DDHCDH[1]. See [Che06] for example elliptic curve groups where
currently DDHCDH[1] seems to be much easier than DDH. In the extreme when d = Θ(

√
q), in the generic group

model DDHCDH[1] can be solved in Θ(log q · 4
√
q) group operations while DDH can be solved in Θ(log q · √q) group

operations. (Cheon also provides an algorithm for the case when q + 1 has known factors [Che06].)

CONDITIONAL IRREDUCTIONS. In what follows, we will not state the concrete security parameters in the theorems,
however, they are easy to calculate and one can verify that all following theorems provide exact (ir)reductions.

Theorem 6 (DDEGCDEG[2] 6⇒! DDH). If there is a reduction R that reduces DDH to DDEGCDEG[2], then there is
an efficient irreduction I that, givenR as an oracle, solves DDH.

Proof. Fix a cyclic group G = 〈g〉 of prime order q. Let A = Acdeg, be an arbitrary algorithm that solves
DDEGCDEG[2]. Assume thatR = RA is an arbitrary reduction that usesA as an oracle to solve DDH. Construct now
the next oracle machine I = IR to solve DDH, in time and with success probability comparable with those ofR.

– Challenger sets sk1, sk2 ∈ Zq and (pk1 ← gsk1 ,pk2 ← gsk2). He sends pk← (pk1,pk2) to I as the public key.
I forwards pk toR.

– In the challenge phase, wheneverR asks for a challenge from I, I asks for a challenge from challenger. Challenger
sets bI ← {0, 1} and y∗ ← Zq . He sets h∗1 ← gy

∗
. If bI = 0 then he sets h∗2 ← G, otherwise he sets

h∗2 ← pky
∗

= cdh(g,pk, h∗1). The challenger sends (h∗1, h
∗
2) to I as a challenge. I sends (h∗1, h

∗
3) to R as

his challenge in the DDEGCDEG[2] ⇒ DDH game. Note that bR = bI . She then simulates challenger and A to
R in the DDEGCDEG[2] ⇒ DDH game as follows:
• WheneverR asks a DDEGCDEG[2] query (g,pk1,pk2, h1, h2, h3) from A, I simulates A as follows:

1. I uses the random self-reducibility property of DDH to transform (h1, h2) to (h′1 ← h1 · gz, h′2 ←
h2 · pkz1), for z ← Zq , and sends (h′1, h

′
2) to R as a cdeg(g,pk1,pk2, ·, ·) query in the DDEGCDEG[2]

game.R replies with some h′3.
2. If h′3 = h3 · pkz2 then b′A ← 1, otherwise b′A ← 0. I replies with b′A as her answer to the DDEGCDEG[2]

challenge.
• In the challenge phase, after some γ queries,R outputs a bit b′R. I returns b′R.

First, I emulates A correctly. Moreover, if R responds incorrectly to the DDH query then A = I is not required
to answer correctly. Thus, Pr[I wins] = Pr[R wins], and I spends marginally more time thanR. ut

Theorem 7 (DDHDDH[2] 6⇒! DDEGCDEG[2]). If there is a reductionR that reduces DDEGCDEG[2] to DDHDDH[2],
then there is an efficient irreduction I that, givenR as an oracle, solves DDEGCDEG[2].

Proof. Fix a cyclic groupG = 〈g〉 of prime order q. LetA = Addh be an arbitrary algorithm that solves DDHDDH[2].
Assume that R = RA,cdeg is an efficient algorithm that uses A as an oracle to solve DDEGCDEG[2]. Construct now
the next oracle machine I = IR,cdeg to solve DDEG with the help ofR and cdeg(g,pk1,pk2, ·, ·) as oracles, in time
and with success probability comparable with those ofR.

On CCA1-Security of Elgamal And Damgård’s Elgamal 9

– Challenger sets sk1, sk2 ∈ Zq and pk ← (pk1 ← gsk1 ,pk2 ← gsk2). He sends pk to I as the public key. I
forwards pk toR as his public key.

– Query phase of the DDHDDH[2] ⇒ DDEGCDEG[2] game:
• IfR asks a cdeg(g,pk1,pk2, ·, ·) query (h1, h2) from A, I forwards it to her own cdeg oracle.
• WheneverR asks a DDHDDH[2] query (h1, h2) fromA, I uses the random self-reducibility property of DDH

to transform (h1, h2) to (h′1 ← h1 · gz, h′2 ← h2 · pkz1), for random z ← Zq , and sends (h′1, h
′
2) to the DDH

oracle (R). WhenR returns b′ddh, I returns b′A ← b′ddh.
– In the challenge phase, whenever R asks for a DDEG challenge from I, I asks for a challenge from challenger.

Challenger sets bI ← {0, 1} and y∗ ← Zq . He sets h∗1 ← gy
∗

and h∗2 ← pky
∗

1 . If bI = 0 then he sets h∗3 ← G,
otherwise he sets h∗3 ← pky

∗

2 . The challenger sends (h∗1, h
∗
2, h
∗
3) to I as a challenge. I forwards (h∗1, h

∗
2, h
∗
3) toR

as his challenge.
– In the guess phase, whenR outputs a bit b′R. I returns b′I ← b′R.

First, I emulates the queries correctly. Thus if R responds with a correct answer to the DDH query, then I
responds with a correct answer to the DDHDDH[2] query. Thus Pr[I wins] = Pr[R wins], and I works in time
τ + γddeg · (τddeg + small) + γA · small + small, where τ is the working time of R, τddeg is the working time of the
ddeg oracle, γddeg is the number of queries to the ddeg oracle, γA is the number of queries to A. ut

Theorem 8 (DDHCDH[1] 6⇒! DDHDDH[2]). If there is a reduction R that reduces DDHDDH[2] to DDHCDH[1], then
there is an efficient irreduction I that, givenR as an oracle, solves DDHDDH[2].

Proof. Fix a cyclic groupG = 〈g〉 of prime order q. LetA = Acdh be an arbitrary algorithm that solves DDHCDH[1].
Assume that R = RA,ddh(g,pk,·) is an efficient algorithm that uses A as an oracle to solve DDHDDH[2]. Construct
now the next oracle machine I = IR,ddh to solve DDH with the help of R and ddh(g,pk, ·) as oracles, in time and
with success probability comparable with those ofR.

– Challenger sets sk ∈ Zq and pk← gsk. He sends pk to I as the public key. I forwards it toR as his public key.
– In the query phase of the DDHCDH[1] ⇒ DDHDDH[2] game:
• IfR asks a ddh(g,pk, ·, ·) query (h1, h2) from A, I forwards it to her ddh oracle.
• If R asks a DDHCDH[1] query (h1, h2) from A, I uses the random self-reducibility property of CDH to

transform h1 to h′1 ← h1 · gz , for random z ← Zq , and sends h′1 to the CDH oracle (R). R returns h′cdh. If
h′cdh = h2 · pkz then I answers b′A ← 1, otherwise I answers b′A ← 0.

– In the challenge phase, when R asks his challenge from I, I asks her challenge from the challenger. challenger
sets bI ← {0, 1} and y∗ ← Zq . He sets h∗1 ← gy

∗
. If bI = 0 then he sets h∗2 ← G, otherwise he sets

h∗2 ← pky
∗

= cdh(g,pk, h∗1). The challenger sends (h∗1, h
∗
2) to I as a challenge. I forwards (h∗1, h

∗
2) to R

as his challenge.R outputs a bit b′R.
– In the guess phase, I returns b′I ← b′R.

First, I emulates the queries correctly. Thus if R responds with a correct answer to the CDH query, then I
responds with a correct answer to the DDHCDH[2] query. Thus Pr[I wins] = Pr[R wins], and I works in time
τ + γddh · (τddh + small) + γA · small + small, where τ is the working time ofR, τddh is the working time of the ddh
oracle, γddh is the number of queries to the ddh oracle, γA is the number of queries to A. ut

ACKNOWLEDGMENTS. The author was supported by Estonian Science Foundation, grant #6848, European Union
through the European Regional Development Fund and the 6th Framework Programme project AEOLUS (FP6-IST-
15964). We thank Daniel Brown, Eike Kiltz and Kenny Paterson for discussions.

References

ABR01. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Diffie-Hellman Assumptions And An Analysis of
DHIES. In David Naccache, editor, Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA Conference
2001, volume 2020 of Lecture Notes in Computer Science, pages 143–158, San Francisco, CA, USA, April 8–12, 2001.
Springer-Verlag. 2.2

10 Helger Lipmaa

BMV08. Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation Results on The “One-More” Computational
Problems. In Tal Malkin, editor, Topics in Cryptology - CT-RSA 2008, The Cryptographers’ Track at the RSA Conference
2008, volume 4964 of Lecture Notes in Computer Science, pages 71–87, San Francisco, CA, USA, April 8–11, 2008.
Springer-Verlag. 1

Bro07. Daniel R. L. Brown. Irreducibility to The One-More Evaluation Problems: More May Be Less. Technical Report
2008/435, International Association for Cryptologic Research, 2007. Available at http://eprint.iacr.org/2007/435. 1, 2.1,
2.2

Che06. Jung Hee Cheon. Security Analysis of The Strong Diffie-Hellman Problem. In Serge Vaudenay, editor, Advances in
Cryptology — EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 1–11, St. Petersburg,
Russia, May 28–June 1, 2006. Springer-Verlag. 1, 5

CKS08. David Cash, Eike Kiltz, and Victor Shoup. The Twin Diffie-Hellman Problem And Applications. In Nigel Smart, editor,
Advances in Cryptology — EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 127–145,
Istanbul, Turkey, April 13–17, 2008. Springer-Verlag. 1, 3.1

Dam91. Ivan Damgård. Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In Joan Feigenbaum,
editor, Advances in Cryptology—CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 445–456, Santa
Barbara, California, USA, August 11–15, 1991. Springer-Verlag, 1992. 1, 2.3

Elg85. Taher Elgamal. A Public Key Cryptosystem And A Signature Scheme Based on Discrete Logarithms. IEEE Transactions
on Information Theory, 31(4):469–472, 1985. 1, 2.3

Gjø06. Kristian Gjøsteen. A New Security Proof for Damgård’s ElGamal. In David Pointcheval, editor, Topics in Cryptology
- CT-RSA 2006, The Cryptographers’ Track at the RSA Conference 2006, volume 3860 of Lecture Notes in Computer
Science, pages 150–158, San Jose, CA, USA, February 13–17, 2006. Springer-Verlag. 1, 2.2, 2.3

OP01. Tatsuaki Okamoto and David Pointcheval. The Gap-Problems: A New Class of Problems for The Security of Crypto-
graphic Schemes. In Kwangjo Kim, editor, Public Key Cryptography 2001, volume 1992 of Lecture Notes in Computer
Science, pages 104–118, Cheju Island, Korea, February 13–15, 2001. Springer-Verlag. 2.2, 5

Sho97. Victor Shoup. Lower Bounds for Discrete Logarithms And Related Problems. In Walter Fumy, editor, Advances in Cryp-
tology — EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 256–266, Konstanz, Germany,
11–15 May 1997. Springer-Verlag. 5

TY98. Yannis Tsiounis and Moti Yung. On The Security of ElGamal-Based Encryption. In Hideki Imai and Yuliang Zheng,
editors, Public Key Cryptography 1998, volume 1431 of Lecture Notes in Computer Science, pages 117–134, Pacifico
Yokohama, Japan, 5–6 February 1998. Springer-Verlag. 1, 2.3

	On CCA1-Security of Elgamal And Damgård's Elgamal

