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ow1 Introdu
tionProvable se
urity of pra
ti
al ele
troni
 signature s
hemes1 remains one ofthe most intriguing open problems in mathemati
al 
ryptography. Naor andYung [9℄ proved that existen
e of one-way permutations implies existen
e ofe-signature s
hemes that are se
ure against existential forgery with respe
t to
hosen-message atta
k. Rompel [11℄ showed that for su
h a se
urity arbitraryone-way fun
tion suÆ
es. It is evident that existen
e of one-way fun
tions isalso a ne
essary 
ondition, therefore from the theoreti
al point of view the prob-lem rea
hed its �nal solution. Namely, se
ure e-signature s
hemes exist i� thereexist one-way fun
tions.However, e-signature s
hemes proposed in the papers 
ited above are farfrom be pra
ti
al.Proofs of se
urity for pra
ti
al e-signature s
hemes are known in idealizedmodels only. There exist two su
h models, with random ora
le and with generi
group. Random ora
le model 
omes ba
k to Fiat and Shamir [6℄ who notedthat se
urity proof te
hniques proposed for intera
tive authenti
ation proto
ols
ould be applied to e-signature s
hemes if a hash fun
tion is substituted by arandom fun
tion. Later this idea was formalized as a random ora
le model.In this model any parti
ipant of a proto
ol 
an query an ora
le for a value ofrandom fun
tion in any point of its range.Most of the proposed so far e-signature s
hemes were shown to be se
urein the random ora
le model (the �rst su
h proof is due to Pointe
heval and1There exists 
ommonly used but somewhat misleading term digital signature. Note thathand-written signature needs not be something like the signer's name. It 
an be any pi
tureinstead, for instan
e a sequen
e of digits. We 
oin the term ele
troni
 signature (e-signaturefor short) whi
h emphasizes the fa
t that both the signature and the do
ument it is atta
hedto exist in ele
troni
 form only. This term is in the same line as e-mail, e-
ash et
. Thean
ient term digital is better be voided nowadays. The term ele
troni
 signature should notbe misused for other primitives that exhibit 
ertain similarities with signatures. The keyproperty of a signature, both hand-written and ele
troni
, is that the signer intentionallyatta
hed it to a given do
ument to authorize it. This is not the 
ase, e. g. with �ngerprints.1



Stern [10℄). Moreover, random ora
le model was su

essfully applied to 
rypto-graphi
 proto
ols of other types and nowadays a substantial amount of se
urityproofs is given in this model.However the random ora
le model remains to be an idealization only. At-tempts to instantiate random ora
le with 
ryptographi
 primitives resulted inno su

ess. Moreover, Canetti et al. [4℄ 
onstru
ted an e-signature s
heme se
urein the random ora
le model, but inse
ure when random ora
le is instantiatedwith any eÆ
ient fun
tion.In the generi
 group model the group operation is available to adversaryonly through 
alls to ora
le. This means that adversary 
an run only generi
algorithms. Brown [3℄ proved se
urity of ECDSA in the generi
 group model.This model is also an idealizations only. Dent [5℄ 
onstru
ted 
ryptographi
s
hemes se
ure in the generi
 group model but inse
ure when instantiated withany eÆ
iently realizable group.Another line of resear
h was initiated by Varnovsky [1℄ who studied tamper-proof devi
e model. Instead of a

ess to random ora
le ea
h parti
ipant isprovided with a tamper-proof devi
e implementing a private-key 
ryptosystem.In this model was demonstrated se
urity of a somewhat modi�ed former GOST2e-signature s
heme [2℄. In that variant of GOST they used a group of residuesmodulo a prime. The se
urity guarantee was based on three 
onje
tures: 
om-putational intra
tability of dis
rete logarithm problem, 
ollision resistan
e of ahash fun
tion, and se
urity of private-key 
ryptosystem. The last 
onje
turewas rather unusual.In the present paper we study the 
urrent version of GOST e-signatures
heme with the following modi�
ations:� parameters of the s
heme depend on a growing se
urity parameter, i. e.we 
onsider as is usual in mathemati
al 
ryptography an in�nite family ofs
hemes;� hash value H(m) of a message m to be signed is submitted to tamper-proof devi
e for en
ryption. In the signature generation algorithm oneuses en
rypted hash value EK(H(m)), where K is a private key and E isthe en
ryption fun
tion.For modi�ed this way GOST e-signature s
heme we prove existential un-forgeability with respe
t to 
hosen-message atta
k. The se
urity guarantee isbased on the following assumptions:� physi
al assumption on tamper-proof devi
e. Private key K is the samefor all the tamper-proof devi
es and supposed to be physi
ally shielded;� IND{CPA se
urity of the private-key 
ryptosystem (indistinguishabiltyunder 
hosen-plaintext atta
k);2Not to be 
onfused with ghost! In Russian GOST is just an a
ronym for National Stan-dard. 2



� 
ollision resistan
e of a hash fun
tion;� intra
tability of dis
rete semi-logarithm problem.Although the resulting e-signature s
heme is not pra
ti
al its se
urity guar-antee does not use any idealized models. All the four assumptions are standardfor 
ryptography. For instan
e, su
h 
ompanies as General Ele
tri
 and IBM usein their bank systems tamper-proof devi
es (see e. g. [12℄). IND{CPA se
urityis a
hievable even for probabilisti
 publi
-key 
ryptosystems [7℄. The last twoassumptions are also ne
essary 
onditions for se
urity of e-signature s
hemes.Moreover, it is well known that IND{CPA se
ure private-key 
ryptosystemsexist i� there exist one-way fun
tions. Sin
e one-way fun
tions are ne
essaryfor the existen
e of se
ure e-signature s
hemes the results of the present paper
ould be interpreted as follows. In our setting we prove modulo the physi
alassumption a ne
essary and suÆ
ient 
ondition for se
urity of the e-signatures
heme.Fiat{Shamir paradigm allows one to prove se
urity of e-signature s
hemesunder assumption that hash fun
tion is \as se
ure as" a random fun
tion. Wetake a moderate step towards pra
ti
e. In our paradigm an e-signature s
heme
ould be shown se
ure if a hash fun
tion is "as se
ure as" an en
ryption fun
tionof an IND{CPA se
ure private-key 
ryptosystem.In se
tion 2 we spe
ify a modi�
ation of the GOST e-signature s
heme to be
onsidered. Se
tions 3 to 5 are devoted to 
onje
tures used to study its se
urity.In se
tion 6 we state a de�nition of se
urity of an e-signature s
heme and provethe main result.2 e-signature s
hemeLet n be a se
urity parameter whi
h is de�ned to be the binary length of aprivate key.For ea
h n there exists a �nite set of instantiations of an e-signature s
heme.Ea
h of these instantiations is de�ned by a 
ertain group hgi and a set X . Weuse multipli
ative notation for the group hgi.A private key x is drawn from uniform probability distribution over the setX . A publi
 key is y = gx.In the GOST e-signature s
heme hgi is an order q 
y
li
 subgroup of anellipti
 
urve group, X being the set f1; : : : ; q�1g. Thus, the se
urity parameteris the binary length of a prime q.The e-signature s
heme makes use of two additional 
ryptographi
 primi-tives, hash fun
tion H and en
ryption fun
tion EK(�) of a private-key 
ryp-tosystem. Private key K of this 
ryptosystem is stored in tamper-proof devi
esand is anavailable to all parti
ipants of the s
heme.To de�ne an e-signature s
heme it suÆ
es to spe
ify signature veri�
ationalgorithm. In the modi�ed GOST s
heme at hand this algorithm is as follows.Let (r; s) be a purported signature for a message m.1. Compute H(m). 3



2. Hash value H(m) is submitted to the tamper-proof devi
e whi
h returnsan en
rypted hash value h = EK(H(m)).3. En
rypted hash value h and signature (r; s) are substituted into thesignature veri�
ation relation r = gsh�1y�rh�1 .4. If the equality holds the signature is a

epted (valid signature), otherwiseit is reje
ted.From now on the equality V (r; s;m) = 1 means that a pair (r; s) is a validsignature for a message m.To sign a message m the owner of a private key has to 
ompute en
ryptedhash value h = EK(H(m)), 
hoose session private key k uniformly at random inthe set X , 
ompute session publi
 key r = gk and �nally 
ompute s = rx+ kh.This des
ription uses 
ertain simplifying 
onventions. In the GOST e-signature s
heme session publi
 key r is an ellipti
 
urve point. To use this valuein operations over the set X one needs a transformation mapping f : hgi ! X .In the GOST s
heme the transformation mapping f pi
ks the �rst 
oordinate ofthe point and redu
es it modulo q. To simplify notation we omit in what followsany referen
es to the transformation mapping f and all redu
tions modulo q.3 Dis
rete semi-logarithm problemDe�nition 1. Dis
rete semi-logarithm of an element z 2 hgi is any pair (t; u)su
h that t = guz�t.Thus if one 
onsiders z as a publi
 key of an e-signature s
heme then itsdis
rete semi-logarithm is a signature for a message m su
h that H(m) = 1.It is evident that the problem of �nding dis
rete semi-logarithms is notharder than the dis
rete logarithm problem.From now on PPT is a shorthand for probabilisti
 polynomial Turing ma-
hine.Conje
ture 1. Let z be a random element of the group hgi. Then for anypolynomial p, for any PPT APrfA(g; z) = (t; u) : t = guz�tg < 1=p(n)for all suÆ
iently large n.The probability is over the random 
hoi
e of z, random 
hoi
es of algorithmA and, in general, random 
hoi
e of a group hgi from the set of all groups
orresponding to a given se
urity parameter n.The next lemma shows that Conje
ture 1 provides a ne
essary 
ondition forse
urity of e-signature s
heme.Lemma 1. Suppose Conje
ture 1 does not hold, i. e. there exist a polynomialp and a PPT A su
h thatPrfA(g; z) = (t; u) : t = guz�tg � 1=p(n)4



for in�nitely many n. Then there exists a PPT B su
h thatPrfB(g; y;m) = (r; s) : V (r; s;m) = 1g � 1=p(n)for in�nitely many n.Proof. On input (g; y;m) the ma
hine B 
omputes h = EK(H(m)) and z =yh�1 . Then it 
alls A as a subroutine feeding it with input (g; z). Sin
e y is arandom element of the group hgi, z is a random element of this group as well.Therefore the pair (g; z) generated by B has the same probability distributionas the pair of input values of A in the supposition of the lemma. By thissupposition A �nds for in�nitely many n a dis
rete semi-logarithm (t; u) of zwith probability at least 1=p(n).Let (t; u) be a pair returned by A. The PPT B veri�es whether the equalityt = guz�t holds and, if so, outputs (t; uh) and halts.It is 
lear that B pro
eeds in polynomial time.If (t; u) is a dis
rete semi-logarithm of z theng(uh)h�1y�th�1 = guz�t = t;i. e. the pair (t; uh) is a valid signature for the message m.4 Hash fun
tionHash fun
tion H 
an be de�ned as a family of hash fun
tions fHng where thefun
tion Hn maps messages of arbitrary length into the set f1; : : : ; 2n� 1g. Anindex n is always 
lear from the 
ontext and therefore omitted for simpli
ity.The required 
ryptographi
 properties of a hash fun
tion are stated in thenext 
onje
ture.Conje
ture 2. For any PPT A, for any polynomial p and all suÆ
iently largen PrfA(1n) = (m;m0) : m 6= m0 & H(m) = H(m0)g < 1=p(n):This requirement is standard for 
ryptographi
 hash fun
tions. In math-emati
al 
ryptography it is formalized by the notion of a family of 
ollision-intra
table hash fun
tions. However this 
onje
ture is the most problemati
one. Collision intra
tability seems to be too mu
h to require from individualfun
tion. For instan
e, if one turns to non-uniform 
omputation model than theset of hash fun
tions satisfying an analogous 
onje
ture is evidently emptyThe next lemma shows that for e-signature s
hemes based on individualhash-fun
tions Conje
ture 2 provides a ne
essary 
ondition for se
urity. Forde�nition of existential unforgeability with respe
t to 
hosen-message atta
kthe reader is referred to se
tion 6.Lemma 2. Suppose the Conje
ture 2 does not hold, i. e. there exist a PPT Aand a polynomial p su
h thatPrfA(1n) = (m;m0);m 6= m0 & H(m) = H(m0)g � 1=p(n)5



for in�nitely many n. Then there exists a PPT B su
h thatPrfB(g; y) = (m; r; s) : V (r; s;m) = 1g � 1=p(n)for in�nitely many n.The PPT B 
an mount a 
hosen-message atta
k on the e-signature s
heme.Proof. Ma
hine B 
an 
all A as a subroutine, get from it a 
ollision (m;m0) andthen obtain a signature (r; s) for the message m0 using a 
hosen-message atta
k.It is 
lear that the pair (r; s) is also a valid signature for the message m.5 Tamper-proof devi
eIn the setting being 
onsidered ea
h parti
ipant of e-signature proto
ol has in hispossession a tamper-proof devi
e implementing an en
ryption fun
tion EK(�) ofa private-key 
ryptosystem. The private key K is 
hosen at random by the keygeneration algorithm and is the same for all tamper-proof devi
es.Sin
e an adversary is assumed to have a tamper-proof devi
e in his possessionthe 
ontents of this devi
e should be shielded. More pre
isely, an adversary issupposed to be ignorant of the value of the private key K. In general thereare many ways to formalize this requirement. To obtain a se
urity guaranteefor the e-signature s
heme in question it suÆ
es to require that tamper-proofdevi
e shielding provides for the IND-CPA se
urity of the 
ryptosystem.In the 
ase an adversary manages to su

eed in reverse-engineering and ob-tains the private key, this would not lead to any fatal 
onsequen
es. It is not
lear whether knowledge of the private key fa
ilitates signature forgering. In-tuitively, it seems that signature forgering with known private key K is no eas-ier than the same task for original (without tamper-proof devi
es) e-signatures
heme. However we were unable to justify this intuition and pose this as anopen problem.An adversary having a

ess to a tamper-proof devi
e is able to mount a
hosen-plaintext atta
k on the 
ryptosystem. This means that an adversary
an 
hoose plaintexts m1; : : : ;mt and obtain the 
orresponding 
iphertexts
1; : : : ; 
t, where 
i = EK(mi), i = 1; : : : ; t. An atta
k may be adaptive,i. e. when 
hoosing a 
urrent plaintext mi an adversary knows 
iphertexts
1; : : : ; 
i�1.We 
onsider 
iphertext distinguishability threat: an adversary 
hooses twoplaintexts m0, m1 and gets a 
iphertext of one of them 
hosen at random. Thethreat is that an adversary 
an distinguish 
iphertexts of plaintexts m0, m1 ofher 
hoi
e. The following s
enario is allowed: after 
hoosing plaintexts m0, m1and obtaining a 
iphertext 
 an adversary pro
eeds with the 
hosen-plaintextatta
k. But in any 
ase it is required that m0;m1 6= mi for all i = 1; : : : ; t.Formally, an adversary is an ora
le PPT AE . An input word to this ma
hineis the se
urity parameter n in unary. The ora
le E 
hooses a private keyK usingthe 
ryptosystem key generation algorithm. PPT A 
an submit to the ora
le Etwo kinds of queries: 6



� regular queries of the form (1;mi). The ora
le answers to this query with
iphertext 
i = EK(mi);� spe
ial query of the form (2;m0;m1). The ora
le 
hooses a random bit �and returns a 
iphertext 
 = EK(m�).Only one spe
ial query is allowed and this 
an be issued at any time momentof adversary's 
hoi
e. It is required that mi 6= m0 and mi 6= m1 for any i.By AE(1n) = � we denote the following event: PPT A after getting a
iphertext 
 in return to its spe
ial query outputs a bit b su
h that b = � andhalts.De�nition 2. A 
ryptosystem is IND{CPA se
ure if for any ora
le PPT AE ,for any polynomial p and any suÆ
iently large njPrfAE(1n) = �g � 1=2j < 1=p(n):The probability is over random 
hoi
es of the algorithm A, and random
hoi
es of the private key K and bit �.Conje
ture 3. The 
ryptosystem implemented in tamper-proof devi
es is IND{CPA se
ure.6 Se
urity of the e-signature s
hemeWe 
onsider se
urity of e-signature s
heme against existential forgery based on(adaptive) 
hosen-message atta
k. For 
lassi�
ation of atta
ks and threats that
an be de�ned for e-signature s
hemes the reader is referred to [8℄.Formally a 
hosen-message atta
k is modelled by allowing an adversary toa

ess an ora
le S. A query is de�ned to be a messagem and the ora
le respondswith a pair (r; s) su
h that V (r; s;m) = 1.An adversary is de�ned as an ora
le PPT AS . Input to this ma
hine is a pair(g; y). The PPT A, also has a

ess to the ora
le E for the en
ryption fun
tionimplemented in a tamper-proof devi
e.To simplify notation for ma
hines with two ora
les we sometimes omit oneof them in supers
ripts.Let m1; : : : ;mt be the set of all messages submitted by A as queries to theora
le S. Parameter t = t(n) is a fun
tion upper bounded by a polynomial dueto the time 
omplexity of A.De�nition 3. e-signature s
heme is existentially unforgeable with respe
t to the
hosen message atta
k if for any ora
le PPT AS;E for any polynomial p and allsuÆ
iently large nPrfAS;E(g; y) = (m; r; s) : m 6= mi; i = 1; : : : ; t & V (r; s;m) = 1g < 1=p(n):7



The probability is de�ned dy random 
hoi
es of parameters and keys ofe-signature s
heme, random 
hoi
e of 
ryptosystem private key and random
hoi
es of algorithms A and S.The next theorem addresses the e-signature s
heme de�ned in se
tion 2 andassumes that Conje
tures 1{3 hold.Theorem 1. The e-signature s
heme is existentially unforgeable with respe
t tothe 
hosen-message atta
k.Proof. Suppose to the 
ontrary that there exist an ora
le PPT AS;E and apolynomial p su
h thatPrfAS;E(g; y) = (m; r; s) : m 6= mi; i = 1; : : : ; t & V (r; s;m) = 1g � 1=p(n)for in�nitely many n.Let " = "(n) = 1=p(n). From now on in probability estimates we omitadditive negligible terms fot simpli
ity.Suppose that h1; : : : ; ht is the set of all hash values signed during the 
hosen-message atta
k, i. e. hi = EK(H(mi)), i = 1; : : : ; t.It is 
lear that at least one of the following 
ases o

urs with probability atleast "=2 in�nitely often:� there exists i 2 f1; : : : ; tg su
h that hi = h, where h = EK(H(m));� hi 6= h for all i = 1; : : : ; t.We handle these two 
ases separately.1. For any given key K the fun
tion EK is one-to-one, therefore the equalityhi = h implies that H(mi) = H(m). Thus A 
an be used to �nd 
ollisions of thehash-fun
tion H . To this end we 
onstru
t a PPT B (hash-fun
tion adversary),whi
h 
alls A as an ora
le.The only minor te
hni
al problem is as follows. Ma
hine A has itself a

essto two ora
les S and E, therefore B should be able to inter
ept and pro
ess allthe queries to these ora
les.Given an input 1n B generates publi
 parameters and keys of the e-signatures
heme a

ording to algorithms of this s
heme, and generates private key Kusing the key generation algorithm of the 
ryptosystem implemented in thetamper-proof devi
e.Then B 
alls A feeding it with input (g; y). It is evident that B is able toanswer all the queries of A to ora
les. Moreover, all the random variables willhave the same probability distributions as in the above supposition. Hen
e a
ollision will be found with probability at least "=2.2. The 
ase when h is a 
ollision with none of the hi is further divided intotwo sub
ases:� the PPT A in�nitely often with probability at least "=4 forges a signaturefor a message m without querying the tamper-proof devi
e on the hashvalue H(m); 8



� the PPT A in�nitely often with probability at least "=4 forges a signaturefor a message m for whi
h the en
rypted hash value h = EK(H(m)) wasobtained as a result of a 
all to the tamper-proof devi
e.2.1. The PPT A without querying the tamper-proof devi
e on the hashvalue H(m) forged a signature for a message m, i. e. generated a pair (r; s) su
hthat V (r; s;m) = 1. This 
an be used to 
onstru
t an algorithm 
ontradi
tingConje
ture 3 on the IND{CPA se
urity of the 
ryptosystem.De�ne a PPT B1 (an adversary for the 
ryptosystem) as follows. Given aninput 1n ma
hine B1 generates publi
 parameters and keys of the e-signatures
heme a

ording to algorithms of this s
heme. Then B1 
alls A on input (g; y).The PPT A has a

ess to two ora
les, S and E. Queries to these ora
les areinter
epted by B1. All the queries to the ora
le E are answered using 
hosen-plaintext atta
k, while all the queries to the ora
le S 
an be answered due tothe knowledge of a private key of the e-signature s
heme.When A outputs a message m and a 
orresponding signature (r; s) the PPTB1 produ
es a query (2; H(m0); H(m1)), where m0 = m, m1 is a random mes-sage and submits this query to the ora
le. After re
eiving the ora
le answerh = EK(H(m�)), where � is a random bit, B1 runs the signature veri�
ationalgorithm using this value h to verify the signature (r; s). If the veri�
ationpasses B outputs 0, otherwise it outputs 1 and in either 
ase halts.It is 
lear that PrfBE1 (1n) = �g � 1=2 � "=4:2.2. Main 
ase. The PPT A forges a signature (r; s) for a message m su
hthat the tamper-proof devi
e was queried on the hash value H(m). Now wede�ne a PPT B2 (algorithm for the dis
rete semi-logarithm problem) whoseexisten
e would 
ontradi
t Conje
ture 1. The key idea is to substitute h =EK(H(m)) obtained by A as a result of a query by h0 = EK(H(m0)) where m0is a random message.If A generates a valid signature for h0 with probability less than "=4 this 
anbe used to rea
h a 
ontradi
tion with Conje
ture 3.In the opposite 
ase the PPT B2 will be su

essful with nonnegligible prob-ability.The PPT B2 on input (g; z) generates private key K of the 
ryptosystemusing the key generation algorithm. Then B2 
hooses random � 2 f0; 1gn and
omputes e = EK(�). Next it 
omputes y = ze and 
alls A feeding it with input(g; y).Ma
hine A is provided a

ess to two ora
les, E and S, therefore B2 shouldpro
ess queries to both. Queries to ora
le E (
hosen plaintext atta
k on the
ryptosystem) are responded easily sin
e B2 knows 
ryptosystem private key.Queries to ora
le S (
hosen message atta
k on the e-signature s
heme) requireability to generate valid signatures. Note that B2 does not know private key
orresponding to the publi
 key y, i. e. its dis
rete logarithm.To forge signatures B2 uses the following tri
k. It 
hooses �; � 2R X and
omputes r = g�y�. Next it puts h = �r��1 and takes h as a substitute for9



en
rypted hash value EK(H(m)) of a given message m. Then B2 
omputess = �h. It is evident that (r; s) is a valid signature for a message m0 su
h thath = EK(H(m0)). Indeed,gsh�1y�rh�1 = g��r��1(�r��1)�1yr(r��1)�1 = g�y� = r:Next we des
ribe how B2 pro
esses queries of A to ora
les S and E. Todistinguish messages from plaintext the latters from now on will be denoted byGreek letters.The PPT B2 maintains a list of replies to queries. Initially this list is empty.Given a message m (a query to the ora
le S) or plaintext � (a query to theora
le E) B2 
he
ks whether the list of replies 
ontains an entry with su
h avalue � where in the �rst 
ase � = H(m). If so, outputs either a pair (r; s)(query to the ora
le S) or h (query to the ora
le E).Otherwise B2 
hooses random �, �, 
omputes r, s and h as above and �xesh as a substitute for EK(H(m)). Either a pair (r; s) (query to the ora
le S) or avalue h is returned to A. Then B2 adds to its list of replies new entry (�; h; r; s),where in the 
ase of a query to the ora
le S, � = H(m).Thus B2 responds to queries to the ora
le S by substituting true en
ryptedhash value EK(H(m)) by a randomly generated value h. Now we show that onthese "false" values h A must exhibit virtually the same behavior as on trueones.Let p1 = p1(n) be the probability that A forges a signature for whatevermessage when having a

ess to ora
les E and S. We have supposed that p1 �"=4. Let p2 = p2(n) be the probability of the same event in the 
ase whenora
les E and S are emulated by B2 as above.Suppose that p1 � p2 > "=8. To show that this 
ontradi
ts Conje
ture 3 weuse well-known hybrid argument. Let t = t(n) be the total number of queriesto ora
les E and S issued by A. For ea
h i = 0; 1; : : : ; t 
onsider the i-th hybridGi. By de�nition, Gi is the string of replies to queries of A to ora
les in the 
asewhen all the queries up to the i-th one are emulated by B2 while the queriesi+ 1; : : : ; t are responded by ora
les E and S.Let pi be the probability of su

essful forgering when A's queries to ora
lesare responded with hybrid Gi. It is 
lear that p1 = pt, p2 = p0. Therefore thereare two adja
ent hybrids Gi and Gi+1 su
h that pi+1 � pi � "=8t.Now we 
onstru
t a PPT B3 (an adversary for the 
ryptosystem) whi
h 
allsA as a subroutine. The PPT B3 is provided a

ess to the ora
le E. On input 1nit generates keys and publi
 parameters of e-signature s
heme. Then B3 
hoosesa random number i in the set f1; : : : ; t� 1g and responds to queries 1; : : : ; i ofA using a

ess to the ora
le E or keys of e-signature s
heme as appropriate.Starting with the (i + 1)-th query B3 pro
eeds as des
ribed above for B2 butfor the following modi�
ation.Pro
essing a 
urrent query of A to ora
le B3 
hooses � 2R f0; 1gn, 
omputesh = EK(�) and 
he
ks whether h 2 X . If so B3 
hooses k 2R X , 
omputesr = gk and �nds � and � from relations h = �r��1 and �+ x� = k. It is easyto see that parameters �, � and the private key x have the same probability10



distributions for PPT's B2 and B3. Indeed, ea
h of these parameters is 
hosenuniformly at random and independently in the set X . Probability that EK(�) 2X for � 2R f0; 1gn is nonnegligible (for instan
e, it is � 1=2 for the GOSTs
heme). Using well-known probability ampli�
ation te
hniques one 
an ensurethat after polynomially many attempts the probability of not hitting the setX is exponentially vanishing. Therefore the probability distributions of triples(r; s; h) generated by PPT's B2 and B3 are statisti
ally 
lose.To get a 
ontradi
tion with Conje
ture 3 take as plaintexts �0 and �1 for aspe
ial query the plaintext of i-th query of A and the value of � generated by B3when pro
essing the i-th query. Finally, B3 outputs 1 if A forged a signature forwhatever message and outputs 0 otherwise. It is easy to see that B3 distinguishes
iphertexts of plaintexts �0 and �1 with nonnegligible probability.Now let p2 � "=8. Then one 
an use B2 to �nd dis
rete semi-logarithms.On input (g; z) the PPT B2 forged a signature (r; s) for a random message m.Ma
hine PPT B2 is modi�ed to pi
k a random j 2 f1; : : : ; tg and to respondthe j-th query to ora
le E with the value of e. Re
all that y = ze. Then thesignature will be forged just for this en
rypted hash value with probability atleast "=8t.Let (r; s) be a signature for the en
rypted hash value e. Then (r; se�1) isthe dis
rete semi-logarithm for (g; z). Indeed,gse�1y�re�1 = gse�1z�r:Referen
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