
 
Revista Mexicana de Astronomía y Astrofísica
Universidad Nacional Autónoma de México
rmaa@astroscu.unam.mx 
ISSN (Versión impresa): 0185-1101
MÉXICO
 

 

 

 

2000 
Tom Abel 

THREE-DIMENSIONAL RADIATIVE TRANSFER 
Revista Mexicana de Astronomía y Astrofísica, volumen 009 

Universidad Nacional Autónoma de México 
Distrito Federal, México 

pp. 300-304 

 

 

 

 

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal

Universidad Autónoma del Estado de México
 

mailto:rmaa@astroscu.unam.mx
http://redalyc.uaemex.mx/


A
st

ro
p

hy
si

c
a

l P
la

sm
a

s:
 C

o
d

e
s,

 M
o

d
e

ls
, a

nd
 O

b
se

rv
a

tio
ns

 (
M

e
xi

c
o

 C
ity

, 2
5-

29
 O

c
to

b
e

r 1
99

9)
Ed

ito
rs

: J
a

ne
 A

rth
ur

, N
a

nc
y 

Br
ic

kh
o

us
e

, &
 J

o
sé

 F
ra

nc
o

RevMexAA (Serie de Conferencias), 9, 300–304 (2000)

THREE-DIMENSIONAL RADIATIVE TRANSFER

Tom Abel

Harvard-Smithsonian Center for Astrophysics, USA

RESUMEN

Los efectos de la transferencia radiativa (RT) juegan un papel crucial en el
historial térmico del medio intergaláctico. Aqúı presento los avances recientes en
el desarrollo de los métodos numéricos que incluyen RT el la hidrodinámica cos-
mológica. Estos métodos pueden ser también aplicados a problemas dependientes
del tiempo en escalas interestelares y galácticas.

ABSTRACT

Radiative Transfer (RT) effects play a crucial role in the thermal history
of the intergalactic medium. Here I discuss recent advances in the development
of numerical methods that introduce RT to cosmological hydrodynamics. These
methods can also readily be applied to time dependent problems on interstellar and
galactic scales.

Key Words: COSMOLOGY: THEORY — H II REGIONS — HYDRO-

DYNAMICS — INTERGALACTIC MEDIUM

The physics of photoionized gases is of crucial importance and many astrophysical applications. As the
hydrodynamic modeling of astronomical objects is advancing at a rapid pace we are also forced to consider
the complex problem of three-dimensional radiative transfer of ionizing radiation. I report here on recent
advances we have made in developing appropriate numerical techniques to achieve this goal. These methods
are applicable for a wide range of problems. One particular issue that arises in the formation of the first
generation of stars shall serve as motivation.

1. ONE MOTIVATION: STRUCTURE FORMATION AND THE BEGINNING OF THE BRIGHT AGES

The atomic nuclei in the primordial gas (mostly hydrogen and helium) first (re)combined with electrons at
a redshift z ∼ 1000. From the study of absorption spectra of high redshift quasars we know that this gas must
have been ionized prior to z = 5. Most likely, this reionization process was caused by photoionization from UV
radiation produced in protogalactic objects, either by massive stars or by accretion into compact objects. The
formation of these first objects in the universe, and their potential impact on subsequent structure formation,
is a key issue in physical cosmology. In our standard models of structure formation cosmological objects form
via hierarchical build up from smaller pieces. The dynamics is controlled by gravity of the dominant cold dark
matter (CDM) component. Baryons will fall into virializing CDM halos in which they may cool and possibly
fragment to form stars. The lower limit on the masses of luminous objects that may be formed is determined
by (1) the pressure of the primordial gas, which determines whether it can settle in the dark matter halo, and
(2) the ability of baryons to cool and collapse to stellar densities.

These issues depend sensitively on the presence of UV photons (see Abel & Haehnelt 1999; Haiman, Abel,
& Rees 2000, and references therein). Since the intergalactic medium (IGM) is initially optically thick to
hν > 13.6 eV photons, ionization fronts will be formed around the first sources. Because we believe that the
radiation is produced in structures condensed from the IGM by gravitational instability, the first UV photons
will see a clumpy inhomogeneous IGM. As a consequence the time-varying ionized regions will have complex
morphologies.

The above physical processes have prompted us to develop methods for the treatment of RT in three-
dimensional cosmological hydrodynamics. In the following we describe the conditions under which the cosmo-
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3D RADIATIVE TRANSFER 301

logical RT becomes equivalent to classical RT. Then we go on to discuss some possible methods to solve the
latter. In this contribution I will only give a brief overview of our work. However, note that Razoumov & Scott
(1999) offer a different approach, and Gnedin (2000) chose to use dramatic simplifications constructed such as
to mimic the expected effects of radiative transfer in order to study the reionization of intergalactic hydrogen.

2. COSMOLOGICAL RADIATIVE TRANSFER

The equation of cosmological radiative transfer in comoving coordinates (cosmological, not fluid) is:

1

c

∂Iν

∂t
+

n̂ · ∇Iν

ā
−

H(t)

c
(ν

∂Iν

∂ν
− 3Iν) = ην − χνIν , (1)

where Iν ≡ I(t, ~x, ~Ω, ν) is the monochromatic specific intensity of the radiation field, n̂ is a unit vector along
the direction of propagation of the ray; H(t) ≡ ȧ/a is the (time-dependent) Hubble constant, and ā ≡ 1+zem

1+z
is

the ratio of cosmic scale factors between photon emission at frequency ν and the present time t. The remaining
variables have their traditional meanings (e.g., Mihalas 1978). Equation (1) can be recognized as the standard
equation of radiative transfer with two modifications: the denominator ā in the second term, which accounts
for the changes in path length along the ray due to cosmic expansion, and the third term, which accounts for
cosmological redshift and dilution.

One could, in principle, attempt to solve equation (1) directly for the intensity at every point given the
emissivity η and absorption coefficient χ. However, the high dimensionality of the problem (three positions,
two angles, one frequency and time = 7D!) not to mention the high spatial and angular resolution needed
in cosmological simulations would make this approach impractical for dynamic computations. Therefore, we
proceed through a sequence of well-motivated approximations which reduce the complexity to a tractable level.

2.1. Local Quasi-Static Approximation

We begin by eliminating the cosmological terms and factors. This can be understood on simple physical
grounds. Before the universe is reionized, it is opaque to H and He Lyman continuum photons. Consequently,
ionizing sources are local to scales of interest, and not at cosmological distances. In particular, this means
that the multiplicative term H(t)/c, which is simply the reciprocal of the Hubble horizon at the time t, will
ensure the cosmological term to be small as long as the opacity is much smaller than the horizon scale. If this
is not the case, and we have a simulation box size much smaller than the mean free path, then we are at the
limit where the cosmological terms will modify the boundary values but still not be important as the photons
transverse the box. Therefore, setting ā ≡ 1, equation (1) reduces to its standard, non-cosmological form:

1

c

∂Iν

∂t
+ n̂ · ∇Iν = ην − χνIν , (2)

where now ν is the instantaneous, comoving frequency.
Thinking of the special case of a point source that switches on instantaneously, one realizes that initially

the ionization front propagates at the speed of light. It slows down as the “incoming flux” of neutrals grows
with the increasing ionization surface. This ensures that the light crossing time (1/(c times I-front distance))
eventually becomes shorter than the timescales of change of the emissivities and absorption coefficient on the
right hand side of equation (2). At this point an explicit integration can take long time steps, making the term
1/c ∂Iν/∂t negligible. After this moment, it will suffice to solve the static classic equation of radiative transfer,

n̂ · ∇Iν = ην − χνIν . (3)

3. METHODS

3.1. Brute Force: Ray Tracing

Abel, Norman, & Madau (1999) give a method that integrates this quasi–static approximation along rays
casted from point–sources. That method has the particular advantage that it will ensure photon conservation



A
st

ro
p

hy
si

c
a

l P
la

sm
a

s:
 C

o
d

e
s,

 M
o

d
e

ls
, a

nd
 O

b
se

rv
a

tio
ns

 (
M

e
xi

c
o

 C
ity

, 2
5-

29
 O

c
to

b
e

r 1
99

9)
Ed

ito
rs

: J
a

ne
 A

rth
ur

, N
a

nc
y 

Br
ic

kh
o

us
e

, &
 J

o
sé

 F
ra

nc
o

302 ABEL

Fig. 1. Propagation of an R-type I-front in a 1283 cosmological density field produced by a mini-quasar with
Ṅ = 5× 1053 s−1. The solid contours give the position of the I-front at 0.15, 0.25, 0.38, and 0.57 Myr after the
quasar has switched on. The underlying grey-scale image indicates the initial H I density field.

independent of resolution by exploiting the known analytic solution of radiative transfer for a homogeneous
slab. Consider the simple case of pure absorption: across a computational cell, where we assume the density
of absorbing material to be constant, the outgoing photon number flux is simply e−τ times the incoming one.
Hence, the number of absorbed photons must be (1− e−τ ) times the incoming flux. So, one can compute the
number of photoionizations per second by adding all these (1− e−τ ) terms for the rays that pass through this
cell. Now, by definition, the number of photoionizations is equal to the number of photons absorbed. As a
consequence, this method always propagates ionization fronts at the correct speed independent of resolution.
This is a highly desirable feature of any method of multi-dimensional radiative transfer. This control of accuracy
comes at high computational cost. In this method, the 1/r2 drop in the photon flux in an optically thin region
around the source is captured by the simple fact that many more rays traverse through cells near the source
than cells further away. Obviously, a large amount of computational time is wasted in computing the flux of
such an optically thin cell, where it would simply be given by I(0)/r2. This can be solved as discussed below.
Nevertheless, this method can be used for a variety of realistic cases. This can be seen from Figures 1 and 2.
Both of them employed the ray-tracing of Abel, Norman, & Madau (1999), and are shown as illustrations of
the practicality of this method.

3.2. Ionization Front Tracking

Let us point out a simple way of solving a specific problem. If one is interested in the propagation of an
R-type ionization front in a static medium it suffices to integrate the jump condition

nHI(r)
dR

dt
=

F (0)

4πR2
−

∫ R

0

α(T (r))nHII (r) ne(r)dr , (4)

where R, α, and F (0) denote the radius of the I-front, the recombination-rate coefficient, and the ionizing
photon rate, respectively. Dividing by nHI we can integrate equation (4) explicitly along rays1 and find the
time at which the ionization fronts arrives at a given cell. Storing the arrival time in a 3D array allows one to

1Where one uses the raytracing technique of Abel et al. (1999).
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3D RADIATIVE TRANSFER 303

Fig. 2. Visualization of a time series of a 3D radiative transfer simulation. Here, we assume 30 sources with an
ionizing luminosity proportional to their halo mass that switch on simultaneously at redshift 7. The density
distribution is taken from a standard cold dark matter Lyman alpha forest simulation in a periodic box of
2.4 comoving Mpc carried out by Bryan et al. (1999). Hence, the box linear size corresponds to 300 kpc.
Six different panels are shown. Each slice at the cube edges illustrates the log of the hydrogen density. The
iso-surfaces visualize the boundaries of ionized regions. The last panel, number six, illustrates the remaining
neutral islands that have not been ionized yet.

investigate the time dependent morphology of the ionization front by simply taking iso-surfaces on this array
of arrival times. Such data is also interesting for computing how many ionizing photons are used to ionize a
given volume in a static case, etc. To get the full time evolution of the ionization front of one source on a 1283

numerical grid requires a one minute computation (wall clock) on a workstation.

3.3. Computer Graphics

In many fields, e.g., biomedical imaging, interactive volume rendering of 3-dimensional data is highly de-
sirable. A lot of effort went into designing fast algorithms that yield optical depths from a light source to the
observer’s eye. Not every such method will be suitable for application in astrophysics. In particular, one needs
to worry about exact photon (energy) conservation. However, imagine one has a method that gives the optical
depth to a source at every point in the computational volume. For the case of pure attenuation one then also
knows the photon number flux (photons per second per area) everywhere from

~F (~r) =
Fsource(0)

|~r|2
e−τ(~r) ~r

|~r|
, (5)
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where ~r denotes the vector from the source to the point of interest. Now from the obvious “discontinuity
equation”

∇ · ~F (~r)− ˙nHI = 0 , (6)

one can ensure that the number of photoionizations ˙nHI is computed self-consistently, independently of reso-
lution. Such a method has been implemented and tested by Abel & Welling (2000), and found to give speeds
in excess of a factor hundred as compared to Abel et al. (1999) in the limit of large ionized regions.

3.4. Moment Methods

The methods presented above focus on the correct implementation of radiative transfer for point sources.
However, ideally we also want to be able to treat regions of diffuse emission as those arising due to, e.g.,
bremsstrahlung and recombination radiation. In Norman, Paschos, & Abel (1998) we have outlined a possi-
ble approach to treat point sources and diffuse radiation by means of a variable Eddington tensor formalism.
Although we have improved significantly on some ingredients of this method (e.g., deriving an analytic expres-
sion for the Eddington tensors in the pre-overlap stage) we have not succeeded as yet in constructing a stable
implementation.

4. CONCLUDING REMARKS

For the applications to numerical cosmology some of the methods of 3D radiative transfer discussed above
will have to be combined. I-front tracking is useful to initialize the environment of new sources. The methods
drawn from Computer Graphics can be used to compute accurate boundary conditions for the moment methods
that are the most promising in the limit of many sources. A number of interesting problems still need to be
solved before cosmological radiation hydrodynamics can become a standard tool for the study of the formation
and evolution of structure in the universe. However, the existing techniques should be employed for the study
of interstellar problems in which only a few sources are of interest. Planetary nebulae and H II regions are
ideal candidates for such three-dimensional radiation magnetohydrodynamic modeling.

I am greatful to my collaborators Pascal Paschos, Mike Norman, Piero Madau, Aaron Sokasian, Lars
Hernquist, and Joel Welling for all the fun we are having in devising these new approaches and learning the
physics. Part of this work was supported by NASA ATP grants NAG5-4236 and NAG5-3923.
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