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Abstract

A constant-round interactive argument is introduced to show exis-
tence of a Hamiltonian cycle in a directed graph. Graph is represented
with a characteristic polynomial, top coefficient of a verification polyno-
mial is tested to fit the cycle, soundness follows from Schwartz-Zippel
lemma.

1 Introduction

A protocol to show existence of a Hamiltonian cycle in a graph was intro-
duced by Blum [Blu86,/CFO01]. Protocol uses binary challenges, and need
to be repeated to achieve soundness. Protocols with ’large’ challenges
achieve low soundness error without repeating; example is Schnorr pro-
tocol with challenges chosen from a finite field.

We explore options resulting from algebraic structure of responses of
a variant of Schnorr protocol. A protocol for Hamiltonian cycle is given in
this report. Protocol is an argument on assumption of hardness of discrete
logarithm problem. Protocol has a simulator algorithm, and is honest
verifier perfect zero knowledge.

2 Preliminaries

Definition 1 (Graph characteristic polynomial). Let I' be a labelled di-
rected graph defined with a set of edges IE(T') and a set of vertices V(T').
Non-zero labels w, € Fy,v € V(I') and flags u, € {0,1},e € E(T) are
assigned to nodes and vertices. Consider a mapping to a ring of polyno-
mials over finite field:

I - flx,yT)= J[ Q+xwy+ywr) (1)
EHTE]E(F)

We say f(x,y;T) is a graph characteristic polynomial.
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This definition appeared with a protocol for graph isomorphism. A
similar characteristic polynomial was introduced with a protocol for vertex
colorability. A related definition of set characteristic function appeared
with set reconciliation [MTZO01].

Definition 2. Hamiltonian cycleis an alternating sequence vy, e1, v, €2 ...0p
I')| = p such that all edges are dif-
ferent, v, = vy, and v; # v; for all other pairs (i,j). We denote set of
edges that form the cycle with H(T).

Lemma 1 (Schwartz-Zippel [Sch80], a case of a univariate polynomial).
Probability to choose a root of a nonzero polynomial f(z) of degree
at most d by sampling z at random from a domain of cardinality D
is at most %.

3 Protocol

Consider a graph with a prime number of vertices: [V(T')| = p. Let I,
be a field with a prime number of elements such that p|g — 1. It follows
a cyclic subgroup of order p exists in a multiplicative group of residue
classes Z3. Leta? =1 (mod q),a # 1.
To recognise a cycle, we assign labels to vertices such that w; = al,
j =0...p, withindex j incrementing along the sequence. We also assign
flags to edges such that u, = 1fore € H(T), and u, = 0 for all other
edges that are not part of the cycle.
Consider a polynomial fi(x,y,2) € Fy[X,Y, Z] forsome {ay }, a, € Fy, v € V(I):

fo(x,y,2) = T (z+ (x(zwn +an) + y(zwr +ar)))
eur€E(T)

Top coefficient of f,(x,y,z) is graph characteristic polynomial:

fu(%,Y,2) ka X,Y)z n=I[ET),  fulx,y) = f(x,yT)

Consider another polynomial f,(x,y,z) € F;[X,Y, Z] for some B, € I,

fulxyy,z) = [T (z+ (aue + Be) (xwn + ywr))

enr€E(T)

Top coefficient of f,(x,y,z) is characteristic polynomial of the cycle in the
graph:

u(%,y,2) Zflxy )2, fulx,y) = f(x,y; H(T))



Let {©,}, {®.} be responses of Okamoto protocol [Oka92] for commit-
ments to labels and flags:

®U == SZUU “l_“v
D, = tu, + B

Consider a verification polynomial:

Fx,y,s,t) = ] (ts+ ®(xOn + yOr)) (2)
?HTEIE(F)

Anyone can produce an estimate of F(x,y, s, t) using Verifier’ challenges
and Prover’ responses. Verifier tests that top coefficient of F(x, y, s, t) is

p—1 ‘ ‘
Ca(x,y) = [T(1+xa + ya'™) (3)
j=0

Common input is graph I, group G, and group members g, h. Auxiliary
input of Prover is a sequence of graph vertices that is a cycle. Protocol is
shown of Figure[Ll

Lemma 2 (Recognising Hamiltonicity). A Hamiltonian cycle exists in
a graph T, |V(T')| = p for some prime p,p|q — 1 if, and only if labels
wy,v € T can be assigned with {al} for somea € Z},aP = 1,a # 1
such that

I
_

I CT): f(x,y;l“’)zp (14 xa/ +ya/™) (4)

~
I
o

Proof. 1t is clear that labels w, = a/ can be assigned to vertices along
the sequence indexed with j for any given a such that characteristic poly-
nomial of the cycle will be of the form ([4]), in case a cycle exists. We show
that any subgraph with characteristic polynomial (4]) is a Hamiltonian cy-
cle.

We observe that characteristic polynomial is a product of p linear poly-
nomials that are relatively prime to one another. It follows there are ex-
actly p edges in such a graph, such that each edge connects a vertex la-
belled with a/ and a vertex labelled with a?*1. It follows that vertices and
edges form a sequence.

We also observe there are exactly p different values of the form a/,
j = 0...p—1, such that the sequence never crosses itsell.

From a? = a¥ it follows that the last vertex in the sequence is the same
as the first one, such that sequence is a cycle. O

[t is clear honest Verifier always accepts for an honest Prover such
that completeness holds for the protocol shown on Figure[Il
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Lemma 3 (Soundness). Probability for an honest Verifier to accept

for any Prover and any graph T without Hamiltonian cycle running

4E(D)[+2[V(T)]
q

protocol shown on Figure|l] is at most over random

choices of Verifier.

Proof. We show that Prover responses are estimates of polynomials that
are linear in challenge, flags used are chosen from {0, 1} with probability
at least 1 — %, and that f,(x,y) # 0 for

fa(x,y) = Ca(x,y) — f(x,y;T)

with probability at most 2nt2p

Consider a Prover capable of producing responses @', )/ to a chal-
lenge s such that

YW =R, O £0, O#£0
for
O =sw+a, Q=sr+v
W = gwhr’ R = gth'y
and for some w, 7, &,y € F,. It follows such a Prover is also capable of
taking a logarithm using his responses as follows:

Q-0
log,(8) = "o -0

We consider it infeasible for a polynomial Prover to produce valid re-
sponses ©, () other than estimates of polynomials that are linear both in
challenge of Verifier and in value committed.

Consider a Prover capable of producing responses @, A to a challenge
t such that

gqu(q)ft)thNtE =1
for

O =tu+p
A=té+m
N =g"h*, E=g'n"

for some u ¢ {0,1} and for some §, 8,7, 7,0, x,A € F;. It follows
fi(z) # Oforany B, T, p:

fi(z) = =(zu+B)(z(u = 1) + B) + 1z +p



From Schwartz-Zippel lemma it follows there is at most % probability to

choose a root of f;(z) at random: fi(t) = 0. It also follows that such
a Prover is capable of taking a logarithm in case f;(f) # 0 using his
responses as follows:

logh (g) = A _fﬁ)— A

We consider it infeasible for a polynomial Prover to produce valid re-
sponses @, A such that fi(t) # 0. It follows there is at most % proba-
bility for an honest Verifier to accept at ((I4]) for any Prover and for any flag
u ¢ {0,1} over random choices of challenge ¢.

Consider a Prover capable of producing responses {®.},{0,}, ¥ to
challenges x, y., s, t such that

L n—1 . n—1 :
et (Tow*) oo -
k=0 i=0
for
p—1 ‘ ,
F= H (ts + (2O + yOr)) — t"s" H(l + xeal + ycufﬂ)
?HTEIE(F) j=0
D, = tu, + Be

Oy, = swy + &y

and for some ¥. From Lemma [2]it follows f,(x,y) # 0 for any sub-
graph of I'. From Schwartz-Zippel lemma it follows there is at most 27’7

probability to choose a root of f,(x,y) at random: f;(xc,y.) = 0. In case
fa(xc,yc) # Oit follows fs(z) # 0 for any {si}:

n—1
fs(z) = fa(xc,yc)s™ + Z skmk
k=0
From Schwartz-Zippel lemma it follows there is at most % probability to

choose a root of fs(z) at random: fs(s) = 0. In case f;(s) # 0 it follows
fst(z) # Oforany {d;}:

n—1
fst(z) = fs(s)z" + Z Zidi
i=0

From Schwartz-Zippel lemma it follows there is at most g probability to
choose a root of fs(z) at random: fg(t) = 0. It follows that such a Prover



is capable of taking a logarithm in case fi(t) # 0 using his responses as
follows:

n—1 n—1
logy,(8) = (fu(t)) (¥ —¢" k_ZOS"ﬂk - ZO tui)

We consider it infeasible for a polynomial Prover to produce valid re-
sponses {®.}, {®,}, ¥ such that f(t) # 0. It follows there is at most
% probability for an honest Verifier to accept at (13)) for any Prover and
for any graph without Hamiltonian cycle over random choices of chal-
lenges x¢, Y., s, t.

We consider a Prover passing verification equations such that f;(f) = 0
for any edge due to unlucky choice of challenge t, or fs(t) = 0 (due to
choice of challenges x.,y,,s,t) to win the game. This probability esti-
mate is sufficient for our purposes; a better estimate may be developed by
considering options and strategies available to Prover.

We conclude there is at most 27’” probability for such a Verifier to accept

while choosing (x¢, y.), % while choosing s, and %n + 2 while choosing
t, unless Prover is capable of taking logarithms in the group used. This
probability is exponentially small in group order bitsize. O

Lemma 4 (Of knowledge). Protocol shown on Figurelllhas an extrac-
tor algorithm, and is of knowledge.

Extractor is based on rewinding procedure: make Prover respond to
two different challenges without choosing another set of initial random
coins. All labels and flags are produced with an algorithm developed for
Schnorr protocol [Sch89].

Lemma 5 (Zero knowledge). Protocol shown on Figurelllhas a simu-
lator algorithm, and is honest verifier zero knowledge.

Simulator algorithm is shown on Figure[2l Probability distribution for
grOUp elements {RU}’ {Q8}7 {EE}’ DO is ﬂat due tO {00}7 {AC}’ {A€}7 \Ij
chosen independently with flat distribution.

4 Discussion

Algebraic properties of responses were shown to be useful for construct-
ing protocols with low soundness error. Protocol introduced can be ex-
tended to exact travelling salesman problem [Luc94, Luc95].
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. Prover chooses {ry}, {6c}, {av}, {Be}s {70}, {7}, produces and sends
{Wot, {Ue}, {Ro}, {Qe}:

W, = nghrv U, = g“"h‘s" R, = gzxvh"rv Q. = gﬁehne (5)

2. Verifier chooses and sends (xc, yc)
3. Prover chooses {7}, produces {my} {My}, sends { My }:

n

[T G+xclzwy+an) +ye(zor +ar)) = Y 25m My = g"h'
egr€E(T) k=0
(6)

4. Verifier chooses and sends s
5. Prover chooses {u;}, {xc}, {Ae}, produces {®,}, {Qy}, {4}, {D;i},

{Te}, {pe}, {Ne}, {Ec}, sends {@o}, {0}, {Di}, {Ne}, {Ec}:
Oy = swy + ay Oy = sry+ 70 (7)

[T (z5+ (zste + Be) (x®On + ycO1)) = Y _2'd;  D; = gint
EHTE]E(F) i=0

(8)
(ztte + Be) (z(Ue — 1) + Be) = Tez + pe N, = g'hXe E, = gpeh)‘e
(9)
6. Verifier chooses and sends ¢
7. Prover produces and sends {®,}, {A.}, {Ac}, ¥:
@e:tue—i_ﬁg Ag:t56+ﬂe (10)
n—1 n—1 )
Ae=txe+tre Y=Y ms"+ Y wt (11)
k=0 i=0
. Verifier produces
p—1 . .
F= J[ (ts+®c(xOn+yOr)) —t"s" [(1+xca +ycd ™)
enr€E(T) j=0
(12)
Verifier accepts if
§OnYW S =R,  ¢PenU;t = Q, (13)
g (@O~ AeNIE, = 1 (14)
- A y
sh TV ) Ty =1 (15)
k=0 i=0

Figure 1: An argument for Hamiltonicity




1. Verifier chooses at random from F,

{00}, {Qo}, {®e}, {Ac} {A} Y

2. Verifier chooses random group elements
{WZJ}/ {ue}/ {Ne}/ {Mk}k:&..n/ {Di}izl...n

3. Verifier produces

Ry = g% nYw, s Q, = g¥ntu,! (16)
E, = g<bg(<bg_t)hAgN€_t (17)
Foy n—1 . —t n—1 ;
Do =g"h¥ ([TM0)* ] [T (18)
k=0 =1

Figure 2: Simulator for argument for Hamiltonicity
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