
Threshold Homomorphic Encryption in the
Universally Composable Cryptographic

Library

Peeter Laud and Long Ngo
Tartu University

August 25, 2008

Abstract

Protocol security analysis has become an active research topic in recent years.
Researchers have been trying to build sufficient theories for building auto-
mated tools, which give security proofs for cryptographic protocols. There
are two approaches for analysing protocols: formal and computational. The
former, often called Dolev-Yao style, uses abstract terms to model crypto-
graphic messages with an assumption about perfect security of the cryp-
tographic primitives. The latter mathematically uses indistinguishability to
prove that adversaries with computational resources bounds cannot gain any-
thing significantly. The first method is easy to be automated while the second
one can give sound proofs of security.

Therefore there is a demand to bridge the gap between two methods in order
to have better security-proof tools. One idea is to prove that some Dolev-Yao
style cryptographic primitives used in formal tools are computationally sound
for arbitrary active attacks in arbitrary reactive environments, i.e universally
composable. As a consequence, protocols that use such primitives can also
be proved secure by formal tools.

In this paper, we prove that a homomorphic encryption used together with a
non-interactive zero-knowledge proof in Dolev-Yao style are sound abstrac-
tions for the real implementation under certain conditions. It helps to au-
tomatically design and analyze a class of protocols that use homomorphic
encryptions together with non-interactive zero-knowledge proofs, such as e-
voting.

Contents

Abbreviations and Acronyms 7

1 INTRODUCTION 8

1.1 Problem statement and our motivation 8

1.2 Contribution of this paper . 10

1.3 Structure os the paper . 10

2 PRELIMINARIES 11

2.1 Indistinguishability and Negligibility 11

2.2 Simulatable security . 12

2.3 Universal composability or Reactive simulatability 13

2.4 Protocol analysis using Dolev-Yao sound abstraction 13

2.5 (t, w)-threshold homomorphic encryption 14

2.6 Zero-knowledge and Non-interactive zero-knowledge proof sys-
tems . 17

2.7 Database notation . 17

3 OVERVIEW OF THE UC CRYPTOGRAPHIC LIBRARY 19

3.1 The ideal system . 19

3.2 The real system . 20

4 THE IDEAL LIBRARY 22

4.1 Structure . 22

4.2 System parameters . 23

2

4.3 States . 25

4.3.1 Database D . 25

4.3.2 Conventions about Indices and Handles 25

4.3.3 Input Counters . 26

4.4 Inputs and their Evaluation 26

4.4.1 Overview of commands and possible inputs 26

4.4.2 General working conventions 27

4.4.3 Basic commands . 28

4.4.4 Adversarial commands 32

4.4.5 Send commands . 35

4.4.6 Inputs from Secure channels 36

4.5 Properties of the Ideal library 36

5 THE REAL LIBRARY 38

5.1 Cryptographic operations . 38

5.1.1 Key distribution system 38

5.1.2 Semantic security for (t, w)-threshold homomorphic en-
cryption scheme . 39

5.1.3 Non-interactive zero-knowledge proof of knowledge . . 40

5.2 Structures . 42

5.3 System parameters . 43

5.4 States of one machine . 44

5.4.1 Database Du . 44

5.4.2 Conventions about Handles 45

5.4.3 Input Counters . 45

5.5 Inputs and their Evaluation 46

5.5.1 General working conventions 46

5.5.2 Constructors and One-level parsing 46

5.5.3 Basic commands and parse type algorithms 47

5.5.4 Send commands . 50

5.5.5 Network Inputs . 51

3

5.5.6 Inputs from FKEY . 51

5.6 Properties of the Real system 51

6 THE SIMULATOR 53

6.1 Ports and Scheduling . 53

6.2 States of the Simulator . 54

6.2.1 Database Da . 55

6.2.2 Input counters . 55

6.3 Input Evaluation . 55

6.3.1 General conventions 55

6.3.2 Inputs from THH . 55

6.3.3 Inputs from A . 58

6.4 Properties of the Simulator . 60

7 SECURITY PROOF 63

7.1 Security of the cryptographic library 63

7.2 Outline of the proof . 64

7.3 Encryption machines . 66

7.4 Refactoring the real library . 72

7.5 Replacing with the ideal encryption machine 75

7.6 Combined system . 75

7.6.1 Timing . 75

7.6.2 Definition of THSimH 75

7.6.3 Derivations . 76

7.6.4 Invariants in CH . 78

7.7 Comparison of the two pairs of systems 80

7.7.1 Comparison of basic commands 81

7.7.2 Comparison of send commands by honest users 83

7.7.3 Comparison of input from the adversary 83

7.7.4 Comparison in scheduling of a secure channel 84

7.7.5 Error sets . 84

4

7.8 Proof conclusion . 85

8 CONCLUSION 86

8.1 Applications . 86

8.2 Future work . 87

8.3 Conclusion . 87

Bibliography 89

5

List of Figures

2.1 Automated protocol analysis using Dolev-Yao sound abstraction 14

4.1 Localized version of THH . 24

5.1 The distributed key generation functionality FKEY 39

5.2 The NIZK functionality FNIZK for a witnessing relation R. . . 41

5.3 The real system that uses NIZK and key generation function-
alities (Localized version) . 43

6.1 The simulator translates messages between THH and the real
adversary A . 54

7.1 Steps of proof [BPW03a] . 65

7.2 Aenc produces a simulated view of H and A using a hybrid
machine . 70

7.3 Refactoring the real library . 73

6

Abbreviations and Acronyms

electronic auction e-auction
electronic voting e-voting
IND-CCA2 Indistinguishable under Adaptively Chosen

ciphertext attack
IND-TCPA Indistinguishable under Threshold Chosen

plaintext attack
NIZK Non-interactive zero-knowledge
PCL Protocol Compositional Logic
UC Universally composable
VSS verifiable secret sharing

7

Chapter 1

INTRODUCTION

1.1 Problem statement and our motivation

Network protocol analysis is a necessity because of the fact that many faults
have been found in practical protocols, which had been believed to be secure
until a successful attack happened. It means we need to model a protocol
and prove how secure it is to prevent potential attacks.

There are two types of models for specification and verification of crypto-
graphic protocols so far: Computational and Formal. Computational models
use low-level notions, i.e bit-strings are used for modelling messages, giving a
detailed view of cryptographic system and protocols, but complex and error-
prone. Formal models abstract the behaviours of systems and protocols,
modelling messages as abstract terms, and are therefore errorless. However,
most of them, based on the model first proposed by Dolev and Yao [DY83],
ignore the security problem of lower level and assume perfect security. There-
fore, by a formal method we can not achieve computational sound proofs for
the security of cryptosystems [Zun06, Mea03, AR00, CS02].

To the best of my knowledge, there are currently two ways to achieve com-
putational sound proofs in automatic ways. The first approach is formulat-
ing syntactic calculi to model probabilism and polynomial-time considera-
tions directly and thus we can build tools for computational sound proofs
[Bla06, DDM+05, IK06]. It is a promising direction because it may provide
automated proofs of security for cryptosystems as we can do by hand. The
other approach is combine advantages of the two analysis methods by justi-
fying Dolev-Yao model, i.e. showing that we can have some sound Dolev-Yao
sound abstractions [BPW03a]. This direction has some limits since we can

8

not have sound abstractions for some cryptographic components [BPW06b]
but it gives better simplification. Our paper is one that follows this direction
and we discuss more about below.

Bridging the gap and related works: Bridging this gap has been at-
tracting a lot of attention. Ideally one would have a formal method tool that
analyzes security protocols at a lower level, where we have well-defined com-
putational security properties [Zun06]. Among research projects to bridges
the gap is a paper by Abadi and Rogaway [AR00], which shows the relation
between computational and formal worlds by pointing out the computational
soundness of formal symmetric encryptions. However, this work is limited
to the case of passive adversaries. [DDMR07] proposed Protocol Composi-
tional Logic (PCL) . This type of logic can be used to model protocols in
Dolev-Yao style so we can apply automatic ways for analyzing. In addition,
it is complemented with Computational PCL, which is sound with respect to
the complexity-theoretic model of modern cryptography. Another work is by
Backes et al. [BPW03a] in which they show the indistinguishability between
an ideal cryptographic library based on abstract terms and a real one based
on bit-strings. The advantage of this approach is that the library works
in a reactive setting. It means that the library can provide cryptographic
primitives for more complex protocols with more powerful adversaries while
preserving their security properties.

This paper is an extension for the last approach listed above so we take a
deeper look at it. The library is described using the model for asynchronous
reactive systems proposed by Pfitzmann and Waidner[PW01]. The first ver-
sion of the library contains signature and public-key encryption based on an
IND-CCA2 encryption scheme. After that the authors extended to message
authentication in [BPW03b] and symmetric encryption in [BP04]. Later,
however Backes also pointed some limitations with this work, namely limits
with hashes [BPW06a] and with XOR in [BP05]. To circumvent this prob-
lem, they proposed Conditional Reactive Simulatability in [BDHK08]. That
work is useful because we can add some more cryptographic primitives and
the new library is still UC under some conditions. Although conditions exist,
we can still use the library if the conditions do not affect some practical uses.
And that motivated our work.

Our motivation: We want to extend the library in [BPW03a] to have a
threshold homomorphic encryption. Although the library works only under
some certain conditions, it may still be useful for a number of applications
such as e-voting and e-auction applications.

9

1.2 Contribution of this paper

In this paper, we define an ideal cryptographic library that contains a thresh-
old homomorphic encryption. It follows another library, which has CCA2
public-key encryption and signature scheme, described in [BPW03a]. We
define the ideal library in a way that it is suitable for formal protocol veri-
fication. Then we show the ideal library can be implemented by a real one,
using real cryptographic components and that the real library actually UC-
realizes the ideal one (Because of the same structure and notations, this work
repeats part of the work in [BPW03a]. However, our library is actually an
extension of the original one). Having this library, now the protocol design
and verification become easier: we design an arbitrary protocol with the ideal
library so a fully automated tool can verify it. And for implementing it, we
replace the ideal with the real one. It should be noticed that even if we
already have a number of useful UC components, such as a universally com-
posable message board, in many cases we still need such low-level primitives
like the public-key encryption in this library to design protocols.

We also describe how we can apply this library and propose some possible
improvements in the future.

1.3 Structure os the paper

The rest of the paper is outlined as follows:

• Chapter 2 gives background knowledge for what will be used in the rest
of the paper;

• Chapter 3 shows an overview of the ideal and real library for an easier
understanding of the rest of the paper;

• Chapter 4 and 5 describe about the ideal and real system in more
details;

• Chapter 6 shows the simulator for the real adversary

• Chapter 7 states the theorem related to the indistinguishablity between
two systems;

• Chapter 8 discusses about applications that motivated us to do this
research, what we need to do more in the future and finally concludes
the paper.

10

Chapter 2

PRELIMINARIES

This chapter gives some background knowledge, which is useful for the rest
of the thesis.

2.1 Indistinguishability and Negligibility

The notions of Indistinguishability and Negligibility are used often in this
paper so it is important to give their definitions here.

Negligible functions. A function g : N → [0, 1] is called negligible if for
every positive polynomial p and all sufficiently large k’s we have g(k) <
1/p(k).

Probability ensembles. A probability ensemble indexed by S ⊆ {0, 1}∗ is
family of distributions {Xw}w∈S so that each Xw is a distribution that ranges
over the subset of {0, 1}poly(|w|).

Identically distributed. We say that two probability ensembles, {Xw}w∈S

and {Yw}w∈S, are identically distributed or perfectly indistinguishable if for
every w ∈ S and every α

Pr[Xw = α] = Pr[Yw = α].

Computationally indistinguishable. We say that two probability en-
sembles, {Xw}w∈S and {Yw}w∈S, arecomputationally indistinguishable if for

11

any probabilistic polynomial time algorithm A, there exists a negligible func-
tion g : N→ [0, 1] so that

|Pr[A(w, Xw) = 1]− Pr[A(w, Yw) = 1]| < g(|w|).

2.2 Simulatable security

One may ask what we mean when we say that a protocol is secure. One of the
most popular definitions is based on simulatability, i.e simulatable security.
To the best of our knowledge, the first time simulatability was mentioned is
in [GMR85]. After that several formalizations of this idea appeared.

Informally, we can say that a protocol is secure for some task if it emulates
an ”ideal setting”, in which participants give their inputs to a trusted party
who locally computes the desired outputs and sends the results back to the
participants. More specifically, we say that a real protocol π is as secure as
a trusted host TH if replacing TH with π in any context does not cause any
more harm to any honest users. To formalize context and harm, we introduce
the concepts of environment and adversary. The environment interacts with
the protocol and the adversary as black boxes. The adversary can decide
to take over the control of some parties. The environment always knows
the states of the adversary and also the corrupted parties’ ones. Now we
can define the simulatable security of a protocol π as follows: ”π securely
realizes TH if for any adversary Areal and any environment H, there exists a
adversary Asim such that the output of H when running with π and Areal is
indistinguishable from that of H running with TH and Asim”.

The above definition is considered standard simulatability whereas in univer-
sal simulatability the adversary Asim does not depend on the environment H.
Formally we define universal simulatability as: ”π securely realizes TH if for
any adversary Areal there exists a adversary Asim such that for any environ-
ment H, the output of H when running with π and Areal is indistinguishable
from that of H running with TH and Asim”.

We can see that these definitions capture well the concept of security: One
can learn nothing except information he is supposed to learn as specified in
TH in any situation. However, the security definition itself does not guarantee
the possibility of composing protocols in parallel. Therefore we need some
composition theorem, which is discussed in Section 2.3.

12

2.3 Universal composability or Reactive sim-

ulatability

It turns out that simulatable security allows composition. There are two
independent works [BPW04, Can01] that give some composition theorems
for simulatable security. Here we consider the case of universal simulatability.

Let us define a G − hybrid model as follows: G is an ideal functionality. A
protocol π in this model is a real protocol which can make calls to G through
its interface. π can run polynomial many copies of G simultaneously. Let πρ

be the protocol that makes calls to the protocol ρ instead of G. We have the
following theorem.

Theorem 2.3.1. (Composition theorem) If a protocol π in the G − hybrid
model securely realizes a functionality F and protocol ρ in the real world
securely realizes G, then protocol πρ securely realizes F in real world. ¤

Detailed proofs for this theorem can be found in [BPW04, Can01].

It is important to notice that there is a restriction in this composition theorem
that the adversary Asim is not allowed to rewind the real adversary Areal or
the environment H.

2.4 Protocol analysis using Dolev-Yao sound

abstraction

Now we have a look at how Universal composability or Reactive simulatabil-
ity concepts can help to automatically analyze protocols.

Formal tools use a very strong assumption that cryptographic primitives are
perfectly secure, therefore we can formally analyze protocols using primitive’s
abstraction without caring the security of their implementations. Now with
Universal composability framework, we can prove that it is indistinguishable
between some Dolev-Yao style abstractions and their real implementations,
i.e the Dolev-Yao representation is faithful abstraction of the real one. In this
case, we say that the Dolev-Yao representation is sound abstraction and by
composition theorem, security of the system using the abstract representation
implies the security of the system using the real one. See figure 2.1.

The idea is that we can use formal tools to automatically analyze the security
of protocols in the Dolev-Yao model. As a consequence, with the sound ab-

13

Protocol logic

Dolev-Yao sound abstraction

proved secure by formal tools

=⇒

Protocol logic

Real implementation

is also secure

of primitives of primitives

Figure 2.1: Automated protocol analysis using Dolev-Yao sound abstraction

straction, that security proof will also imply the security of the corresponding
real systems.

2.5 (t, w)-threshold homomorphic encryption

We define a (t, w)-threshold homomorphic encryption scheme as a tuple of
polynomial-time algorithms E thres where

E thres = (FKEY, E thres, D thres, C thres, enc thres len,

pke thres len, ds thres len).

The defined tuple E thres works as follows

• For generating a public key and a list of secret share, we use the corre-
sponding distributed key generation functionality.

(pk, sk1, ..., skw) ← FKEY

where the length of each pk is pke thres len(k) > 0 and sk1, ..., skw are
shares of the secret key, which will be given by FKEY to intended users
securely.

It should be noticed that we require this threshold homomorphic en-
cryption scheme to have a secure distributed key generation protocol.
Such protocols and encryption schemes can be found in [AF04, Wik04].

• For encrypting a message m ∈ {0, 1}+ we use the deterministic algo-
rithm E thres

14

c ← E threspk(m, r)

where the length of c is enc thres len(k, |m|) ≥ |m| > 0 for every pk ∈
{0, 1}pke thres len(k). r is the random coin to make the result of E thres()
probabilistic. r will be part of witness for making a NIZK proof of
validity.

• For generating a decryption share we use the deterministic algorithm
D thres

ds ← D thressk(c)

where the length of ds is ds thres len(k, |c|) ≥ |m| > 0. m =↓ if c is an
invalid ciphertext otherwise m 6=↓ for every correctly generated sk.

• For getting the plaintext by combining t decryption shares, we use the
deterministic algorithm C thres

m ← C thres(ds1, ..., dst)

where ds1, ..., dst are decryption shares.

• E thres must have homomorphic property as follows.

We denote M , C and R as the message, ciphertext and random coin
space respectively. Assume that R is a groupoid with a groupoid op-
eration ◦ and C and M are groups with group operation ¡ and ¢
respectively.

Then for any messages m1 and m2, any random coins r1 and r2, and
any valid public key pk we have

E threspk(m1, r1) ¡ E threspk(m2, r2) = E threspk(m1 ¢ m2, r1 ◦ r2).

• E thres must have simulatability of decryption share as follows.

There is an algorithm that takes as input a ciphertext c, a message m
and s secret shares and produces simulated decryption shares for all w
secret-share holder so that

– Any set of t simulated decryption shares can be combined to get
m

15

– The set of simulated decryption shares is computationally indistin-
guishable from real decryption share even with knowledge of any
subset of l elements of the corresponding s secret shares where
l ≤ t− 11.

Correctness of decryption. We need the following theorem to show that
we can always get the correct plaintext even the adversary is given incorrect
decryption shares.

Theorem 2.5.1. Correctness of decryption Given w decryption shares for a
ciphertext c from w secret-share holders, there exists an algorithm to get the
correct plaintext if the number of adversarial secret-share holder is less than
w/3 and t < w/3. ¤

Proof. We claim that we can always find only one set of 2w/3 decryption
shares such that any t decryption shares from that set are combined to the
same plaintext. Then we show that it is the correct plaintext m.

Obviously, there are at least 2w/3 of honest secret-share holders so there
exist such a set S and the corresponding plaintext is the correct one, say m.
We have to show that there is no other set of 2w/3 decryption shares such
that any t decryption shares from that set are combined to another plaintext
m1.

Assume that we have another set S1 like that. S1 must have less than w/3
decryption share from honest users, otherwise S1 contains at least one sub-
set that contains decryption shares that are combined to m. Therefore the
number of decryption share from malicious users in S1 must be greater than
2w/3− w/3 = w/3. It is a contradiction.

Finally, because that set is unique, we can always build an algorithm to find
it. Because t and w are constant, even a “brute force” algorithm also works
in polynomial-time. ¤

1The idea here is if a simulator at least has the adversary’s keys and the adversary has
less than t− 1 key shares, the simulator can always simulates the decryption shares. Basi-
cally, if the decryption-share combination algorithm is not “one way” and the encryption
scheme is semantically secure, we will have this property. This property mentions here is
a bit different from the property mentioned in [Gro04] as we do not require exactly t− 1
secret share input.

16

2.6 Zero-knowledge and Non-interactive zero-

knowledge proof systems

Informally, a proof system is a protocol for a prover P to convince a verifier
V about something. The system has the completeness property if a prover
P who has the corresponding witness can always convince V . The system
has the soundness property if without the corresponding witness P cannot
convince V .

Goldwasser, Mical and Rackoff [GMR85] have shown that it is possible to
prove that some theorem is true without giving the hint. It means the verifier
is convinced without getting any information of the witness. Such a system
is called a zero-knowledge proof system. Furthermore, [GMW86] pointed
that any NP language possesses zero-knowledge proof systems, under an
assumption that secure encryption schemes exist.

However, the proof systems mentioned above are interactive, i.e. the prover
and verifier have to interact to follow the protocol. [BFM88] then shown
that we can achieve non-interactive zero-knowledge (nizk) proof system in
the common random string model. Note that the construction here just
gives us computational zero-knowledge property.

Recently, Groth, Ostrovsky and Sahai [GOS06] demonstrate a construction
for perfect nizk proof for any NP language. This construction is used in our
work.

2.7 Database notation

To describe the structure of the ideal and real libraries, we use the same
notations in [BPW03a]. We will discuss them shortly here.

We use a sans serif font for machines,algorithms, functions and constants, an
italic font for sets and variables and a calligraphic font for T YPES and
INDEX sets.

”:=” means a deterministic assignment, ”←” means a probabilistic one and

”
R←−” means a uniform random choice from a set. When we write x := y + +

we mean y := y + 1; x := y. We denote g ∈ NEGL if a function g : N→ R
is negligible.

For data types, we use the following representations

• T YPES is the disjoint union of the following data types: NAT (”nat-

17

urals”), HNDS (”handles”), INDS (”indices”), BOOL (”boolean”),
ERR (”error”), CHARST R (”charater strings”), BIT ST R (”bit-
strings”), LIST (”lists”) and NIZK (”NIZK Proof”).

• The types NAT , HNDS (”handles”) and INDS are isomorphic to
the set of natural numbers N = {1, 2, ...}. We write elements and
operations for these sets in a similar way for the set of natural numbers.
We also have NAT 0 that is isomorphic to N0 = N ∪ {0}.

• BOOL = {true, false} and ERR = {↓}. CHARST R is isomorphic to
Σ+ where Σ ⊆ {a, b, .., z} ∪ {0, 1} and ↓/∈ Σ. BIT ST R is isomorphic
to {0, 1}∗. The type LIST = {{0, 1}∗}∗ and we write (x1, x2, ..., xn)
for a list of x1, x2, ..., xn. It should be noticed that ”adding an element
to a list” means that the element is put at the end.

• All algorithms and functions can get the error element ↓ of type ERR
as an input and also can return it.

• We assume that elements of T YPES\ERR are uniquely encoded into
the set {0, 1}∗. Also if a function is efficiently computable on abstract
data types, it must be efficiently computable on encoding.

• |w| denotes the length of the encoding w. We have a funtion list len such
that |(x1, x2, ..., xi)| = list len(|x1|, |x2|, ..., |xi|) ≥ |x1| + |x2| + ... + |xi|
for all i ∈ N0 and all x1, x2, ..., xi ∈ T YPES\ERR.

• A ”database” D means a finite set of mappings from a finite subset of
CHARST R to T YPES ∪ {0, 1}∗. We call these mapping tuples and
their arguments attributes. Therefore t.a means the result of t ∈ D on
argument a ∈ Σ∗ and t.a =↓ means t.a is undefined.When we add t to
the database, we write D :⇐ t that means D := D ∪ {t}.

• There are some relational-database notations here:

– Given a P (A) that is a logical condition that has attributes of A
as free variables, we define σP (A)(D) as the set of all t ∈ D such
that P (t) holds. We write D[P (A)] := t if σP (A)(D) = {t} and
D[P (A)] :=↓ if |σP (A)(D)| 6= 1.

– A key attribute is an attribute such that t.a is defined and unique
for all t ∈ D. Then if a is the primary key attribute, we write
D[x] instead of D[a = x].

18

Chapter 3

OVERVIEW OF THE UC
CRYPTOGRAPHIC
LIBRARY

This chapter’s purpose is to give a broad view of real and ideal libraries and
how they relate to each other before we analyze each of them in very details
in next chapters. The idea of our library is mostly based on [BPW03a] but it
offers different cryptographic operations. The details of both ideal and real
versions will be discussed in proceeding chapters

In fact, what we can have in practice is just the real library. However, we
need to define an ideal one to prove that, our real system is at least as secure
as the ideal one. We will prove that the real system can UC realize the ideal
one, meaning what ever can happen to the real adversary can also happen
to the ideal adversary in an arbitrary environment.

3.1 The ideal system

The behaviours of the ideal system show abstractly how we want our real
system work.

In principle, the ideal library offers cryptographic commands that are applied
to abstract terms. This version of the library includes specific commands
for an IND-TCPA threshold homomorphic encryption, while the library in
[BPW03a] contains signature and IND-CCA2 public encryption. The com-
mands have simple and deterministic semantics, which are based on the sys-
tem’s states. The ideal system stores its states in a database.

19

The database creates its entries when a certain command is called and may
output the new handle to users. Each entry in the database contains infor-
mation about its type and pointers to its arguments. It also has handles,
under which different users know the entry. In addition, users work with
handles, which point to the terms they know, not directly with terms.

The system must be ”trusted”. In other words it is impossible for the users
to cheat. It means that if a user encrypts a message m, the ideal library will
return the handle for the ciphertext. Someone can decrypt only if he has the
handles to both the ciphertext and the secret key.

In addition, the library offers send commands, which allow to send data
to other users. There are three types of communication channels: secure,
authentic and insecure, which are denoted {s, a, i} respectively. After a suc-
cessful send command, the receiver gets a handle to the sent term and a new
handle for the receiver will also be added to the term’s entry .

Backes et al. in [BPW03a] pointed the following differences between this
library and the standard Dolev-Yao model:

• Encryption scheme must be probabilistic. It means that if we encrypt
the same message twice we get different ciphertexts.

• Because of the commitment problem [BPW06a], correct parties are not
allowed to send the secret key.

• Parties can always get the length of any message.

• Adversary can create invalid data, or ”garbage”.

In order to make the real system realize the ideal correctly, we have bounds
for the length of an arbitrary message and also the number of input messages.

3.2 The real system

The real library works similarly to a cryptographic library but in the real
life. The point is that we want our real library to be able replace the ideal
one,i.e it must be similar to and at least as secure as the ideal system.

As a consequence, it offers the same commands to users as the ideal one
does. However, here abstract terms are replaced by bitstrings, or real values.
Also cryptographic objects are put in different databases in different ma-
chines. Thess machines communicate via different types of channels: secure,
authentic and insecure.

20

In the real system, the adversary has only the ability to eavesdrop insecure
channel and control the corrupted parties. He also can always modify a
message in an insecure channel and forward to the intended recipient.

To make the real system ”at least as secure as” the ideal one, we use some
encryption scheme for communication between machines. However, we need
some technical requirements according to robust protocol design [BPW03a]:

• All objects have a tag with a type field. Therefore, a ciphertext can
never be misinterpreted as a public key.

21

Chapter 4

THE IDEAL LIBRARY

In this chapter we explain the details of the ideal system. Intuitively, the ideal
system is the specification of a secure real cryptographic library. Although it
is unreal, it serves the purpose of comparison with a real one. A real system
is secure if it is indistinguishable from the ideal one.

We will describe the structure, including a threshold homomorphic encryp-
tion. Then we will define how we want it to work ideally, and also how users
and an adversary can work with this library.

To describe the ideal system, we use notations in [PW01] and mainly follow
the outline of the previous library proposed in [BPW03a].

4.1 Structure

First we define the overall structure of an ideal library. Given a number n of
participants and a tuple L of parameters (Section 4.2 discusses more about
L), the form of the ideal system is

Syscry,id
n,L = {({THH}, SH)|H ⊆ {1, ..., n}}

where H denotes the set of honest participants.

Now we define how THH communicates with other parties. There are two
versions of this system, Syscry,id,stan

n,L and Syscry,id,loc
n,L , which are stand-alone

and localized respectively. The former’s inputs and outputs for the users are
scheduled by the adversary, the latter’s inputs and outputs are not (in this
version the library could be used locally as subroutines by protocols using
it). In each version, THH has the following intended ports for the users

22

userportsstan
H := {inu?, outu!|u ∈ H};

userportsloc
H := {inu?, outu!, outu

C!|u ∈ H}.

Users also have corresponding ports that connect to those ports respectively

Sstan
H := {inu!, outu?|u ∈ H};
S loc
H := {inu!, outu?, inu

C!|u ∈ H}.

For communicating with the adversary, THH offers 2 ports ina? and outa!. To
allow the adversary to schedule messages even on secure channels, we define
3 sets of channels

ch honest := {(u, v, x)|u, v ∈ H ∧ x ∈ {s,a}}
ch from adv := {(u, v, x)|v ∈ H ∧ (u /∈ H ∨ x ∈ {s,a})}

ch to adv := {(u, v, x)|u ∈ H ∧ (v /∈ H ∨ x ∈ {a,i})}

where {s,a,i} are secure, authentic and insecure channels respectively.

Remark 4.1.1. We require a condition that honest user always use ch honest
to send decryption shares. ¦

Figure 4.1 shows the stand-alone version of THH. Dotted arrows are clock
control. Message between honest users will be put in the channel net idu,v,x.
The adversary can schedule messages here even if they are sent securely. The
localized version is shown in [BPW03a].

4.2 System parameters

We do not hide the length of messages as in the real system anyone can
get the length of any message. Therefore THH has the following functions
with the domain N0 and the range N: data len∗(l), list len∗(l1, ..., lj) for all
j ∈ N0, nonce len∗(k), nizk len∗(k, l), enc thres len∗(k, l), pke thres len∗(k) and
ds thres len∗(k, cl) (length of decryption share) where l and li’s are lengths of
messages, cl is length of ciphertext.

Also, we bound the length of messages so that the real system can realize
the ideal one. Given k as the security parameter, max len(k), max in(k) are

23

H

inu! outu?

inu? outu!

ina?

outa!THH

net idu,v,xfor(u, v, x) ∈ ch honest

S

SH

Figure 4.1: Localized version of THH

bounds for the length of messages and the maximum number of inputs at
each port of correct machines, respectively. Basically, to avoid unrealistic
cases, we must have: for all k ∈ N that max len(k) > 3; nonce len∗(k) and
pke thres len∗(k) < max len(k).

We want users to encrypt only valid message, because it is essential in ap-
plications such as e-voting. For this purpose, we use a function valid∗(m) :
BIT ST R → BOOL to check if m is valid or not. If m is valid then valid∗(m)
returns true, otherwise it returns false.

The system parameter L is the tuple of all these functions. Every function
here must be bounded by a polynomial and be efficiently computable.

24

4.3 States

The ideal system must store the current working information, or its state.
The state of THH is made of a database D and the variables size (to keep
the current size of the database), curhndu for each u ∈ H ∪ {a} (to index
handles for user u) and stepp? for each input port p? (to count the number
of inputs has been put at port p?).

4.3.1 Database D

THH uses a database D to keep abstract representations of data produced
during a system run. Each entry in D consists the following attributes.

(ind, type, arg, hndu1 , ..., hndun , hnda, len)

where H = {u1, ..., un}.
In more details, for each x ∈ D we have:

• x.ind ∈ INDS is the index, consecutively numbers all entries. We use
this attribute as the primary key so we write D[i] for D[ind = i]. We
use superscript ”ind” to present an index. See Section 4.3.2 for more
details.

• x.type ∈ typeset = {data, list, nonce, ske, pke, enc, nizk, decshr, garbage}
indicates the type of x.

• x.arg = (a1, ..., aj) is a sequence of arguments. Each ai can possibly be
an index of another entry in D, therefore has the type INDS.

• x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} where a stands for the ad-
versary. If x.hndu 6=↓ then x.hndu is the handle for the corresponding
user to the entry x. We user superscript ”hnd” to present a handle and
denote a handle to an entry D[i] by ihnd. See Section 4.3.2 for more
details.

• x.len ∈ N denotes the length of entry x in the sense of Section 4.2.

4.3.2 Conventions about Indices and Handles

THH uses a variable size to store the current number of element in the
database D. Initially D is empty and size = 0. When a new entry x

25

is added, size := size + 1 and x.ind := size. After that, x.ind is never
changed.

For each u ∈ H ∪ {a}, THH uses a variable curhndu ∈ HNDS initialized
with 0. When assigning a new handle for u, THH sets curhndu := curhndu+1
and sets the new handle ihnd := curhndu. By this way, THH keeps handles
for u uniquely and consecutively assigned. Also THH uses the algorithm
ind2hndu to determine a handle ihnd for u to an entry D[i]. ind2hndu works as
follows: On input i ∈ INDS, return D[i].hndu if it is not ↓. Otherwise set
curhndu := curhndu + 1 and return D[i].hndu := curhndu. For a list, THH
uses another algorithm ind2hnd∗u which applies ind2hndu on each element.

4.3.3 Input Counters

For each input port p?, THH uses a variable stepsp? to count the number
of inputs at that port. These counter must not exceed a bound boundp? to
ensure polynomial runtime of THH. This bound is max in(k) for all port
except boundina? is (2w + 10)n2max in(k)max len(k) where w is the number
of secret share per generation1.

4.4 Inputs and their Evaluation

In this section we define how users can use the ideal system. Users and the
adversary interact with the ideal system by using commands it offers. All
possible operations can be done by calling commands, i.e encrypting, storing,
sending, etc. It should be noticed that in the ideal system, all data are
abstract terms and users keep the handles, which point to the corresponding
abstract terms, not the terms themselves.

And because the ideal system is exactly what we desire a real system to
be, the ideal one offers restricted extra commands for the adversary, namely
some abilities the adversary can always do in a real environment, such as
creating invalid data.

4.4.1 Overview of commands and possible inputs

There are some commands offered to users and they call them through input
ports. Each input c to a port inu? where u ∈ H ∪ {a} should be a list

1We explain later in the proof of Lemma 6.4.2.

26

(cmd, x1, ..., xj). Then we write y ← cmd(x1, ..., xj) meaning that y is the
result that THH returns at outu!.

The value cmd could be one of string here bellow:

basic cmds := {get type, get len, store, retrieve, list, list proj, gen nonce,

gen enc thres keylist, encrypt thres, decrypt thres,

combine thres, pk of enc thres};

send cmds := {send s, send a, send i};

adv local cmds := {adv garbage, adv parse, adv invalid ciph thres,

adv decrypt thres, adv invalid share thres};

adv send cmds := {adv send s, adv send a, adv send i}.

More specifically, if u 6= a then cmd must be in basic cmds ∪ send cmds, oth-
erwise it must be in basic cmds ∪ adv local cmds ∪ adv send cmds. Each of
basic command represents one cryptographic operation. More details about
commands are given in next sections.

Inputs at a port net idu,v,x? is from THH itself.

4.4.2 General working conventions

Some remarks:

• There are some commands to store real-world messages and users can
retrieve them later via handles. Other commands work only with han-
dles.

• Only lists are allowed to be sent by send commands. It does not reduce
the generality but we can control that no secret information is sent with
messages.

• THH offers all types of channels, i.e. {s, a, i}, to participants2.

General working conventions Upon each input at a port p?, first THH
increments the counter stepsp?. After that THH uses the length function

2Except for the Remark 4.1.1

27

to check how many bits of input can be accepted at each port. This value
depends on the current state. Once stepsp? has reached the bound boundp?,
the length function for this port always returns 0, meaning that no input is
accepted.

An input is called well-formed when it is in the correct domain. If it is not,
then THH can always verify and then aborts the transition. From now we
consider only well-formed inputs.

For every output outu! where u ∈ H ∪ {a}, the localized version THloc
H sched-

ules itself by making a clock output 1 at outu
C!. The stand-alone version

THloc
H does it only when u = a.

4.4.3 Basic commands

In this section, we will list the basic commands that are offered to users. The
basic commands cover all cryptographic operations that users can do with
this library. We also define how THH evaluates each command entered at
port inu? where u ∈ H ∪ {a}. Most of these commands produce a result at
the output port outu! only, except the distributed key generation command
will send secret-key shares to different output ports.3 Each command may
update the database D but does not touch any handle which does not belong
to u.

Type and length queries

• Type query : t ← get type(xhnd).

Set t := D[hndu = xhnd].type.

• Length query : l ← get len(xhnd).

Set l := D[hndu = xhnd].len.

Storing and retrieving data THH stores a string and give back to user u
a handle that points to the entry. When a user wants to retrieve the string,
that user must give a correct handle for it.

• Storing : mhnd ← store(m).

3This is a different point in this library compared to the original one in [BPW03a].

28

– If i := D[type = data ∧ arg = (m)].ind 6=↓ then return mhnd :=
ind2hndu(i).

4

– Otherwise

∗ if data len∗(|m|) > max len(k) return ↓
∗ else set mhnd := curhndu + +; and

D :⇐ (ind := size + +, type := data, arg := (m), hndu := mhnd,

len := data len∗(|m|)).

• Retrieval : m ← retrieve(mhnd).

m := D[hndu = mhnd ∧ type = data].arg[1].

Lists Lists are combination of data sent to other players. Most of data can
be included in a list, except secret shares because that kind of information
is not allowed to be sent.

• Generating a list : lhnd ← list(xhnd
1 , ..., xhnd

j), for 0 ≤ j ≤ max len(k).

– Set xi := D[hndu = xhnd
i].ind for i = 1, ..., j. If any D[xi].type ∈

{ske}, then set lhnd :=↓.5
– If l := D[type = list ∧ arg = (x1, ..., xj)].ind 6=↓, then return

lhnd := ind2hndu(l).

– Otherwise set length := list len∗(D[x1].len, ..., D[xj].len). If length
> max len(k) then return ↓ else:

∗ set lhnd := curhndu + +; and

D :⇐ (ind := size + +, type := list, arg := (x1, ..., xj)

, hndu := lhnd, len := length).

• i-th element projection: xhnd ← list proj(lhnd, i), for 0 ≤ i ≤ max len(k).

If D[hndu = lhnd ∧ type = list].arg = (x1, ..., xj) with i ≤ j then
xhnd := ind2hndu(xi). Else xhnd :=↓.

4The idea here is THH uses 1 entry for all identical pieces of data.
5So we can guarantee that no secret-key share is sent to other parties.

29

Nonces THH simply makes a new entry.

• Generating a nonce: nhnd ← gen nonce().

Set nhnd := curhndu + + and

D :⇐ (ind := size + +, type := nonce, arg := (), hndu := nhnd,

len := nonce len∗(k)).

(t, w)-threshold homomorphic encryption with NIZK proof of plain-
text validity with (t − 1) < w/3 . These are the main cryptographic
operations offered in this library.

• Key generation:pkhnd ← gen enc thres keylist(u1, ..., uj)

for (w− t) < j ≤ w, where {u1, ..., uj} are honest users who will receive
a secret-key share for each one. The rest of secret-key shares will belong
to the adversary.

If any {u1, ..., uj}\H 6= ∅ then set pkhnd :=↓. Else

– Set pkhnd := curhndu ++, pkhnd
ui

:= curhndui
++ for i ∈ {1, ..., j},

pkhnd
a := curhnda + +, and

D :⇐ (ind := size + +, type := pke, arg := (u1, ..., uj), hndu := pkhnd

, hnda := pkhnd
a , len := pke thres len∗(k)).

. Let pkind := size.

– For i ∈ {j + 1, ..., w}
∗ Set skhnd

i := curhnda + +; and

D :⇐ (ind := size + +, type := ske, arg := (pkind), hnda := skhnd,

len := 0).

– Output (u, pkhnd
a , skhnd

j+1, ..., sk
hnd
w) to the port outa!

6.

• Encryption:(chnd, phnd) ← encrypt thres(pkhnd,mhnd)
where phnd is the NIZK proof of plaintext validity.

Set pk := D[hndu = pkhnd ∧ type = pke].ind and m := D[hndu =
mhnd ∧ type = data].arg[1] and length := enc thres len∗(k, D[m].len).
If length > max len(k) or pk =↓ or m =↓ then return ↓. Otherwise
check if valid∗(D[m].arg) = false then return ↓. Else

6Send to the adversary public information along with his secret share.

30

– Set chnd := curhndu + +, phnd := curhndu + + and chnd
a :=

curhnda + +, phnd
a := curhnda + +; and

D :⇐ (ind := size + +, type := enc, arg := (pk, m), hndu := chnd,

hnda := chnd
a , len := length).

and

D :⇐ (ind := size + +, type := nizk, arg := (size− 1), hndu := phnd,

hnda := phnd
a , len := nizk len∗(k, D[m].len));

– Output (u, chnd
a , phnd

a) to the port outa!, expecting (nizkaccept, u, phnd
a)

from the port ina?
7. Finally return.

• Generating a decryption share: dshnd ← decrypt thres(skhnd, chnd
1 , ..., chnd

j ,
phnd

1 , ..., phnd
j) where {chnd

1 , ..., chnd
j } is a set of ciphertexts and {phnd

1 , ..., phnd
j }

is a set of corresponding proofs for plaintext validity. This command
returns a decryption share of a possible ciphertext of the plaintext,
which is the result of the algebraic operation on all original plaintexts8.

– Set sk := D[hndu = skhnd ∧ type = ske].ind and ci := D[hndu =
chnd
i ∧ type = enc].ind and pi := D[hndu = phnd

i ∧ type = nizk].ind
and mi := D[ci].arg[2] for all i ∈ {1, ..., j}.
If any D[pi].arg =↓9 then output (u, witness, chnd, phnd) to the port
outa!, expecting (u, witness,mhnd

i). If arg of chnd
i contains the index

of mhnd
i then set D[pi].arg := D[hnda = mhnd

i].ind, else return ↓10.

– Return ↓ if sk =↓ or any ci =↓ or any pi =↓.
– Return ↓ if D[ci].arg[1] 6= D[sk].arg[1] or D[pi].arg[1] 6= ci for any

i.

– Return ↓ if any mi =↓.11

– Else

∗ Set m arg := D[m1].arg[1] ¢ · · ·¢ D[mj].arg[1]);

7We have assumed that the adversary replies immediately in this case.
8Users can always make decryption shares for only one ciphertext. However, this com-

mand gives them more power to encrypt a combination of ciphertext as well. Note that
users can not combine ciphertexts first then decrypt, because they can not give the corre-
sponding proof of validity.

9Invalid nizk.
10The adversary may have inserted invalid ciphertexts to the database together with

invalid proofs.
11As some ciphertexts may be results of the command adv invalid ciph thres.

31

∗ Set m ind := D[type = data ∧ arg = (m arg)].ind. If
m ind =↓ then

· D :⇐ (ind := size + +, type := data, arg := (m arg),
len := data len∗(|m arg|));12

· Set m ind := size;

∗ Set dshnd := curhndu + + and

D :⇐ (ind := size + +, type := decshr, arg := (m ind, c1, ..., cj),

hndu := dshnd

, len := ds thres len∗(k, enc thres len∗(k, D[m].len))).

• Combining decryption shares:mhnd ← combine thres(dshnd
1 , ..., dshnd

w)
where {dshnd

1 , ..., dshnd
w } is the set of all w decryption shares

Let dsi := D[hndu = dshnd
i ∧ type = decshr].ind for all i ∈ {1, ..., t}.

First, check if all of dsi are decryption shares for the same combination
of ciphertexts13. If not then return ↓.
Otherwise, among all of D[dsi].arg[1], find the majority which share
the same value, say m. If the majority has less than 2w/3 elements
then return ↓14. Otherwise return mhnd := ind2hndu(m) 15.

• Public key retrieval: pkhnd ← pk of enc thres(chnd).

Let c := D[hndu = chnd ∧ type = enc].ind. Return ↓ if c =↓. Otherwise
let pk := D[c].arg[1] and return pkhnd := ind2hndu(pk).

4.4.4 Adversarial commands

Now we see the power of the adversary in this ideal system. The adversary
can use any command that an honest user can and some extra commands.
The following commands are offered only to the adversary.

12Note the for this new data, no users has handle to it at this moment. It means that
even some users have decryption shares, they still do not know the plaintext until they
combine them.

13We even accept invalid decryption shares made by the adversary but they should point
to the same combination of ciphertexts.

14In this case we do not have enough correct decryption share to continue.
15Note that honest users must use authentic channels to send their decryption share

according to Remark 4.1.1

32

General adversarial commands

• Creating invalid entry : yhnd ← adv garbage(l) for l ∈ N and l ≤
max len(k).16

Set yhnd := curhnda + + and

D :⇐ (ind := size + +, type := garbage, arg := (), hnda := yhnd,

len := l).

• Retrieving parameters : (type, arg) ← adv parse(mhnd) where mhnd is a
handle that points to any kind of data.

Let m := D[hnda = mhnd].ind and set type := D[m].type. In most
cases, set arg := ind2hnd∗a(D[m].arg). There are two exceptions here.

– When type = enc and D[m].arg is of the form (pk, l) (a valid
ciphertext) and the adversary has less than t secret shares in D17,
set arg := (ind2hnda(pk), D[l].len).

– When type = decshr and D[m].arg is of the form (l, c1, ..., cj)
(a valid decryption share) and the sum of the number of valid
decryption shares from the same ciphertext and the number of
secret shares that the adversary has is less than t − 118. In this
case, set arg := (c1, ..., cj).

Advesarial commands for (t, n) threshold homomorphic encryption
+ NIZK proof of plaintext validity In the following we denote ε for
unknown plaintext.

• Invalid key generation:pkhnd ← adv gen enc()

Set pkhnd := curhnda + + and

D :⇐ (ind := size + +, type := pke, arg := (), hnda := pkhnd,

len := pke thres len∗(k)).

• Creating invalid ciphertext of length l
(chnd, phnd) ← adv invalid ciph thres(pkhnd, l) for 1 ≤ l ≤ max len(k)
where phnd is also an invalid NIZK proof of plaintext validity.

16l is the data length.
17Key generation has been done by an honest user
18It means the adversary has had enough elements to get the plaintext.

33

Set pk := D[hnda = pkhnd ∧ type = pke].ind. If pk =↓ then return ↓.
Otherwise set chnd := curhnda + + and phnd := curhnda + + and

D :⇐ (ind := size + +, type := enc, arg := (pk), hnda := chnd,

len := l).

D :⇐ (ind := size + +, type := nizk, arg := (), hnda := phnd,

len := nizk len∗(k, l)).

• Adversarial decryption: dshnd ← adv decrypt thres(skhnd, chnd
1 , ..., chnd

j)
where {chnd

1 , ..., chnd
j } is a set of ciphertexts. It should be noticed that

the adversary does not need a list of the corresponding NIZK proofs of
plaintext validity.

– Set sk := D[hnda = skhnd ∧ type = ske].ind and ci := D[hnda =
chnd
i ∧ type = enc].ind and mi := D[ci].arg[2] for all i ∈ {1, ..., j}

– Return ↓ if sk =↓ or any ci =↓.
– Return ↓ if D[ci].arg[1] 6= D[sk].arg[1] for any i.

– Return ↓ if any mi =↓.19

– Else

∗ Let m arg := multiply(D[m1].arg[1], ..., D[mj].arg[1]).

∗ Let m ind := D[type = data ∧ arg = (m arg)].ind. If
m ind =↓ then

· D :⇐ (ind := size + +, type := data, arg := (m arg),
len := data len∗(|m arg|));20

· Set m ind := size.

∗ Set dshnd := curhnda + + and

D :⇐ (ind := size + +, type := decshr, arg := (m ind, c1, ..., cj),

hndu := dshnd,

len := ds thres len∗(k, enc thres len∗(k, D[m].len))).

• Creating invalid decryption-share for a plaintext of length l:
dshnd ← adv invalid decshr(l, chnd

1 , ..., chnd
j) for all i ∈ {1, ..., j}.

19As some ciphertexts may be results of the command adv invalid ciph thres.
20Note the for this new data, the adversary does not have handle to it at this moment.

It means that even he has this decryption share, they still do not know the plaintext.

34

Let ci := D[hndu = chnd
i ∧ type = enc].ind for all i ∈ {1, ..., j}. Return

↓ if any ci =↓.
Set dshnd := curhnda + + and

D :⇐ (ind := size + +, type := decshr, arg := (ε, c1, ...cj),

hnda := dshnd, len := ds thres len∗(k, enc thres len∗(k, l))).

• Unblocking an honest user to receive his secret share: learn share(pkhnd
a

, ui)

Let pkind := D[hnda = pkhnd
a].ind. If ui is not in D[pkind].arg then

return.

Otherwise let pkhnd
ui

:= curhndui
++ the D[pkind].hndui

:= pkhnd
ui

.

Then set skhnd
ui

:= curhndui
+ +; and

D :⇐ (ind := size + +, type := ske, arg := (pkind), hndui
:= skhnd

ui
,

len := 0).

Finally output (u, pkhnd
ui

, skhnd) to the port outui
!.

4.4.5 Send commands

Users send lists to others. All of messages from one honest user to another
in secure or authentic channels are scheduled by the adversary. Messages to
or from the adversary are output immediately.

• send x(v, lhnd) for x ∈ {s, a, i} and v ∈ {1, ..., n}
Let l := D[hndu = lhnd ∧ type = list].ind. If l 6=↓ then

– If (u, v, x) ∈ ch honest then output l at net idu,v,x!.
21

– If (u, v, x) ∈ ch to adv then output (u, v, x, ind2hnda(l)) at outa!.
22

• adv send x(u, v, lhnd) for x ∈ {s, a, i}, u ∈ {1, ..., n} and v ∈ H. This
command is for the adversary only, i.e. this command can be called
only at the port ina?. The adversary uses this command to pretend u
sent a message to v.

Let l := D[hnda = lhnd ∧ type = list].ind. If l 6=↓ and (u, v, x) ∈
ch from adv then output (u, v, x, ind2hndv(l)) at outv!

21The message will be sent to outv! later on. See Section 4.4.6.
22Note that both of these cases may happen for the same message, for example

anauthentic channel.

35

4.4.6 Inputs from Secure channels

On input l at port net idu,v,x? for l ∈ INDS where l ≤ size:

THH outputs (u, x, ind2hndv(l)) at outv!

4.5 Properties of the Ideal library

We prove that the ideal library has some properties by giving the following
lemmas. We need these lemma later in the security proof in Chapter 7. For
every entry x in database D, let owners(x) := {u ∈ H ∪ {a} | x.hndu 6=↓}.
Lemma 4.5.1. The ideal systems Syscry,id,t

n,L for t ∈ {stan, loc} have the fol-
lowing properties:

1. Index and handle uniqueness: The argument ind is a key at-
tribute in D. Also |σhndu=ihnd(D)| = 1 for any ihnd ≤ curhndu and
|σhndu=ihnd(D)| = 0 for any ihnd > curhndu.

2. Well-defined terms: If an entry x = D[i] has an index argument
a := x.arg[j] ∈ INDS for j ∈ N, then a < i.

3. Message correctness: Let denote net idu,v,x[i] as the i-th element in
the buffer of the channel. Then the following statement always holds:
for all (u, v, x) ∈ ch honest, each message l := net idu,v,x[i] with l 6=↓
has D[l].type = list.

4. Length bounds: For all x ∈ D, x.len ≤ max len(k) at all times.

5. Key secrecy:If D[i].type = ske, then D[i] is not a component of D[j]
for any i 6= j and |owner(D[i])| = 1 at all times23.

6. There is only one modification to an existing entry in D is to update
an entry of zero-knowledge proof when the adversary provide the wit-
ness. ¤

Proof. Part 1 is stated in Section 4.3.2 and all the usage of the database
follow the conventions.

Part 2,3,4, 5 and 6 can be proved be inspection of all commands ¤
23In this case we write owner.

36

Lemma 4.5.2. The ideal systems Syscry,id,t
n,L for t ∈ {stan, loc} have the fol-

lowing properties:

1. The systems are polynomial-time.

2. In the ideal system, no input is rejected because a counter stepsnet idu,v,x?

has reached its bound.

3. When THH assigns a handle x.hndu, it outputs the handle to the port
outu! in the same transition. ¤

Proof. For part 1, from Section 4.4.2 we see that the input number for each
port is bounded by boundp?, which is polynomial in k. Also for each accepted
input, the maximum length is always bounded by lengths functions that are
also polynomial in k. Furthermore, action in each command is also clearly
polynomial. As a consequence, THH is polynomial-time.

Part 2 holds because before messages get into a buffer net idu,v,x they must
be sent by a command send x at port inu?. However, the number of inputs
for this port is also bounded by max in(k).

Part 3 can be seen by inspection of commands. ¤

37

Chapter 5

THE REAL LIBRARY

In this chapter, we describe a real library that we can build from some practi-
cal cryptographic components. We will show what cryptographic components
we need, what the structure of the real system is and how to build it from the
components. The main difference of a real system from an ideal one is that
the real one is made from several machines working over the network with
the existence of an adversary and any of these machines can be corrupted as
the adversary wishes, while the ideal one is made in one piece and ”trusted”.

Similarly as describing the ideal system, we use notations in [PW01] and
follow the outline of [BPW03a].

5.1 Cryptographic operations

In this section, we describe what cryptographic components we need to build
a real library that is ”equivalent” to the ideal in Section 4. We will give
definitions of those components and also specify what security requirements
they must satisfy. Range of all algorithms is {0, 1}+ ∪ {↓}. In addition, to
show that building such a real system is possible, we will point out that all
the components have been shown to exist.

5.1.1 Key distribution system

We need a way to securely distribute the secret-key shares of a homomorphic
threshold cryptosystem. In the real system we assume that we have a UC-
secure distributed key generation protocol, or in other word a functionality
FKEY. For u ∈ H ∪ {a}, FKEY has ports {inkey,u?, outkey,u!}, which are

38

Functionality FKEY

Parameterized with a security parameter k, a (t, w) homomorphic
threshold key generation algorithm, running with parties P1, ..., Pm and
adversary S

Key gen: On input (keygen, d, sid, u1, ..., uj) from a
party Pd, generate a set of keys (pk, sk1, ..., skw). Af-
ter that send (publickey, d, sid, pk, u1, ..., uw) to Pd, send
(secretshare, d, sid, ski, i, pk, u1, ..., uw) to party Pui

for all i ∈ {1, ...j},
send (secretshare, d, sid, skj+1, ..., skw, pk, u1, ..., uj) to Sa.

aThe rest of secret shares belong to S

Figure 5.1: The distributed key generation functionality FKEY

bounded by max in(k). For simplicity we also assume that the adversary
does not block and delay messages. We describe our FKEY in Figure 5.1.
For realizing such a protocol we refer to [AF04, Wik04].

5.1.2 Semantic security for (t, w)-threshold homomor-
phic encryption scheme

Given a (t, w)-threshold homomorphic encryption scheme E thres as described
in Section 2.5, we require that t − 1 < w/3 and our threshold encryp-
tion scheme must be secure under chosen plaintext attack or ”IND-TCPA”
[FP00, FPS01]. Specifically, we require the threshold encryption must satisfy
the following security definition

Definition 5.1.1. (IND-TCPA security) Given a (t, w)-threshold encryption
scheme, the decryptor Dec is defined as follows: It has one input and one
output port, variables pk, sk1, ..., skw, c′ initialized with ↓ and it works by the
following transition rules:

• In the beginning set (pk, sk1, ..., skw) ← FKEY.

• On input (corrupt, u1, ..., ut−1) for the first time, where u1, ..., ut−1 ∈
{1, ...w} , output (pk, sku1 , ..., skut−1).

• On input (share,m, c) and if (m, c) is a correct plaintext-ciphertext pair,
then for i = 1 to w { output dsi ← D thressk i(c) }.

39

• On input (enc,m0,m1) and if |m0| = |m1| and c′ =↓ then

– pick a random coin r;

– set b
R←− {0, 1};

– set c′ ← E threspk(mb);

– finally store and output c′.

The threshold encryption scheme is called indistinguishable under chosen
plaintext attack (IND-TCPA) if for every PPT machine Aenc that interacts
with Dec and finally output a guess b∗, we have

|Pr[b∗ = b]− 1/2| ≤ g(k)

for a negligible function g(). ¦

Informally this security definition means even the adversary has learnt t− 1
secret shares, he gains nothing in a chosen plaintext attack.

5.1.3 Non-interactive zero-knowledge proof of knowl-
edge

For implementation of the real system, we assume that we have a UC-secure
NIZK protocol as introduced in Section 2.6. For u ∈ H ∪ {a}, FNIZK has
ports {innizk,u?, outnizk,u!}, in which the number of new proofs is bounded
by max in(k) for each port. Therefore, in our real system we will replace
it by a NIZK functionality FNIZK. Thus our real library still realizes the
ideal one according to UC composition theorem. For realizing a such NIZK
functionality we refer to [GOS06]. We describe a NIZK functionality for a
witnessing relation R and security parameter k in Figure 5.2.

With this functionality we have a function nizk len(k, l) to get the length of
the proof where k is the security parameter and l is the length of witness.
We also assume that we have a function valid(m) that returns true if the
plaintext m is valid, otherwise returns false. Now we can define a witnessing
relation R as follows.

Definition 5.1.2. Given an encryption scheme E thres as defined in Section 2.5
and a function valid(m), a tuple (x,w) where x = (c, pk) and w = (m, r) is
in relation R if:

40

Functionality FNIZK

Parameterized with a security parameter k, a witnessing relation R,
running with parties P1,...,Pn and the adversary S. FNIZK uses a database
nizks to store pairs of x and p.

Proof :

• On input (prove, d, sid, x, w) from a party Pd, ignore if (x,w) /∈ R.
Send (prove, d, sid, x) to S and wait for an answer (proof , d, sid, π).

• On receiving the answer (proof , d, sid, π) from S, store (x, π) and
send (proof , sid, π) to Pd.

Verification:

• On input (verify, d, sid, x, π) from a party Pd, check if (x, π) is
stored. If (x, π) has been stored then send (verification, sid, 1) to
Pd. If (x, π) has not been stored then send (verify, d, sid, x, π) to S
and wait for an answer (witness, d, sid, w).

• On receiving (witness, d, sid, w), check if (x,w) ∈ R. If (x,w) ∈ R
then store (x, π) and send (verification, sid, 1) to Pd. Otherwise
send (verification, sid, 0) to Pd

Figure 5.2: The NIZK functionality FNIZK for a witnessing relation R.

• valid(m) = true and

• c = E threspk(m, r). ¦

Remark 5.1.1. Note that we assume that for any message m, we have
valid(1|m|) = true because we always encrypt 1|m| instead of encrypting an
unknown message m. However, this assumption does not cause any lost of
generality.

For simplicity we also assume that the adversary does not block and delay
messages. ¦

41

5.2 Structures

Now we can describe the structure of the real system as follows. Given an
encryption scheme E thres, a functionality FNIZK as a non-interactive zero-
knowledge proof system for plaintext validity, a functionality FKEY as a
distributed key generation system for E thres , a parameter n that denotes
the number of participants, and L′ is a tuple of parameters (We will discuss
more about it in Section 5.3), we can define 2 versions of a real crypto-
graphic library Syscry,real,stan

n,E thres,FNIZK,FKEY,L′ and Syscry,real,loc
n,E thres,FNIZK,FKEY, which are

stand-alone and localized versions respectively.

Now we give a full description of them, using also the model in [PW01]

• The intended structure contains n machines {M1, ..., Mn}.
• The intended ports are the 2 sets

S∗,stan
c

:= {inu!, outu?|u ∈ {1, ..., n}};
S∗,locc

:= {inu!, outu?, inu
C!|u ∈ {1, ..., n}}.

It means that each Mu has corresponding ports inu? and outu!. In the
localized version, Mu has also a local clock port outu

C!.

• The communication between a machine Mu and another one Mv is via
three connections netu,v,s, netu,v,a and netu,v,i, which are the secure,
authentic and insecure channels respectively. We call them network
connections and call corresponding ports network ports. The adversary
can schedule all of these connections, can get messages in {a, i} connec-
tions and it should be noticed that the messages from an i connection is
always come from the adversary. However, we require a condition that
honest users always use netu,v,s or netu,v,a to send decryption shares.1.

• The channel model X maps each network connection netu,v,x to x.

• Each machine Mu also has three ports innizk,u!, innizk,u
C! and outnizk,u? to

communicate with FNIZK and three ports inkey,u!, inkey,u
C! and outkey,u?

to communicate with FKEY.

• The access structure ACC contains all subsets of H ∈ {1, ..., n}.

Figure 5.3 depicts the structure of the real system.

1In multiparty computation we assume the adversary can not change the message sent
between honest users.

42

H

Mu
Mv

A

SH
inu outu inv outv

netu,v,s

netu,v,a

netu,v,i

neta
u,v,s

neta
u,v,i

Du
Dv

FNIZK

FKEY

Figure 5.3: The real system that uses NIZK and key generation functionali-
ties (Localized version)

5.3 System parameters

As we have defined tuple L that consists of functions to get lengths and
bounds in the ideal system, in the real system we also want to bound the
length of messages and also allow users to get length of any message. Cor-
respondingly, the real system has a tuple L′ that contains the functions
max len(k), max in(k) as in the ideal system. It also has a function
nonce len(k) such that 2−nonce len(k) is negligible.

Now we can map from the tuple L′ in the real system to L in the ideal one.
Given E thres, a NIZK functionality FNIZK and a distributed key generation
system FKEY, we can define a function R2Ipar so that

L := R2Ipar(E thres, FNIZK, FKEY, L′).

Now L’s functions mentioned in Section 4.2 can be defined as:2

2The idea here is that we use tags to distinguish different pieces of data.

43

• data len∗(l) := list len(|data|, l);
• list len∗(l1, ..., lj) := list len(|list|, l1, ..., lj);
• nonce len∗(k) := list len(|nonce|, nonce len(k));

• pke len∗(k) := list len(|pke|, pke len(k));

• enc len∗(k, l) := list len(|enc|, pke len(k), enc thres len(k, l));

• nizk len∗(k, l) := list len(|nizk|, nizk len(k, l), pke len∗(k)
, enc len∗(k, l));

• ds thres len∗(k, cl) := list len(|decshr|, ds thres len(k, cl));

and max len(k), max in(k) are unchanged.

Lemma 5.3.1. Given a correct tuple L′ of parameters for the real library,
correct encryption scheme E thres, two correct functionalities FNIZK and
FKEY, the algorithm L := R2Ipar(E thres, FNIZK, FKEY, L′) yields a correct
tuple L of parameters for the ideal library. ¤

Proof. It can be seen easily by verifying that the computed tuple L meet all
conditions in Section 4.2. ¤

5.4 States of one machine

Basically, each machine Mu also has its own database Du, a variable curhndu

pointing to the current handle and a variable stepsp? for each input port p?.

5.4.1 Database Du

Each machine Mu use its database Du to store its running data. Each entry
x in Du has the following attributes

(hndu, word, type, add arg)

where

• x.hndu ∈ HNDS consecutively numbers all entries in Du. We use it
as the primary key, so we write Du[i

hnd] for Du[hndu = ihnd].

44

• x.word ∈ {0, 1}+ is the real data of x.

• x.type ∈ typeset ∪ {null} is the type of x. A null value means the entry
has not been parsed.

• x.add arg is a list of additional data. This attribute depends on type
of x.

5.4.2 Conventions about Handles

Mu uses a counter curhndu of type HNDS to store the current number of
elements in Du. Initially Du is empty and curhndu = 0. When a new entry x
is added, Mu always set x.hndu := curhndu + + and after that this attribute
never changes.

When we write
(ihnd, Du) :← (i, type, add arg)

we mean ”determine a handle ihnd for that data in Du” where i ∈ {0, 1}+,
type ∈ typeset ∪ {null} and add arg ∈ LIST . We use the following algo-
rithm:

• If ihnd := Du[word = i ∧ type 6= ske].hndu 6=↓ then

– If Du[i
hnd].type = null3 then Du[i

hnd].type = type and update
add arg of Du[i

hnd].

– return ihnd.

• Otherwise

– if |i| ≥ max len(k) then return ihnd :=↓.
– Else set ihnd := curhndu + + and Du :⇐ (ihnd, i, type, add arg).

Finally return ihnd.

5.4.3 Input Counters

For each input port p?, Mu uses a counter stepsp? ∈ N0 initialized with 0
to count the number of inputs at that port. The bound boundsp? for the
number of inputs equals max in(k).

3It has not been parsed

45

5.5 Inputs and their Evaluation

Now we look at the details of commands offered to users in this real library.

5.5.1 General working conventions

In this library we still use the same idea used for conventions in the ideal
library.

Upon each input at a port p?, first THH increments the counter stepsp?.
After that THH uses the length function to check how many bits of input
can be accepted at each port. This value depends on the current state. Once
stepsp? has reached the bound boundp?, the length function for this port
always returns 0, meaning that no input is accepted.

An input is called well-formed when it is in the correct domain. If it is not,
then Mu can always verify and then aborts the transition. From now we
consider only well-formed inputs.

In the localized version, for every output outu! , Mu schedules itself by making
a clock output 1 at outu

C!.

5.5.2 Constructors and One-level parsing

Constructors For each type, we define a main algorithm to construct data,
make type(). It is purely functional and uses only one global variable,the
security parameter k.4

One-level parsing We define a functional parsing algorithm

(type, arg) ← parse(m)

for m ∈ {0, 1}+. Here type ∈ typeset and arg is a list of elements of Σ∗.

The algorithm works as follows:

• On input m, check if it is of the form (type,m1, ..., mj) with type ∈
typeset\{ske, garbage} and j ≥ 0. If fail then return (garbage, ()).

4This structure is useful for proving.

46

• Otherwise make a call to a type-specific parsing algorithm arg ←
parse type(m). Such algorithm returns ↓ if m is not that type, oth-
erwise it returns corresponding arguments (these algorithms are de-
scribed in Section 5.5.3). If parse type(m) returns arg =↓ then return
(garbage, ()) again.

By writing ”parse mhnd” we mean Mu calls (type, arg) ← parse(Du[m
hnd].word)

then assigns Du[m
hnd].type := type if this attribute is null and may use arg.

When we write ”parse mhnd if necessary” we mean the same thing but Mu

does it only if Du[m
hnd].type = null.

5.5.3 Basic commands and parse type algorithms

We describe how Mu evaluates a command when it is entered at port inu?.

Type and length queries

• Type query : t ← get type(xhnd).

Parse xhnd if necessary. Then set t := Du[x
hnd].type.

• Length query : l ← get len(xhnd).

Parse xhnd if necessary. If Du[x
hnd].type 6= ske then set l := |Du[x

hnd].word|,
else set l := 0.

Storing and retrieving data

• Constructor : d ← make data(m), for m ∈ {0, 1}∗.
Set d := (data,m).

• Storing : mhnd ← store(m).

Let d ← make data(m) then (dhnd, Du) :← (d, data, ()).

• Parsing : arg ← parse data(m).

If m is of the form (data,m′) where m′ ∈ {0, 1}∗ then return (m′).
Otherwise return ↓.

• Retrieval : m ← retrieve(mhnd).

Parse xhnd if necessary. Return parse data(Du[hndu = mhnd ∧ type =
data].word)[1].

47

Lists

• Constructor : l ← make list(x1, ..., xj) for j ∈ N0 and xi ∈ {0, 1}+ for
i ∈ {1, ..., j}.
Set l := (data, x1, ..., xj).

• Generating a list : lhnd ← list(xhnd
1 , ..., xhnd

j), for 0 ≤ j ≤ max len(k).

If Du[x
hnd
i].type = ske for any i, then return ↓. Otherwise set l =

make list(Du[x
hnd
1].word, ..., Du[x

hnd
j].word) and (lhnd, Du) :← (l, list, ()).

• Parsing : arg ← parse list(l).

If l is of the form (list, x1, ..., xj) where j ∈ N0 and xi ∈ {0, 1}+ for
i ∈ {1, ..., j}, then return (x1, ..., xj). Otherwise return ↓.

• i-th element projection: xhnd ← list proj(lhnd, i), for 0 ≤ i ≤ max len(k).

Parse lhnd, getting arg. If Du[l
hnd].type 6= list then return ↓. Otherwise

let x := arg[i]. If x =↓ then return ↓, else (xhnd, Du) :← (x, null, ()).

Nonces

• Constructor : n ← make nonce(m).

Let n′
R←− {0, 1}nonce len(k) and then set n := (nonce, n′).

• Generating a nonce: nhnd ← gen nonce().

Let n ← make nonce(m), nhnd := curhndu++ and Du :⇐ (nhnd, n, nonce, ()).

• Parsing : arg ← parse nonce(n)

If n is of the form (nonce, n′) where n′ ∈ {0, 1}nonce len(k) then return
(), else return ↓.

(t, w)-threshold homomorphic encryption with NIZK proof of plain-
text validity

• Key generation:pkhnd ← gen enc thres keylist(u1, ..., uj) for (w − t) <
j ≤ w.

Activate FKEY with input (u1, ..., uj), getting back a message (publickey,
d, sid, pk,)5. Let pk∗ := (pke, pk, d, sid, u1, ..., uj), set pkhnd := curhndu++
and Du :⇐ (pkhnd, pk∗, pke, ()).

5Here we need not a key-gen constructor. The secret-key shares are sent by FKEY to
the intended users securely. See Section 5.5.5.

48

• Public-key parsing : arg ← parse pke(pk∗).

If pk∗ is of the form (pke, pk) where pk ∈ {0, 1}pke thres len(k) then return
(), else return ↓.

• Encryption constructor : c∗, p∗ ← make enc(pk∗,m) for pk∗,m ∈ {0, 1}+.

Pick an r
R←− {0, 1}nonce len(k). Let pk := pk∗[2], encrypt c ← E threspk(m, r)

and set c∗ := (enc, pk, c).

Let w := (m, r) and x := (c, pk). Submit (x,w) to FNIZK, getting back
p. If p =↓ then return ↓. Otherwise let p∗ := (nizk, p, c∗, pk∗).

• Encryption:(chnd, phnd) ← encrypt thres(pkhnd,mhnd) where phnd is the
NIZK proof of plaintext validity.

Parse pkhnd and mhnd if necessary. If Du[pk
hnd].type 6= pke or Du[m

hnd].type 6=
data then return ↓. Otherwise let pk∗ := Du[pk

hnd].word, m := Du[m
hnd].word

and c∗, p∗ ← make enc(pk∗,m).

If c∗ =↓ or c∗ > max len(k) then return ↓. Else

– Set chnd := curhndu + + and Du :⇐ (chnd, c∗, enc, ()).

– Set phnd := curhndu + + and Du :⇐ (phnd, p∗, nizk, ()).

• Ciphertext parsing : arg ← parse enc(c∗).

If c∗ is not of the form (enc, pk, c) where pk ∈ {0, 1}pke thres len(k) and
c ∈ {0, 1}+ then return ↓, else set arg := (pk∗) := (pke, pk).

• NIZK proof parsing : arg ← parse nizk(p∗).

If p∗ is not of the form (nizk, p, c∗, pk∗) where p ∈ {0, 1}nizk len(k) then
return ↓, else set arg := (c∗, pk∗).

• Functional decryption: ds∗ ← make decrypt thres(sk∗, c∗1, ..., c
∗
j ,

p∗1, ..., p
∗
j).

Let sk := sk∗[2], ci := c∗i [3] and pi := p∗i [2] for i = 1, ..., j. Give every
pair ((ci, c

∗
i [2]), pi) to FNIZK, if any proof is invalid then return ↓.

Otherwise compute c := c1 ¡ · · ·¡cj and let ds := D thressk(c). Set
c∗ = (enc, c∗1[2], c). Return ds∗ := (dec shr, ds, c∗, sk∗[4], c∗1, ..., c

∗
j).

• Generating a decryption share: dshnd ← decrypt thres(skhnd, chnd
1 , ..., chnd

j ,
phnd

1 , ..., phnd
j) where {chnd

1 , ..., chnd
j } is a set of ciphertexts, {phnd

1 , ..., phnd
j }

is a set of corresponding proofs for plaintext validity.

49

Parse chnd
i to have argi := (pk∗i). Return ↓ if all of pk∗i are not the same.

Otherwise say the same public key is pk∗. Return ↓ if Du[sk
hnd].type 6=

ske or Du[sk
hnd].word[3] 6= pk∗ or any Du[c

hnd
i].type 6= enc or any

Du[p
hnd
i].type 6= nizk.

Otherwise set sk∗ := Du[sk
hnd].word, c∗i := Du[c

hnd
i].word, p∗i :=

Du[p
hnd
i].word then let ds∗ ← make decrypt thres(sk∗, c∗1, ..., c

∗
j ,

p∗1, ..., p
∗
j). If ds∗ =↓ then return ↓. Otherwise (dshnd, Du) :← (ds∗, decshr, ()).

• Decryption share parsing : arg ← parse decshr(ds∗).

If ds∗ is not of the form (decshr, ds, c, i) where ds ∈ {0, 1}ds thres len(k)

then return ↓, else set arg := (c, i).

• Functional combination: m ← make combi(ds∗1, ..., ds∗t).

Let dsi := ds∗i [2]. Set m := C thres(ds1, ..., dst).

• Combining decryption shares:mhnd ← combine thres(dshnd
1 , ..., dshnd

w)
where {dshnd

1 , ..., dshnd
w } is the set of all w decryption shares

Let ds∗i := Du[dshnd
i].word for all i ∈ {1, ..., w}. First check if all of

ds∗i [3] are the same 6. If not then return ↓.
Otherwise, according to Theorem 2.5.1, from the set of ds∗i [2], Mu can
find the majority of the correct result using make combi(ds∗1, ..., ds∗t)
(Because of the condition (t − 1) < w/3). Say the correct plaintext is
m. Let (mhnd, Du) :← (m, data, ())7.

• Public key retrieval: pkhnd ← pk of enc thres(chnd).

Parse chnd to get arg. If Du[c
hnd].type 6= enc then return ↓. Else set

(pkhnd, Du) :← (arg[1], pke, ()).

5.5.4 Send commands

• send x(v, lhnd) for x ∈ {s, a, i} and v ∈ {1, ..., n}.
Parse lhnd if necessary. If Du[l

hnd].type = list then output Du[l
hnd].word

at port netu,v,x!.

6It means all of decryption share are supposed from the same ciphertext, even malicious
decryption shares

7Note that honest user must use authentic or secure channels to send decryption share.
See Section 5.2

50

5.5.5 Network Inputs

• On input l at a port netw,v,x? for l ∈ {0, 1}+ and |l| ≤ max len(k).

Check if l is of the form (list, x1, ...xj) for some j ∈ N0 and xi ∈
{0, 1}+. If yes then (lhnd, Du) :← (l, list, ()) and output (w, x, lhnd) at
outu!.

5.5.6 Inputs from FKEY

• On input (secretshare, d, sid, sk, i, pk, u1, ..., uj) at a port outkey,u?.

Let pk∗ := (pke, pk, d, sid, u1, ..., uj), set pkhnd := curhndu + + and
Du :⇐ (pkhnd, pk∗, pke, ()).

Let sk∗ := (ske, sk, pk, i), set skhnd := curhndu + + and Du :⇐ (skhnd

, sk∗, ske, ()).

Output (pkhnd, skhnd) to the port outu!.

5.6 Properties of the Real system

We show that the real library has some properties, which we will use later in
security proof.

Lemma 5.6.1. The real systems Syscry,real,t
n,E thres,FNIZK,FKEY,L′ for t ∈ {stan, loc}

have the following properties:

1. The argument hndu is a key attribute in Du.

2. Only two modifications may happen to existing entries x in Du:

• x.type changes from null to another type;

• x.add arg changes from () to something else at the same time.8

3. All the time we have |x.word| ≤ max len(k) for all x ∈ Du except
possibly when x.type = ske.

4. The systems are polynomial-time. ¤

8as a result of a parsing.

51

Proof. Part 1 holds as it is stated in Section 5.4.2.

Part 2 can be proved by inspection of commands.

Part 3 can be proved by inspection of the commands that produce new
entries.

For part 4, first we see that all algorithms used have polynomial numbers
of steps and also add polynomial numbers of entries to Du. Every input
is bounded by polynomial functions. Furthermore, each port also accepts
a polynomial number of inputs. As a consequence, the whole system is
polynomial-time. ¤

52

Chapter 6

THE SIMULATOR

We have discussed in the Section 2.2 about using a simulator to prove a
system is at least as secure as another one. In this chapter we will construct
a simulator SimH for each set H and in the chapter 7 we will prove that
for every real adversary A, the combination SimH(A), in which SimH uses
A as a blackbox (blackbox simulation), makes the same effects in the ideal
library as the real adversary A does in the real one. Then by simulatable
security definition we can show that for any t ∈ {stan, loc}, the library system
Syscry,real,t

n,E thres,FNIZK,FKEY,L′ in chapter 5 is at least as secure as the library system

Syscry,id,t
n,L in chapter 4.

The basic idea about how SimH works is just translating abstract messages
form ideal to real system and vice versa as described in Figure 6.1.

6.1 Ports and Scheduling

SimH communicates with THH via ports ina and outa, with A via all of network
connections netu,v,x.

For scheduling, A is still the master scheduler. It controls all of clock
ports as it does with the real library, except the clock port netu,v,x

C! with
(u, v, x) ∈ ch honest are renamed to net idu,v,x

C! and A controls these new
name-changed ports1.

THH still schedules its output port outa!.

SimH outputs 1 to ina
C! immediately whenever it makes an output at ina!.

1Port renaming is allowed here

53

H

inu! outu?

inu? outu!

ina?

outa!

THH A

SH

- Basic cmds

- Result of cmds
- Received msgs

- Adv cmds
- Send cmds

SimH

SimH(A)

Da

neta
u,v,x

neta
u,v,x

clk!

net idu,v,x

FNIZK

FKEY

Figure 6.1: The simulator translates messages between THH and the real
adversary A

SimH also also schedules the channels from FNIZK and FKEY (contained
inside the simulator) to the adversary A.

We use the following abbreviation when we mean SimH calls local commands:

”Call y ← x at ina! expecting ...”.

By writing this we mean SimH outputs x at ina! and schedules it, waits for
an input at outa? by setting other length functions to 0, and finally assigns
the input to y. If y is not in the expected domain stated after ”expecting”,
SimH aborts all current recursive algorithms and its outermost transition.
Note that THH responses to local commands called by SimH by giving the
result at the port outa! and also scheduling it immediately, we get subroutine
behaviour here.

6.2 States of the Simulator

The state of SimH includes a database Da, a variable curhnda and a counter
stepsp? for each input port p?. For each u ∈ H∪{a}, SimH also uses variables
keysidu, and nizksidu to use as sid when calling to FKEY and FNIZK. We
describe them in details below.

54

6.2.1 Database Da

SimH uses a database Da to store already mapped handles. Each entry in Da

contains the following attributes

(hnda, word, add arg)

For each entry x ∈ Da:

• x.hnda ∈ HNDS is the primary key attribute.

• x.word ∈ {0, 1}∗ is the real representation of x.

• x.add arg is a list of additional arguments.

6.2.2 Input counters

For each input port p?, SimH uses a counter stepsp?, initialized with 0, to
count the number of inputs at p?. The corresponding boundp? are max in(k) in
the case of network ports and max ina(k) = (2w + 10)n2max in(k)max len(k)
for the port outa? where w is the number of secret share per generation2.

6.3 Input Evaluation

6.3.1 General conventions

In general, on each input at a port p?, first SimH increments stepsp?. When
stepsp? has reached boundp?, the length function, which indicates the max-
imum of possible length of inputs at this port, always 0. Otherwise, the
function depends on different domain of input in each command below.

6.3.2 Inputs from THH

Here we consider only the inputs that are the results of commands called by
honest users.

2We explain later in the proof of Lemma 6.4.2.

55

• Input from send commands: On input m at port outa? where m =
(u, v, x, lhnd), (u, v, x) ∈ ch to adv and lhnd ≤ max hnd(k) := (2w +
6)n2max in(k)max len(k) (We explain why in the proof of Lemma 6.4.2).

If Da[l
hnd] 6=↓, let l := Da[l

hnd].word3.

Otherwise set curhnd + + and create a new real representation with
the algorithm l ← id2real(lhnd). This algorithm maps the handle of an
abstract term to its corresponding real representation. We will describe
the algorithm later in this Section.

Output l at the port netu,v,x!.

• New key generation: On input m at port outa? where m is of the form
(u, pkhnd

a , skhnd
j+1, ..., sk

hnd
w ,).

Increment keysidu. Call (type, arg) ← adv parse(pkhnd) at ina!, expect-
ing type = pke. arg must be of the form (u1, ..., uj) (The list of honest
users who keep secret shares).

Activate FKEY to make a set of w secret shares {sk1, ..., skw} and a
public key pk. For all i ∈ {1, ..., j} let sk∗i = (ske, ski, pk, i) and pk∗ =
(ske, pk, u, keysidu, u1, ..., uj). Then Da :⇐ (pkhnd, pk∗, (honest, sk∗1, ...
, sk∗j)).

Output (secretshare, u, keysidu, skj+1, ..., skw, pk, u1, ..., uj) at the port
outkey,a!. For all i ∈ {j + 1, ..., w} do Da :⇐ (skhnd

i , ski, ()). Wait until
the adversary clocks connections from FKEY to SimH.

For all i ∈ {1, ..., j}, when the adversary clocks the connection from
FKEY to the port outkey,ui

? then call learn share(pkhnd
a , ui).

• New zero-knowledge proof generation: On input (u, chnd, phnd) at the
port outa?.

Increment nizksidu. Make a call c∗ ← id2real(chnd). Then set x :=
(c∗[3], c∗[2]) and ask FNIZK to make a proof p4. Let pk∗ ← parse enc(c∗)
then set p∗ := (nizk, p, c∗, pk∗) and finally Da :⇐ (phnd, p∗, ()). Output
(nizkaccept, u, phnd) to the port ina!.

• Witness for a zero-knowledge proof generation: On input (u, witness, chnd

, phnd) at the port outa? outa?.

Increment nizksidu. Make a call c∗ ← id2real(chnd) and p∗ ← Da[p
hnd].word.

Set x := (c∗[3], c∗[2]) and p := (p) then ask FNIZK to verify. FNIZK will

3lhnd is mapped already
4Without a witness here because the simulator control FNIZK. FNIZK will ask A for p.

Note that we assume A replies without any delay

56

ask the adversary for witness in the form of (m, r). If FNIZK returns
true then store m, yielding mhnd. Then output (u, witness,mhnd

i) to the
port ina!. Otherwise output (u, witness, ↓) to the port ina!.

Now we describe the algorithm id2real. Basically id2real recursively parses
an abstract message, makes a corresponding real representation, and add all
new messages parts into Da. id2real may use local commands offered by THH.
Note that id2real is called only for new handles. id2real is defined as follows.

1. Call (type, (mhnd
1 , ..., mhnd

j)) ← adv parse(mhnd) at ina!, expecting type ∈
typeset\{ske, garbage}5, j ≤ max len(k) and mhnd

i ≤ max hnd(k) if
mhnd

i ∈ HNDS and |mhnd
i | ≤ max len(k) otherwise.

2. For i ∈ {1, ..., j}: If mhnd
i ∈ HNDS and mhnd

i > curhnda then set
curhnda++.6

3. For i ∈ {1, ..., j}: If mhnd
i 6∈ HNDS, let mi := mhnd

i . Otherwise if
Da[m

hnd
i] 6=↓ then let mi := Da[m

hnd
i].word. Else make a recursive call

mi ← id2real(mhnd
i). Finally let argreal := (m1, ..., mj).

4. Construct the real version m and enter it into Da depending on type7:

• If type ∈ {data, list, nonce}, set m ← make type(argreal) and Da :⇐
(mhnd,m, ()).

• If type = enc, then there are two cases here:

– If mhnd
2 ∈ HNDS, i.e it is a cleartext here8, then set m ←

make enc(argreal) and Da :⇐ (mhnd,m, ()).

– Otherwise argreal is of the form (pk∗, len). Let pk := pk∗[2]

and pick r
R←− {0, 1}nonce len(k), and then encrypt

c ← E threspk(1
len, r). Set m ← (enc, pk, c) and finally Da :⇐

(mhnd,m, ()).

• If type = decshr, then there are two cases can happen.

– If the adversary can see the plaintext, then argreal is of the
form (m ind, c1, ..., cj). In this case, the simulator makes up

5We use superscript here even sometimes handles, e.g payload, user id, etc.
6In fact, THH uses lhnd = curhnda++ for new handles. Therefore this step is for SimH

to update its curhndhnd in order to restores ”correct derivation”.
7Note that we do not have type = pke here because the adversary knows every newly

generated public key
8See Section 4.4.4

57

a new decryption which can be used to get the plaintext, say
ds9. Finally Da :⇐ (mhnd, ds, ()).

– If the adversary can not see the plaintext, then just make a
random one, say ds, and Da :⇐ (mhnd, ds, ()).

6.3.3 Inputs from A

• Network input: On input l at a port netz,u,x ∈ ch from adv, for l ∈
{0, 1}+ and |l| ≤ max len(k).

If l is not a list, then abort the transition. Else build the corresponding
handle lhnd by calling an algorithm lhnd ← real2id(l) (This algorithm
maps a real representation to the handle of its corresponding abstract
term. Basically it works in the inverse way compared to id2real(). We
will describe the algorithm later in this Section.).

Finally output the command adv send i(z, x, lhnd) at the port ina!.

• New key generation by adversary: On input m at port inkey,a? where m
is of the form (keygen, a, sid, u1, ..., uj).

Activate FKEY to make a set of w secret shares {sk1, ..., skw} and a
public key pk. For all i ∈ {1, ..., w} let sk∗i = (ske, ski, pk, i) and
pk∗ = (ske, pk, u, keysidu, u1, ..., uj). Also call
pkhnd ← gen enc thres keylist(u1, ..., uj), getting back (a, pkhnd

a , skhnd
j+1,

..., skhnd
w ,).

Then Da :⇐ (pkhnd, pk∗, (honest, sk∗1, ...sk
∗
j)) and Da :⇐ (skhnd

i , sk∗i , ())
for all i ∈ {j + 1, ..., w}. Output (secretshare, a, sid, skj+1, ..., skw, pk
, u1, ..., uj) at the port outkey,a?.

Wait until the adversary clocks connections from FKEY to SimH. For
all i ∈ {1, ..., j}, when the adversary clocks the connection from FKEY
to the port outkey,ui

? then call learn share(pkhnd
a , ui).

Now we describe the algorithm real2id. Basically, real2id recursively parses
a real message, and then build a corresponding term in THH and enters all
subterms into Da. We define real2id as follows.

• mhnd ← real2id(m), for m ∈ {0, 1}+. If there is a mhnd such that
Da[m

hnd].word = m, then return it.

9See simulation for decryption shares in Section 2.5.

58

Else set (type, arg) := parse(m)10 and call a type-specific algorithm
add arg ← real2id type(m, arg) (defined below).

Set mhnd := curhnda++ and Da :⇐ (mhnd,m, add arg). If type = enc
then Da :⇐ (curhnda++, ε, ())11.

If type = nizk then arg must be of the form (c∗, pk∗). Call chnd ←
real2id(c∗). After that just update Da[c

hnd + 1].word = m.

• Garbage: add arg ← real2id garbage(m, ()).

Call mhnd ← adv garbage(|m|) at ina!. Finally return ().

• Data: add arg ← real2id data(m, (m′)).

Call mhnd ← store(m′) at ina!. Finally return ().

• List: add arg ← real2id list(m, (m1, ...,mj)).

For i ∈ {1, ..., j} call mhnd
i ← real2id(mi). After that call mhnd ←

list(mhnd
1 , ..., mhnd

j) at ina!. Finally return ().

• Nonce: add arg ← real2id nonce(m, ()).

Call mhnd ← gen nonce() at ina!. Finally return ().

• (t, w) threshold encryption

– add arg ← real2id pke(m, ()).

Call pkhnd ← adv gen enc() at ina!
12. Finally return adv arg :=

(adv).

– add arg ← real2id enc(m, c∗, (pk∗)).
Make recursive call pkhnd ← real2id(pk∗). Now there are two cases

∗ If Da[pk
hnd].add arg = (adv) then call

(chnd, phnd) ← adv invalid ciph thres(pkhnd, |c∗|) at ina! and re-
turn ().

∗ If Da[pk
hnd].add arg = (honest, sk1, ...skj) then use t secret

share to decrypt it to get a plaintext m. If valid(m) = false
then

10See Section 5.5.2
11This handle is for the zero-knowledge proof. However, we use ε because SimH does

not ask the adversary for the real representation of the proof until the adversary sends it.
12In this case the public key is created by the adversary itself. If it generated keys by

calling FKEY, then SimH would get the public key and some secret share from FKEY

59

(chnd, phnd) ← adv invalid ciph thres(pkhnd, |c∗|) at ina! and re-
turn ().
Otherwise make a recursive call mhnd ← real2id(m) then call
(chnd, phnd) ← encrypt thres(pkhnd,mhnd) at ina! and return ().

– add arg ← real2id nizk(m, c∗).
Make recursive call chnd ← real2id(c∗). Return ()13.

– add arg ← real2id decshr(ds, (c∗, i, c∗1, ..., c
∗
j)).

Make recursive call chnd ← real2id(c∗) and chnd
i ← real2id(c∗i) for

all i ∈ {1, ..., j}
If SimH does not have secret shares14 for c∗ or the c∗ is not created
from corresponding ski or c∗ is not product of c∗1, ..., c

∗
j then call

dshnd ← adv invalid decshr(l, chnd
1 , ..., chnd

j) at ina! and return ().

Otherwise call dshnd ← adv decrypt thres(skhnd, chnd
1 , ..., chnd

j) at
ina! and return ().

6.4 Properties of the Simulator

We claim that the simulator is polynomial-time

Lemma 6.4.1. For each polynomial-time adversary A, the joint machine
SimH(A) is also polynomial-time. ¤

Proof. Each input port of SimH has a polynomially bounded counter and also
polynomially bounded length functions. We also can inspect that id2real is
polynomial-time. It means SimH is polynomial time and the joint machine
SimH(A) is also polynomial-time. ¤

We also claim the following properties of SimH

Lemma 6.4.2. Each machine SimH has the following properties

1. After each call id2real(mhnd) we always have Da[m
hnd] 6=↓ unless SimH

aborts the execution.

2. The following holds for id2real:

13The update of the entry related to this proof is mentioned in the beginning of this
algorithm.

14SimH always has at least 2w/3 secret shares or has no secret share at all.

60

• Calls id2real(mhnd) are made only for mhnd ≤ max hnd(k) and for
each mhnd there is at most one such call.

• At most max hnd(k) outputs can be made at ina!.

• No new entries in the database D of THH is made.

3. For each call real2id(m) the following holds:

• At most |m| − 1 extra calls real2id(|m|) are made.

• At most |m| outputs can be made at ina!.

• curhnda increases by at most 2|m|, and at most 2|m| new entries
can be made in Da.

4. The following holds with Da:

• hnda of Da is a key attribute.

• Outside any execution of id2real, entries in Da are consecutively
numbered.

5. The following holds for the interaction between SimH and THH.

• No handle output by THH is rejected by SimH.

• The counter stepsouta? of SimH and stepsina? of THH never reach
their bounds. ¤

Proof. • For part 1, if no abortion, any execution of id2real(mhnd) ends
with Da :⇐ (mhnd, ...).

• Part 2, 3, 4 are obvious by checking how the two algorithms work.

• Part 5 is proven as follows. In the given combination, the free ports
are inu? for u ∈ H and netw,u,x? with (w, u, x) ∈ ch from adv and
the clock ports for the secure channels and inkey,a? and innizk,a? from
simulated FKEY and FNIZK respectively. We consider each type of
inputs. Recall that the library offers commands for (t, w) threshold
encryption.

– User inputs. There are n ports, which can make at most (w +
1)nmax in(k) entries in D15.

Also inputs from these ports can lead up to nmax in()+max hnd(k)
output at outa! and max hnd(k) outputs at ina!

15When all called commands are to generate keys

61

– Network inputs. There are at most 2n2 network ports which can
give at most 2n2max in(k)max len(k) outputs at ina! and 2n2max in(k)max len(k)
outputs at outa!

Also these inputs can lead up to at most 4n2max in(k)max len(k)
entries in D.

– Inputs from ideal secure channels. These inputs make neither
entries in D nor outputs at outa! and ina!.

– Inputs at innizk,a?. These inputs make neither entries in D nor
outputs at outa! and ina!

16.

– Inputs at inkey,a?. These inputs can lead up to (w + 1)max in(k),
max in(k) outputs at ina!.

Therefore, we can have at most (w + 1)nmax in(k) +
4n2max in(k)max len(k)+ (w +1)max in(k) entries in D. It means that
the bound max hnd(k) = (2w + 6)n2max in(k)max len(k) is safe.

For the second part of part 5, we see that there are at most nmax in()+
max hnd(k) + 2n2max in(k)max len(k) outputs at outa! and
max hnd(k)+2n2max in(k)max len(k)+max in(k) outputs at ina!, both
values are less than the value (2w+10)n2max in(k)max len(k) of boundouta?
of SimH and boundina? of THH. ¤

16Because the call to FNIZK actually originated from inputs at other ports. FNIZK just
provides proofs.

62

Chapter 7

SECURITY PROOF

7.1 Security of the cryptographic library

Theorem 7.1.1. (Security of the cryptographic library) Given E thres, FNIZK,
FKEY, for all n ∈ N, all correct parameters L′ and allH ⊆ {1, ..., n}, there ex-
ist a simulator SimH that satisfies the following property: For all polynomial-
time honest users H and adversary A, the view of H while interacting with
correct machines Mu,H for all u ∈ H and A is polynomially indistinguishable
from the view of H while interacting with THH and SimH(A) with a parameter
L := R2Ipar(E thres, FNIZK, FKEYE thres, L′). ¤

Intuitively, the theorem means that given these cryptographic components,
we can always build a real cryptographic library that is ”equivalent” to the
ideal library, which is definitely secure or ”trusted”. In other words, using
these primitives, we can always build a real cryptographic library that is
similar and ”at least as secure as” the ideal one.

Note that we require the following conditions:

• Decryption shares must be sent over authentic or secure channels as
stated in Section 5.2.

• If honest users and the adversary share w secret keys for a public key,
in which every group of t shares can decrypt a ciphertext, then the
adversary must have less than t share and t − 1 < w, as stated in
Section 5.1.2.

It turns out that even we require some conditions, we can still achieve the
desired result, as Backes et al. [BDHK08] has demonstrated Conditional

63

Reactive Simulatability.

7.2 Outline of the proof

We follow the proof approach in [BPW03a]. For self containment, we repeat
the outline here. Note that the details of the proof however are different due
to some different cryptographic operations.

The proof will include the following steps, which are depicted in Figure 7.1:

• Step 0 - Introducing encryption machines : We introduce two encryp-
tion machines, EncH and Encsim,H. The first one computes correct
encryption of a message m, while the second one encrypts the fixed
message 1|m|. Then we prove EncH is at least as secure as Encsim,H.

• Step 1 - Refactoring the real library : We rewrite the real library so that
machine Mu calls EncH for all crytographic operations . We call new
machines M′

u.

• Step 2 - Replacing with the ideal encryption machine: We replace EncH
with Encsim,H and prove that the new composed system is as least as
secure as the original one (composition theorem).

• Step 3 - Combined system: We introduce an intermediate system CH,
which has the combined state space of two systems: One is the combina-
tion MH of M′

u and Encsim,H and the other is the combination THSimH
of THH and SimH.

• Step 4 - Bisimulation with error sets : We prove that the joint view
of H and A is indistinguishable between interacting with CH and two
systems MH and THSimH, except for certain runs called error sets. By
transitivity and symmetric of indistinguishability we get the indistin-
guishability between MH and THSimH with error sets.

• Step 5 - Reduction proof against the underlying cryptography : We show
that the aggregated probability of runs in error sets is negligible. It
means MH is computationally at least as secure as THSimH.

• Step 6 - Proof conclusion: We get our desired result: The real library
is computationally at least as secure as the ideal one.

64

Mu Mu

SH

H

A0

M′
u M′

u

SH

H

A

EncH

M′
u M′

u

SH

H

Encsim,H

MH

1. Rewrite

2. Replace with ideal machine

THH SimH

SH

H

A

THSimH

CH

SH

H

A

A

1. Rewrite

5. ≥poly
sec

6. ≥poly
sec

4b. Bisimulation

4a. Bisimulation

3. Combine

Figure 7.1: Steps of proof [BPW03a]

65

7.3 Encryption machines

We introduce here two encryption system EncH and Encsim,H, which have
been used in [PW01, BPW03a] but in different versions. These two encryp-
tion machines here also have database notations as that in [BPW03a], but
have threshold homomorphic encryption commands instead of IND-CCA2
encrytion commands in [PW01, BPW03a].

The idea is that we replace each encryption of plaintext m with an encryption
of a fixed one 1|m|, then the decryption task will be done by table look up.
Basically, the machine are for honest users to use. However, the adversary
in threshold setting can get some information, i.e some secret shares. For
adversarial encrypting (decrypting) work, the adversary can do in any way
he wants, e.g building his own encryption machine or do it by himself. Finally
we will show that the view of honest users H is indistinguishable from using
or not using the encryption machine.

Scheme 7.3.1. (Ideal and Real Encryption Machines) Let an encryption scheme
E thres, two functionalities FKEY, FNIZK, parameter n ∈ N and two func-
tions skeys, sencs : N⇒ N be given where

• E thres = (FKEY, E thres, D thres, C thres, enc thres len,
pk thres len) as described in Section 2.5.

• skeys(k) denotes the maximum number of keys that can be generated
for E thres. sencs(k) denotes the maximum number of encryptions per
key in E thres. These two functions must be polynomially bounded in
k.

We define two ecnryption systems

• Sysenc,sim
n,skeys,sencs

:= {({Encsim,H}, Senc,H)|H ⊆ {1, ..., n}};

• Sysenc,real
n,skeys,sencs

:= {({EncH}, Senc,H)|H ⊆ {1, ..., n}}.

And for every H, the corresponding userports are

• PortsEncH := PortsEncsim,H := {inenc,u?, outenc,u!, outenc,u
C!|u ∈ H}

• Senc,H := {inenc,u!, inenc,u
C!, outenc,u?|u ∈ H}

Each machine has a security parameter k, a key counter curkey ∈ N starting
from 0 and initially empty databases keys, keyscounter and ciphers. Each

66

entry in keys has attributes (owner, skenc, pkenc), which are used to map
key pairs. Each entry in keyscounter has attributes (owner, pkenc, ec), which
are used to count the number of encryptions per public key. Each entry in
ciphers has attributes (msg, pkenc, ciph), which are used to look up intended
plaintexts. The offered commands of the two systems work by the following
rules. Let inenc,u? be the current input port. In the following rules, when we
say that the machine outputs something, we mean the resulting output will
be in outenc,u!, with outenc,u

C! := 1. In other cases of different output ports,
i.e output to the adversary, we will state it explicitly.

• pk ← (generate, u1, ..., uz): (In both Encsim,H and EncH) If z ≤ (w−t),i.e
the adversary gets at least t secret shares, then output ↓ and stop.
Otherwise if curkey < skeys(k) then

– set curkey := curkey + 1;

– activate FKEY and collect secret shares {pk, sk1, ..., skw} from out-
put ports;

– add keyscounter :⇐ (u, pkenc, 0);

– for i = 1 to z do

∗ keys :⇐ (ui, (ski, i), pk);

– for i = z + 1 to w do

∗ output (ski, i) to the adversary via port outa!;

– finally output pk.

Otherwise output ↓.
• c, p ← (encrypt, pk, m), for pk,m ∈ {0, 1}+: Let K := keyscounter[

pkenc = pk]. If K =↓ or K.ec ≥ sencs(k), then output ↓, otherwise set
K.ec := K.ec + 1 and

– for Encsim,H: Pick an r
R←− {0, 1}nonce len(k). Set c ← E threspk(1

|m|, r),
give ((c, pk), (r, 1|m|)) to FNIZK and get proof p. If p =↓ then re-
turn ↓. Otherwise add ciphers :⇐ (m, pk, c) and finally output
(c, p).

– for EncH: Pick an r
R←− {0, 1}nonce len(k). Set c ← E threspk(m, r).

Give ((c, pk), (r,m)) to FNIZK and get proof p. If p =↓ then return
↓. Otherwise output (c, p).

67

• ds ← (decrypt, pk, c1, ..., cl, p1, ..., pl), for pk, c1, ..., cl, p1, ..., pl ∈ {0, 1}+:
Use FNIZK to check the validity of every ciphertext in {c1, ..., cl}. If
any of them is invalid, output ↓. Otherwise let K := keys[pkenc =
pk ∧ owner = u]. If K =↓ then output ↓, else let sk := K.skenc and

– for Encsim,H: for i = 1 to l do

∗ let mi := ciphers[pkenc = pk ∧ ciph = ci].msg;

∗ let m := m1 ¢ · · ·¢ ml

Make a simulated output ds so that it can later be combined
to c1 ¡ · · ·¡ cl

1.

– for EncH: Return ds ← D thressk(c1 ¡ · · ·¡ cl). ¦
• m ← (combine, ds1, ..., dst), pk, ds1, ..., dst ∈ {0, 1}+: (In both Encsim,H

and EncH) output m := C thres(ds1, ..., dst).

We prove that the following lemma holds for these two machines.

Lemma 7.3.1. The encryption machines have the following properties:

1. The two systems are computationally indistinguishable (even without a
simulator), i.e Sysenc,real

n,skeys,sencs
≥f,poly

sec Sysenc,sim
n,skeys,sencs

holds for the canonical

mapping f and all parameters n ∈ N and skeys, sencs ∈ N[x].

2. Each transition is polynomial-time. ¤

Proof. (This proof follows the idea in [PW01] where the author proved the in-
disinguishability of encryption machines with IND-CCA2 encryption scheme).

Part 1. Let n, skeys, sencs and H be fixed. The ideal adversary A1 uses the
real one A2 as a black box without any change,i.e A2 = A1 = A. It means
that the two systems are indistinguishable even without a simulator. We use
the hybrid argument technique by constructing intermediate systems that
differ only in one encryption each.

For every k ∈ N let Ik := ({1, ..., skeys(k)} × {1, ..., sencs(k)}) ∪ {α}. Let <k

be the lexicographic order on Ik\{α} and α ≤k t for all t ∈ Ik. Let predk(t)
be the predecessor of t ∈ Ik in the order <k and w(k) := (skeys(k), sencs(k)).

For every k ∈ N and t ∈ Ik we define a hybrid machine Enck,t,H. It is
the same as Encsim,H except for encryption and decryption calls. Let t′ :=
(curkey,K.ec) for the value curkey, K.ec at that moment, then

1Note that it is indistinguishable from the joint view of H and A. See Section 2.5.

68

• If t′ <k t, for an encryption call, it sets c, r ← E threspk(m), for the rest
it works like Encsim,H;

• If t′ =k t,

– for an encryption call, it pick a random coin r and sets c ←
E threspk(m, r);

– for the rest it works like Encsim,H;

• If t′ >k t, it works like Encsim,H.

Obviously we can see that

• Every Enck,α,H works like Encsim,H with security parameter k.

• Every Enck,w(k),H works like EncH with security parameter k.

We will show that if the theorem is wrong then we have a contradiction.
Assume that the theorem is wrong. Let confreal := ({EncH}, Senc,H, H, A)
and confsim similarly with Encsim,H and let collk,t denote the collection of
{Enck,t,H, H, A}. Because we assume that the theorem is wrong so viewconfreal

(H)
6≈poly viewconfsim

(H) and it implies

(viewcollk,w(k)
(H))k∈N 6≈poly (viewcollk,α

(H))k∈N

.

We abbreviate viewk,t := viewcollk,t
(H). The indistinguishability means that

there exists a probabilistic polynomial-time distinguisher 4 and p ∈ N[x]
such that for all k in an infinite set K ⊂ N,

|P (4(viewk,w(k)) = 1)− P (4(viewk,α) = 1)| > 1

p(k)

Now we construct an adversary Aenc to play IND-TCPA game against the en-
cryption scheme according to IND-TCPA security definition in Section 5.1.2.
Aenc uses the machines H, A, FKEY, its modified FNIZK and its own en-
cryption functionality and communicates with the decryption oracle Dec to
simulate a view of H and A using a hybrid machine (See figure 7.2). After
that Aenc submit the simulated view to ∆ and use the answer from ∆ to win
the IND-TCPA game. We describe the construction in details as follows.

With security parameter k, Aenc randomly choses t ∈R Ik\{α}, say t =
(kc, s′), interacts with Dec to get a public-key pke and then try to play the

69

H

A enc’s own encryption functionality

A

Senc,H
inenc,u

outenc,u inenc,v outenc,v

Aenc’s own FNIZK

FKEY

Dec

Figure 7.2: Aenc produces a simulated view of H and A using a hybrid machine

IND-TCPA security game. Aenc now can simulate collk,t as exactly as Enck,t,H
does, except the following rules:

• if H makes the kc-th input (generate, u1, ...un) from a certain port, say
inenc,u? then Aenc adds (ui, 0, pke) to keys for every i from 1 to n and
add (u, pke, 0) to keyscounter, instead of calling FKEY to get new keys.

After that, if H wants to get a decryption share which is not in the
database, instead of using D thres()2, Aenc gives the corresponding NIZK
proofs to FNIZK. Of course FNIZK does not have the corresponding
witnesses, so it gets from the adversary. If FNIZK does not accept
any proof, Aenc returns ↓. Otherwise Aenc can capture the witnesses
and then extracts the plaintexts3. Then Aenc combines the plaintexts
and ciphertext to the final plaintext and ciphertext, say m and c, and
submits (share, c, m, u) to Dec get the correct decryption share. Note
that it is allowed in IND-TCPA security game, as long as Aenc knows a
correct pair of plaintext and ciphertext.

• If H makes an input (encrypt, pke, m) which reaches the index t =

2In this case Aenc does not have enough secret shares to make all possible decryption
shares

3Aenc can do that because everything happens inside an environment simulated by Aenc.

70

(kc, s′), then Aenc sends (m0,m1) := (m, 1|k|) to Dec. Dec flips a bit b ∈
{0, 1} and returns the ciphertext c ← Epke(mb). Aenc adds (m, pke, c)
to ciphers, gets a proof p from its own FNIZK 4 and then returns (c, p).

Later, if H wants to get a decryption share from the this ciphertext c,
Aenc then makes a simulated output ds so that it can later be combined
to m This action makes the simulated view still the same as actual view
from H using Enck,t,H.

Everything else should be the same as Enck,t,H does.

At the end, Aenc runs 4 on the resulting simulated view on H and gets an
output bit b∗k. Aenc then outputs b∗k. Recall that in an IND-TCPA security
game, if there exists an adversary that has non-negligible advantage, then
the encryption scheme is not IND-TCPA secure.

Let view
(b)
k be the random variable of the view of H in Aenc for parameter k

and bit b. We denote prk,t := P (4(viewk,t = 1)) and pr
(b)
k := P (4(view

(b)
k =

1)). Note that for b = 0 the simulated run is the same as a run of collk,t

whereas for b = 1 the simulated run is the same as a run of collk,predk(t). We
can compute

pr
(0)
k =

1

w(k)

∑

t∈Ik\{α}
prk,t;

pr
(1)
k =

1

w(k)

∑

t∈Ik\{α}
prk,predk(t).

It implies

|pr(0)
k − pr

(1)
k | = 1

w(k)
|prk,w(k) − prk,α| > 1

w(k)p(k)
.

Therefore

P (b∗k = b) = P (b = 0 ∧4(view
(b)
k) = 0) + P (b = 1 ∧4(view

(b)
k) = 1)

=
1

2
(P (4(view

(0)
k = 0)) + P (4(view

(1)
k = 1)))

=
1

2
+

1

2
(pr

(1)
k − pr

(0)
k).

4Although the proof is provided from a different FNIZK, the simulated view is still the
same from real view, because Aenc guarantees that the plaintext is valid (everything is
controlled by Aenc)

71

Finally we get

|Pr[b∗k = b]− 1/2| > 1
w(k)p(k)

, for all k ∈ K.

And because the advantage 1
w(k)p(k)

is not a negligible function, we get the
desired contradiction.

Part 2. This part can be proved easily by inspection the work of the two
encryption systems. ¤

7.4 Refactoring the real library

We rewrite the real machines Mu so that they use the encryption machine
EncH instead of doing all encryption work by themselves (See Figure 7.3).
We call the new machines M′

u. The parameters for the encryption systems
are now set to skeys := sencs := max in(k) + 15.

Each M′
u uses the port inenc,u!, outenc,u?, inenc,u

C! to communicate with the
encryption machine. It also use a counter stepsoutenc,u? that is bounded by
boundoutenc,u? := max in(k) + 1.

Now we define the modification of some transitions. Note that the state is
unmodified, except that the entries for secret shares are different because
now the encryption machine keeps the shares.

• pkhnd ← gen enc thres keylist(u1, ..., uj) for (w − t) < j ≤ w.

Call the encryption machine with pk ← (generate, u1, ..., uz). Let pk∗ :=
(pke, pk), set pkhnd := curhndu + + and Du :⇐ (pkhnd, pk∗, pke, ()).

If a M′
u is supposed to get a secret share now just have a public key6.

Therefore in addition to adding an entry for the public key, it also adds
another entry for its unknown secret share. Let sk∗ := (ske, ε, pk, i)7,
set skhnd := curhndu + + and Du :⇐ (skhnd, sk∗, ske, ()).

• c∗, p∗ ← make enc(pk∗,m) for pk∗,m ∈ {0, 1}+.

It returns ↓ if valid(m) = false8.

Otherwise let pk := pk∗[2], call the encryption machine with c, p ←
(encrypt, pk, m).

5So the encryption machine never reaches its bounds
6Its secret share is kept by the encryption machine
7ε stands for an unknown secret share.
8We do not accept invalid messages

72

H

M′
u

M′
v

A

SH
inu outu inv outv

netu,v,s

netu,v,a

netu,v,i

neta
u,v,s

neta
u,v,i

Du
Dv

FNIZK

FKEY

EncH

Encrypting

and De-

crypt-

ing

re-

quests

to EncH

Figure 7.3: Refactoring the real library

If c 6=↓ then set c∗ := (enc, pk, c).

Else encrypt directly9: Pick an r
R←− {0, 1}nonce len(k). Let pk := pk∗[2],

encrypt c ← E threspk(m, r) and set c∗ := (enc, pk, c). Let w := (m, r)
and x := (c, pk). Submit (x,w) to FNIZK, getting back p. If p =↓ then
return ↓.
Let p∗ := (nizk, p, c, pk).

• dshnd ← decrypt thres(skhnd, chnd
1 , ..., chnd

j , phnd
1 , ..., phnd

j) where {chnd
1 , ...

, chnd
j } is a set of ciphertexts, {phnd

1 , ..., phnd
j } is a set of corresponding

proofs for plaintext validity.

9It was an adversary’s public key

73

Parse chnd
i to have argi := (pk∗i). Return ↓ if all of pk∗i are not the same.

Otherwise say the same public key is pk∗. Return ↓ if Du[sk
hnd].type 6=

ske or Du[sk
hnd].word[3] 6= pk∗ or any Du[c

hnd
i].type 6= enc or any

Du[p
hnd
i].type 6= nizk.

Otherwise set pk := pk∗[2], ci := Du[c
hnd
i].word[3], pi := Du[p

hnd
i].word[2]

then call the encryption machine with ds ← (decrypt, pk, c1, ..., cl, p1, ..., pl).
If ds =↓ then return ↓. Otherwise set ds∗ := (dec shr, ds, c, Du[sk

hnd].word[4])
and (dshnd, Du) :← (ds∗, decshr, ()).

m ← make combi(ds∗1, ..., ds∗t).

Let dsi := ds∗i [2]. Call the encryption machine with m ← (combine, ds1, ...
, dst).

We claim that the modified system has the following properties

Lemma 7.4.1. The modified machines M′
u have the following properties:

1. M′
u are polynomial-time.

2. When they are used together with EncH (even with Encsim,H), no counter
stepsoutenc,u?, curkey or K.ec reaches its bound.

3. If they are used with EncH, their behaviour is perfectly indistinguish-
able from the real library for A and H. ¤

Proof. 1. Part 1 holds because for each machine M′
u the new input port

outenc,u! accepts only a polynomial number of inputs (its is bounded),
the length function for this port is also bounded and every rewritten
transition takes only a polynomial number of steps.

2. Part 2 can be proven by comparing these bounds with the bounds for
other ports.

3. For part 3, we can see that the only change is that secret shares are
stored in keys instead of Du. However, in every case that Mu uses a
secret share, M′

u also use the same one. Therefore, actually M′
u always

output the same thing as Mu do. ¤

74

7.5 Replacing with the ideal encryption ma-

chine

Because EncH and Encsim,H are indistinguishable (Lemma 7.3.1) and the
rewritten real library is polynomial-time (Lemma 7.4.1), according to the
composition theorem in [PW01, Can01] we can replace EncH with Encsim,H
and the new system’s behaviour is computationally indistinguishable from
the original real library for A and H.

7.6 Combined system

It is difficult to compare THSimH and MH directly. Therefore we define an
intermediate machine call CH that has a combined state space of THSimH
and MH.

Then we will prove that CH has a bisimulation relation to each of THSimH
and MH. By transitivity of indistinguishability we have the desired proof.

7.6.1 Timing

Here we consider macro-transitions, in which for an input all sub-machines
run until the control is returned back to A or H.

7.6.2 Definition of THSimH

State of CH

A part of state of CH is a database D∗ that is structured like D of THH.
However, each entry may have the following additional attributes:

• x.word ∈ {0, 1}∗ contains real data as in MH or SimH under the same
handle. If x.type = ske and it is a key for adversary, then x.word = ε.
In other cases it is always non-empty.

• x.parsedu ∈ {true, false, ↓}∗ for u ∈ {H}. This value is ↓ if x.hndu =↓,
true if the entry would be parsed in Du, or false if the entry would be
still of type null10.

10We use it when making derivations.

75

• x.owner for ciphertext where honest users keeps at least 2w/3 secret
shares. This value is adv if the ciphertext was received from the adver-
sary, otherwise honest. In other cases it is ↓.

• x.ec for public key. This value corresponds to the encryption counter
in keyscounter of encryption machines.

Transition of CH

The D-part of D∗, the variables size, curhndu and the ideal secure channels
are treated exactly as in THH. Entries created by basic commands from H
get the words created M′

u and real secret shares created by Encsim,H. Words
received from A are parsed and entered as by SimH. Outputs to H are made
as in THH, outputs to A are made as in MH.

7.6.3 Derivations

Now we define the derivation of each original system from the combined
system. The idea is to compare CH to THSimH and MH, we then show that
the derived states and outputs are the same as in the original systems, except
for some certain cases we call errorsets.

We use the following notations:

• ω(i) denotes word lookup for index i, i.e. ω(i) = D∗[i].word if i ∈
HNDS, otherwise ω(i) = i.

• We use superscript ∗ to denote derived states, except the derived state
of THSimH and THH.

Given a state of CH, we have

• THH:

– D : This is exactly the restriction of D∗ except word and parsedu.

– curhndu, size, stepsp?: These variables equal those in CH.

• M∗
H :

– D∗
u : We start from an empty database. For every xhnd ≤ curhndu,

let x := D∗[hndu = x∗hnd].ind, type := D∗[x].type, and m :=
D∗[x].word.

76

∗ If D∗[x].parsedu = false, then D∗
u :⇐ (x∗hnd,m, null, ()).

∗ Else if type 6= ske, then D∗
u :⇐ (x∗hnd,m, type, ()).

∗ Else if type = ske, then D∗
u :⇐ (x∗hnd, ε, ske, ())11.

– curhnd∗u : Equal to curhndu of CH.

– steps∗p? : Equal stepsp? of CH, except for p? = netu,v,x? with
(u, v, x) ∈ ch honest, where they are equal to stepsnet idu,v,x? .

– net∗u,v,x : (For every (u, v, x) ∈ ch honest.) Let net∗u,v,x :=
ω∗(net idu,v,x).

• Sim∗
H :

– D∗
a : We start from an empty database. For every xhnd ≤ curhnda,

let x := D∗[hnda = xhnd].ind, type := D∗[x].type, and m :=
D∗[x].word.

∗ If type 6= pke, then D∗
a :⇐ (xhnd,m, ()).

∗ Else if D∗[x].arg = () then D∗
u :⇐ (xhnd,m, (adv)). Otherwise

for all skind
ui

with D∗[ind = skind
ui
∧ type = ske].arg = (x), set

sk∗ui
= D∗[skind

ui
].word. Finally D∗

a :⇐ (xhnd,m, (honest,
sk∗u1

, ..., sk∗uj
)).

– curhnd∗a : Equal to curhnda of CH.

– stepsp? : Identical to stepsp? of CH.

• THSimH :

– outa, ina : Equal to those in CH. They are empty after each macro-
transition.

– net idu,v,x : (For every (u, v, x) ∈ ch honest.) Equal to those in
CH.

• Enc∗sim,H :

– keys∗ : For every skind ≤ size with D∗[skind].type = ske, (pkind) =
D∗[skind].arg, u = owner(D∗[skind]) ∈ H, let keys∗ :⇐ (u,
D∗[skind].word[2], D∗[pkind].word[2]).

– For every pkind ≤ size with D∗[pkind].type = pke, let keyscounter∗

:⇐ (D∗[pkind].word[3], D∗[pkind].word[2], D∗[pkind].ec)

– For every cind ≤ size with D∗[cind].type = enc and D∗[cind].owner =
honest, let (pkind, lind) := D∗[cind].arg and (l, pk∗, c∗) := ω(lind, pkind

, cind). Then ciphers∗ :⇐ (l, pk∗[2], c∗[3]).

11The secret share is kept by Encsim,H.

77

– curkey∗ : curkey∗ := the number of different keys∗.pkenc.

– Buffers to and from Enc∗sim,H are empty after every macro-transition.

• FNIZK∗ :

– nizks∗ : Starting from an empty database. For every pind ≤ size
with D∗[pind].type = nizk, (cind) = D∗[pind].arg 6= (), let x :=
D∗[cind].word[3], p := D∗[pind].word[2]. Then nizks∗ :⇐ (x, p).

We do not have derivation for FKEY because it is stateless.

7.6.4 Invariants in CH

In addition properties of D-part mentioned in Lemma 4.5.1, CH has some
more invariants as follows.

• Fully defined. For every x ∈ D∗, x.ind, x.type, x.arg, x.length, x.word
are never ↓.

• Word uniqueness For each word m ∈ {0, 1}∗, we always have |D∗[word =
m ∧ type 6= ske]| ≤ 1.

• Correct length. For all i ≤ size, we have D∗[i].len = |D∗[i].word|,
except when D∗[i].type = ske.

• No unparsed secret share. If u ∈ owner(D∗[i]) and D∗[i].type = ske
then D∗[i].parsedu = true.

• Correct arguments. For all i ≤ size, there is no conflict between a
real message m := D∗[i].word and its corresponding abstract type and
argument, typeid := D∗[i].type and argind := D∗[i].arg.Let argreal :=
ω∗(argind), then we require:

– If m = ε then typeid = ske.

– If typeid 6= ske, let (type, argparse) := parse(m), then we require
that type = typeid and also:

∗ If type 6= enc then argparse = argreal.

∗ Else then argparse[1] = argreal[1] and let o := D∗[i].owner then

· If D∗[argind[1]].arg = () then o =↓ and vice versa12.

12All secret shares belong to the adversary.

78

· If o = honest then argind[2] 6=↓.
· If o = adv then the decrypted and looked-up plaintext

must equal.

• Strongly correct arguments if a 6∈ owners(D∗[i]) or D∗[i].owner = honest.
Intuitively it means that the probability of the real representation in
each entry must coincide the probability of those in the real library.Let
typeid := D∗[i].type and argind := D∗[i].arg.Let argreal := ω∗(argind)
and m := D∗[i].word has the following distribution:

– If type ∈ {type, list, nonce} then m = make type(argreal).

– If type ∈ {pke, ske}, then the corresponding key list (pk∗, sk∗1, ..., sk
∗
w)

are created from FKEY from corresponding inputs, which can be
looked-up.

– If type = {enc, nizk} then the corresponding pair of ciphertext and
zero-knowledge proof (c∗, p∗) must be compatible. c∗ is of the form
enc, pk, c and has cargreal of the form (pk∗, l) , while p∗ is of the
form (nizk, p, c∗, pk∗) with pk = pk∗[2] and p is created by FNIZK
from corresponding inputs.

The distribution of c depends on o:

∗ If o = honest then c = E threspk(1
|(l,r)|) where r

R←− {0, 1}nonce len(k).

∗ If o =↓ (a ciphertext encrypted using the adversary’s public

key), then c = E threspk(l, r) where r
R←− {0, 1}nonce len(k).

• Word secrecy. It means the adversary never gets information from
nonce-like words without adversary handles. We define a set Pub V ar
data that A may know or get to know later:

– All D∗[i].word where D∗[i].hndhnd 6=↓;
– The state of A and H;

– The THH-part of CH and the ideal secure channels;

– Secret shares where the corresponding public keys are public13.

We require that at all time, no other information gets into Pub V ar in
the sense of information flow in programming languages.

Now we can define our bisimulation property as follows

13The idea is information about secret shares flows into public keys and decryptions.
However, the adversary does not have handles to them [BPW03a].

79

Definition 7.6.1. Bisimulation property ”An input retains all invariants” means:

• Resulting macro-transitions of CH retain the invariants that were true
before the input.

• If some input is given to MH or THSimH in a state derived from CH,
then the probability distribution of the next state coincides with that
of the sate derived from the next state of CH. We denote it ”correct
derivation”. ¦

Note that these conditions hold initially.

Before starting to compare the systems, we claim that CH has the following
properties.

Lemma 7.6.1. CH has the following properties:

1. There are only the following modifications to existing entries x in D∗:
assignments to previously undefined x.hndu and then x.parseu := false,
changes of x.parseu from false to true, and increase of the encryption
counter in entries of type ske.

2. The function owner of a secret share never changes.

3. If a state change in CH contains only an assignment to a previously
undefined x.hndu and then x.parseu := false then only the following
invariants have to be proven:

• ”Correct derivation” of D∗
u and curhnd∗u.

• ”Word secrecy” if u = a. ¤

Proof. Part 1, 2 can be proven easily be checking the definition of CH and
commands.

Part 3 is also obvious by checking that no other derivations are affected and
other invariants still hold. ¤

7.7 Comparison of the two pairs of systems

We will compare the systems based on all possible inputs. Because of the
complex proving process, we will just briefly describe the comparison. For
original proving approach, we refer to [BPW03a].

80

7.7.1 Comparison of basic commands

We consider a command c at a port inu? and the corresponding output at
the port outu! with u ∈ H. We consider only well-formed inputs (inputs in
the correct domains).

General comparison

Lemma 7.7.1. For each command c at a port inu? where c is not a command
related to zero-knowledge proofs or gen enc thres keylist, we have to show
only the following properties:

• The outputs at outu! in CH and MH are the same.

• ”Correct derivation” of D∗
u and curnhd∗u.

• The invariants in D∗ are retained, except ”word secrecy” is already
obvious. ¤

Proof. All of the properties above can be easily proven if we do not consider
commands related to key generation and zero-knowledge proofs because those
commands are not local. They output something to the adversary. ¤

Type and Length queries, data, lists and nonces

For all of commands here, we can easily prove that they retain invariants
and produce the same output in all three systems because they are just local
commands. They produce outputs without interacting with other machines.

Note that sometimes a new nonce collides with an old noncefor the case of
generating nonces. In that case we run in an error set called Nonce Coll.
However, we will show later in Section 7.7.5 that this probability is negligible.

(t, w) threshold homomorphic encryption

Now we analyse more complicated commands.

• Key generation. THH, and thus CH outputs a new public key handle
while M′

u calls Encsim,H, which then calls FKEY to gets a new pubic
key. M′

u gets that new public key, inserts it into D∗
u and output a new

handle.

81

THH, and thus CH outputs some new secret shares handles to some
parties while FKEY also send new secret shares to the corresponding
machines and those machines update their databases then output the
new handles.

THH outputs the secret share handle for adversary along with pub-
lic key information then SimH calls his own FKEY and this simulated
FKEY output the secret shares for adversary together with public key
information. On the other hand, after M′

u calls the real FKEY, it also
output the secret shares for adversary together with public key infor-
mation.

Encsim,H retains ”correct derivation” because both it and CH updates
the new public and honest user secret shares in to the database of each.

Here we may have an error where the new public key is equal to an old
one, then ”word uniqueness” does not retains. We call this error set
Key Coll.

• Encryption. It is clear that outputs, which are new handles, to honest
users are the same.

Encsim,H will ask for a zero-knowledge proof from the adversary, while
THH also output the new proof handle together with the ciphertext,
then SimH can ask the same thing from the adversary14.

Here we may run into an error set called Nonce Coll when the new
nonce generated for the encryption is not new, then the new encryption
may be equal to an old one, then ”word uniqueness” is destroyed.

• Decryption. Honest users get the same decryption share handle if suc-
ceed. If there is any zero-knowledge proof received from the adversary
before, both SimH and FNIZK will ask the adversary for the witness.

• Combination. Honest users get the same decryption share handle and
no state changes.

• Public key retrieval. Honest users get the same decryption share handle
and no state changes.

14Note that we assume the adversary replies without delay.

82

7.7.2 Comparison of send commands by honest users

Secure channel

It is easy to check that all invariants are retained and right outputs are
produced here.

To adversary

(u, v, x ∈ ch to adv) Basically SimH maintains his database Da to store map-
pings between abstract and real representations. It is obvious to prove that
CH out put the same message like M′

u at the end. We can see that SimH
provides output similar to M′

u by inspection of SimH. Furthermore, SimH
use the algorithm id2real to make real version of new received abstract terms.
By inductive proof technique, we can show that id2real retains all invariants
and also produce right outputs.

7.7.3 Comparison of input from the adversary

Network input

On input from a port netw,u,x?, SimH and thus CH use the algorithm real2id
to get the handle to abstract version. Also by inductive proof technique, we
can show that by using real2id, SimH and thus CH provide the same outputs
and retain all invariants.

Note that in this case we may run in two error sets when the adversary has
guessed correctly an existing nonce or an existing public key. We call these
sets Nonce Guess and Key Guess .

Input to FKEY and FNIZK

• FKEY:The adversary input something to FKEY only when he wants
to generate keys (The condition of t < w/3 must still holds). MH,
and thus CH will get some new secret shares from that input and then
output the handles to honest users. SimH maintains also FKEY as a
black box and then also create new abstract keys in THH. Therefore
honest users will receive the same new handles and invariants hold.

FNIZK :The adversary just reacts to some FNIZK’s request, which are
caused by some input from other input port, which have been shown

83

for retaining all invariants and leading to the same outputs.

7.7.4 Comparison in scheduling of a secure channel

For (w, u, x) ∈ ch honest

Because of the invariant ”correct derivation”, before the input we have the
buffer netw,u,x equals the real version of abstract buffer net idw,u,x. So ba-
sically if the adversary give the same clock input, we have the same output
and all invariants are still retained.

7.7.5 Error sets

There are following error sets that occur when we are comparing the three
systems. We will show that their probability are negligible.

Nonce collisions

Nonce collisions of the error setNonce Coll may happen as shown in Sec-
tion 7.7.1 and Section 7.7.1. Because a nonce is picked randomly, so the
probability of a collision is bounded by 2−nonce len(k), which is clearly negligi-
ble.

Key collisions

Key collisions of the error setKey Coll may happen as shown in Section 7.7.1.
It happens when a new public key is the same as an old one. Because of the
semantic security of the underlying encryption scheme, we claim that the
probability of the error setKey Coll is negligible. Otherwise, an adversary
can always attack the encryption scheme with non-negligible probability of
success.

Nonce guessing

Nonce guessing of the error setNonce Guess may happen as shown in Sec-
tion 7.7.3. Similarly, the probability for this error to happen is bounded by
2−nonce len(k), which is clearly negligible.

84

Key guessing

Key guessing of the error setKey Guess may happen as shown in Section 7.7.3.
Similarly, the probability for this error to happen must also be negligible.

7.8 Proof conclusion

To conclude, by transitivity of indistinguishability, we claim that the real
library is at least as secure as the ideal library. It also means the ideal
library is a sound abstraction of the real library.

With the notations defined in [PW01] we can write the conclusion as follows:
For all n and L′ and L := R2Ipar(E thres, FNIZK, FKEYE thres, L′), we have

Syscry,real
n,E thres,FNIZK,FKEY,L′ ≥f,polysec Syscry,id

n,L

for the canonical mapping f with blackbox simulatability.

85

Chapter 8

CONCLUSION

8.1 Applications

Although our library has to satisfy the conditions stated in Section 7, this
extended UC library is still useful for a class of applications that need homo-
morphic encryptions. Generally speaking, in such applications some parties
give their secret information to other parties for a computation but do not
want to reveal it. Basically the computation will be done on encrypted data,
but with homomorphic encryptions, we can guarantee that when decrypting
the computed result, we will have the desired value without the original in-
put. Furthermore, threshold version of homomorphic encryption reduces the
probability that authorities cheat, because they have to get enough parties
to do so. Some examples are electronic voting (e-voting), electronic auctions
(e-auction), lottery and so on.

In e-voting, voters submit encryptions of their original votes. The author-
ities combine the ciphertext to have the ciphertext of the final result. By
decrypting this combined ciphertext, we get the result of the election with-
out decrypting every encryption of individual vote.

In e-auction, homomorphic encryptions help to hide the prices from bidders.
Fortunately, we can still know who proposes the highest price using some
mathematical techniques on the homomorphic property.

In lottery, what we need is a random number, which indicates the winner,
chosen from a set of players. However, we do not want each player to see
others’ choices, because then they can cheat. Therefore each player encrypts
his random number and submit to authorities. Authorities will combine
all encrypted choices to get a final number without revealing every player’s

86

choice. Of course this final number must be random, if there is at least one
player honest.

With the library, the design work for such applications could be easier. For
example if one wants to design a protocol that needs homomorphic encryp-
tion, he can just use the ideal library. Because the ideal one is ”trusted”, it
is easier to analyze the security of the new protocol. For implementation, he
will replace the ideal one with the real one without losing security due to the
composition theorem.

Even though there are some conditions when using our library, it is still
applicable because the conditions are all reasonable and achievable. We even
can improve it for a broader area of applications. In the next section we
mention what we may improve in the future.

8.2 Future work

In this work, we add a simple version of threshold encryption. A more
complex but more useful one is verifiable secret sharing (VSS) threshold en-
cryption scheme. With a VSS version, one can always check if a decryption
share is correct or not, therefore we do not need decryption shares from all
authorities for detecting corrupted decryption shares. Instead, we use verifi-
cation keys for that job. One can continue extend this library by analyzing
the case of (VSS) threshold encryption scheme and we believe it will be more
useful.

As we can see that the proof for the security of the library is quite complex
and long with detailed notations. We hope that in the future we can find a
better way to prove security for such type of problems.

8.3 Conclusion

In this paper we have given an extended version of a UC library proposed by
Backes et al. [BPW03a]. This version contains a homomorphic encryption
scheme used together with nizk proof and key distribution functionalities.

We have described the ideal library, which is considered the specification for
our real library, and also the real one. The real library works on abstract
terms while the real one works on bit-strings data. However, both offer to
users commands that get handles as input and also output handles (Except
the commands to store and retrieve data). Therefore, users get the same

87

interface from these two libraries.

After that, we showed a simulator that acts as the ideal library, using the
real adversary as a black box. Then we proved that the joint view of honest
users and the adversary is indistinguishable between using the ideal library
and the real one under some conditions. Therefore we concluded that the
ideal library is a sound abstraction of our real one, i.e the real library is at
least as secure as the ideal one.

Finally we gave some examples of applications on this library and proposed
some possible future work.

88

Bibliography

[AF04] M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Ap-
plications to Universally-Composable Threshold Cryptography.
Advances in Cryptology–Crypto, 3152:317–334, 2004.

[AR00] M. Abadi and P. Rogaway. Reconciling Two Views of Cryptogra-
phy (The Computational Soundness of Formal Encryption). The-
oretical Computer Science: Exploring New Frontiers of Theoreti-
cal Information: Intermational Conference Ifip Tcs 2000 Sendai,
Japan, August 17-19, 2000 Proceedings, 2000.

[BDHK08] M. Backes, M. Dürmuth, D. Hofheinz, and R. Küsters. Condi-
tional reactive simulatability. International Journal of Informa-
tion Security, 7(2):155–169, 2008.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-
knowledge and its applications. Proceedings of the twentieth an-
nual ACM symposium on Theory of computing, pages 103–112,
1988.

[Bla06] B. Blanchet. A computationally sound mechanized prover for
security protocols. IEEE Symposium on Security and Privacy,
pages 140–154, 2006.

[BP04] M. Backes and B. Pfitzmann. Symmetric encryption in a sim-
ulatable Dolev-Yao style cryptographic library. Computer Secu-
rity Foundations Workshop, 2004. Proceedings. 17th IEEE, pages
204–218, 2004.

[BP05] M. Backes and B. Pfitzmann. Limits of the Cryptographic Re-
alization of Dolev-Yao-Style XOR. Computer Security-Esorics
2005: 10th European Symposium on Research in Computer Se-
curity, Milan, Italy, September 12-14, 2005, Proceedings, 2005.

89

[BPW03a] M. Backes, B. Pfitzmann, and M. Waidner. A universally com-
posable cryptographic library. Proceedings of the 10th ACM Con-
ference on Computer and Communications Security, 2003.

[BPW03b] M. Backes, B. Pfitzmann, and M. Waidner. Symmetric Authen-
tication within a Simulatable Cryptographic Library. Computer
Security-ESORICS 2003: 8th European Symposium on Research
in Computer Security, Gjøvik, Norway, October 13-15, 2003:
Proceedings, 2003.

[BPW04] M. Backes, B. Pfitzmann, and M. Waidner. A General Compo-
sition Theorem for Secure Reactive Systems. Theory of Cryp-
tography: First Theory of Cryptography Conference, TCC 2004,
Cambridge, MA, USA, February 19-21, 2004: Proceedings, 2004.

[BPW06a] M. Backes, B. Pfitzmann, and M. Waidner. Limits of the reactive
simulatability/UC of Dolev-Yao models with hashes. Proc. of the
11th European Symposium on Research in Computer Security.
Springer-Verlag, 2006.

[BPW06b] M. Backes, B. Pfitzmann, and M. Waidner. Soundness Limits of
Dolev-Yao Models. Proceedings of the Workshop on Formal and
Computational Cryptography (FCC 2006), 2006.

[Can01] R. Canetti. Universally composable security: a new paradigm for
cryptographic protocols. 42nd IEEE Symposium on Foundations
of Computer Science, 2001. Proceedings., pages 136–145, 2001.

[CS02] H. Comon and V. Shmatikov. Is it possible to decide whether a
cryptographic protocol is secure or not. Journal of Telecommu-
nications and Information Technology, 4:5–15, 2002.

[DDM+05] A. Datta, A. Derek, J.C. Mitchell, V. Shmatikov, and M. Turu-
ani. Probabilistic polynomial-time semantics for a protocol se-
curity logic. Proc. 32nd International Colloquium on Automata,
Languages and Programming (ICALP), 3580:16–29, 2005.

[DDMR07] A. Datta, A. Derek, J.C. Mitchell, and A. Roy. Protocol Com-
position Logic (PCL). Electronic Notes in Theoretical Computer
Science, 172:311–358, 2007.

[DY83] D. Dolev and A. Yao. On the security of public key protocols.
Information Theory, IEEE Transactions on, 29(2):198–208, 1983.

90

[FP00] P.A. Fouque and D. Pointcheval. Threshold Cryptosystems Se-
cure against Chosen-Ciphertext Attacks. Proc. of Asiacrypt,
pages 573–84, 2000.

[FPS01] P.A. Fouque, G. Poupard, and J. Stern. Sharing Decryption
in the Context of Voting or Lotteries. Financial Cryptography:
4th International Conference, FC 2000, Anguilla, British West
Indies, February 20-24, 2000: Proceedings, 2001.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge com-
plexity of interactive proof-systems. Proceedings of the seven-
teenth annual ACM Symposium on Theory of Computing, pages
291–304, 1985.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity and a methodology of cryptographic
protocol design. 27th Annual Symposium on Foundations of
Computer Science, pages 174–187, 1986.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive
zero knowledge for NP. Proceedings of EUROCRYPT-06, LNCS
series, 4004:339–358, 2006.

[Gro04] J. Groth. Evaluating security of voting schemes in the universal
composability framework. Proceedings of ACNS04, LNCS series,
3089:46–60, 2004.

[IK06] R. Impagliazzo and B.M. Kapron. Logics for reasoning about
cryptographic constructions. Journal of Computer and System
Sciences, 72(2):286–320, 2006.

[Mea03] C. Meadows. Formal methods for cryptographic protocol analy-
sis: emerging issues and trends. Selected Areas in Communica-
tions, IEEE Journal on, 21(1):44–54, 2003.

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reac-
tive systems and its application to secure message transmission.
IEEE Symposium on Security and Privacy, pages 184–200, 2001.

[Wik04] Douglas Wikström. Universally composable dkg with linear
number of exponentiations. Cryptology ePrint Archive, Report
2004/124, 2004.

91

[Zun06] R. Zunino. Models for Cryptographic Protocol Analysis. PhD
thesis, Ph. D. thesis, Universita di Pisa, Italy, 2006.

92

