

超解像光技術 ーその超高密度光ディスクへの応用ー

富永 淳二

(独) 産業技術総合研究所 近接場光応用工学研究センター(〒305-8562 茨城県つくば市東1-1-1, つくば中央第4)

Optical Super-Resolution Technology for Application to Ultra-High Density Optical Storage

Junji TOMINAGA

Center for Applied Near-Field Optics Research, National Institute of Advanced Industrial Science and Technology (AIST), Central#4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562

(Received June 20, 2003)

Super-resolution technologies for ultrahigh-density optical data storage are described. Applying optical nonlinear thin films, super-resolution readout is attained in less than the optical diffraction limit. In combination with near-field principle, it is further improved in less than 100 nm. In this paper, we discuss the basic principle of near-field optic and related surface and localized surface plasmon polaritons at first, and discribe several applications with metallic nanoparticles and wires to future optical disk technology.

Key Words: Super-resolution, Super-RENS, Nanoparticles, Surface plasmon polaritons

1. はじめに

1980年代に開発されたCDを筆頭とする光ディスクは, 20年足らずの内に目覚ましい技術的進歩を遂げ,また, 次々に開発された短波長半導体レーザーのお陰で,650 GBであった記憶容量もDVDの4.7 GB,そして2003年には 23~25 GBに達するまでに至った.現在の研究開発の中心 は,100 GBを超える記録システムの実現に移りつつあ る.

ところで,光ディスクの記憶容量は,(1)式で表される 簡単な光学原理に基づいており,

ビーム径(d) =
$$\lambda/(2 \cdot NA)$$
 (1)

従来の光記録の高密度化技術では、短波長のレーザー ビームと高い開口数(NA)を持つレンズの開発が中心とさ れてきた.しかし、光学原理に基づけば、最大でもレン ズ開口数NAは1.0を超えることはできず(1.0でレンズと記 録媒体は事実上接触する)、現在の技術では、最新技術で ある青色半導体レーザーとNA0.85のレンズを組み合わせ て、12 cmディスク径で約25 GBが最大記録容量となって いる^{1.3)}.一方、2000年12月からスタートしたデジタルハ イビジョンTV放送は、1チャンネルを24時間録画するため に約200 GBもの記録容量を必要とする.多チャンネル放 送であること、地上波デジタル放送も今後開始されるこ とを考慮すると、1TB以上の記録容量を必要とする時代は もうそこまで来ているといってよい.本論文では、従来 の光の回折限界に囚われず、さらに超高密度の記憶容量 を実現させる「超解像技術」を中心に、薄膜技術を応用した 超高密度光記録技術について解説する.

2. 近接場光と表面プラズモン光

光超解像技術の本論に入る前に、技術の核となる「近接 場光」とよばれる特殊な光について少し解説したい1).近 接場光とは、物体に光を照射したときに物体表面から外 へ伝播されず、物体表面に囚われた光の場をいう.通常 の光は、物体表面で吸収、透過あるいは反射が生じ、 我々は反射光像として物体を認知している.しかし、反 射光(あるいは透過光でもよい)は、上述したように光の回 折特性によって像にボケを発生させる.特に物体がどん どん小さくなり,波長程度になると回折効果は支配的 で、二つの異なる物体が接近した場合、それらを区別で きなくなる、二つの物体の識別可能限界は(1)式で示した ビーム径のほぼ半分である.この値によって従来のCDあ るいはDVDの最短ピット長が決定され、記録容量が制限 されてきた.一方, Fig. 1のように近接場光は通常光と異 なり伝播はしないものの,回折限界の制限を受けないと いう性質を有している. どんなに小さな物体(分子程度ま

Fig. 1 Characteristics of optical near-field. Optical nearfield is trapped at around the material surface, but cannot propagate as far-field light.

で)でも近接場光を纏っており,この特性こそが,非伝播 的な近接場光を利用して従来のDVDを遥かに凌ぐ超高密度 光記録を実現する研究が盛んに行われている理由である.

詳細な検討は参考文献2)に譲るとして、たとえば、側 面が金属等によって光が遮蔽された光ファイバーの先端 部のみに、波長以下の大きさの小さな丸い窓を開けた場 合,開口周辺では様々な空間周波数ベクトルが発生す る.入力光の波数ベクトルkoより大きな空間周波数成分kr は、光の伝搬式である $\sqrt{(k_0^2 - k_r^2)}$ が虚数となるため、通常 の反射光(透過光)のように伝搬できず、開口部分からその 強度は指数関数的に減衰していく.しかしながら、波長 の1/10程度まで何らかの観測装置を接近させれば、この成 分は攪乱され伝搬光として検出できる. つまり, 近接場 光を応用して光記録・再生を行う場合には、記録・再生 ヘッドを波長の1/10以下(だいたい50 nm以下)に接近させ なければならない. これが近接場光による超高密度光記 録・再生の原理である.ただし,近接場光は回折原理に 囚われないため(非伝搬の高空間周波数成分k,を用いてい るのだから, 記録ピットの大きさは原理的には分子サイ ズでも可能といえる),記録マークはいくらでも小さくす ることが可能で、TB級の光記録システムも不可能ではな い. ただし, 近接場光の強度は, 入力するレーザー光の 強度に依存するが、一般的に非常に弱く、CDやDVDで再 生されている信号強度に比べて桁違いに小さいことを忘 れてはならない.光ディスクに応用する場合には、何ら かの増幅機能と併用して用いることが必要である.

そのための一手段として,表面プラズモン光の応用が 考えられる.誘電体薄膜と金属薄膜(たとえば銀など)が接 しているある条件下で,表面プラズモン光を発生させる ことが可能である.ここで誘電体の誘電率を ε_1 (屈折率 n_1 の二乗)とし,金属の誘電率を $\varepsilon_2(n_2$ の二乗)としよう. ε_1 は 透明な誘電体薄膜を想定しており,その虚数部を0とお く. ε_2 は,金属や半導体では一般に負であり, n_2 の虚数部 はその実数部に比べて大きい.この積層薄膜にある角度 で光を入射したときの界面での電場状態をマックスウエ ルの方程式を解いて求めると,界面に沿って進行する電 場(ここでは k_x とし,面に垂直方向成分を k_z とする)の存在 条件は,

$$k_{x} = \omega / c [(\varepsilon_{1} \varepsilon_{2}) / (\varepsilon_{1} + \varepsilon_{2})]^{1/2}$$
(2)

となる. k_xが2層界面内で伝播光するためには,√内が正 となることが必要である.一方,入射した光線が反射し て戻る条件は,

$$k_{z} = \left[\left(\omega/c \right)^{2} \varepsilon_{1} - k_{x}^{2} \right)^{1/2}$$
(3)

と得られるが、境界面から反射光として漏らさず、界面 内に電場を維持するためには k_c を虚数にすればよい. (2) 式より容易に分かることであるが、たとえば ϵ_l を空気層と して1とした場合、(2)式の平方根内部を1より大きくする 条件は、 $\epsilon_2 < 0$ かつ $|\epsilon_2| > 1$ のときである、金属あるいはあ る種の半導体では ϵ_2 が負であることから、条件によって は、表面プラズモン光を発生させる解が存在する.

この条件を得るための方法として、一般にプリズムを 用いた全反射条件(ATR)法が考えられるが、光記録薄膜 内部にプリズムを持ち込むことは不可能であり、他の方 法で(2)および(3)式を満足する条件を検討する必要があ る.それには記録マークあるいは記録ピットを回折格子 (グレーティング)として捉え、表面プラズモン光を励起す る方法である。一般に回折格子に角度ので光を入射する と、入射光は回折格子のピッチ幅に依存して回折され る.このとき、0次光の他にv=±1、±2次光などの高次の 項も現れる(ここでvは整数).回折格子のピッチをaとす ると、屈折率noの媒体中に置かれた回折格子表面に伝搬し ようとする電場k_xは、

 $k_{x} = (\omega/c)n_{0}\sin\theta \pm 2\pi\nu/a = (\omega/c)n_{0}\sin\theta \pm \Delta k_{x}$ (4)

となり、高次の回折光を利用すればkxを大きくできる.つ まり、(2)式を用いずとも格子ピッチを小さくし、Δkxを大 きくすることで、 $k_x \varepsilon(\omega/c)$ より大きくすることが可能 で、(3)式を虚数にすることができる.この条件は、回折 限界以下のピッチaに対してほぼ成り立つ.したがって、 光記録層(たとえば相変化記録膜)に大きな屈折率差をもつ 細密格子が作製できれば、原理的には(3)式を満足でき る.他方,材料的観点からすると、半導体特性と金属特 性をある温度範囲で相変態する相変化記録膜に記録され た,回折限界以下の微小マーク列からなる回折格子で は、相変化膜に発生するホットキャリア(電子又はホー ル)が、入射する電場の振動数領域で、ある程度の密度を もって共鳴振動を誘起できるという条件が必要である (Fig.2). Teを含むカルコゲン材料は, Te原子の孤立電子 対による光屈折率効果を示す特異な半導体であり、キャ リア移動度が高く、条件を満たす可能性がある.

3. 超解像光技術とスーパーレンズ

他の近接場光を用いた光記録に関してはここでは詳細 には触れないが、2で述べたように近接場光は界面内以外 には伝搬しないため、記録・再生ヘッドを記録媒体面に 数十nmまで接近させねばならないことは言うまでもな い.近接場光記録の本筋に立って素直に高密度光記録に 挑戦すれば、HDに用いるようなフライングヘッド型の光 ピックアップを採用することが常套手段となる.しか し、プラスチック基板を用いるDVD等のように線速度 6 m/sや、転送レートをさらに上げるために回転速度を速 めた場合には、わずかな衝撃等でヘッドが媒体表面と接

Phase-change marks or pits

Fig. 2 Relationship between the configuration of small mark trains and surface plasmons. As decreasing the grating pitch, the high-order diffraction beams can satisfy $k_z = [(\omega/c)^2 \varepsilon_1 - k_x^2)]^{1/2} < 0$ by increasing Δk_x .

触し、データが破壊しかねない.また、そもそも光ディ スクはHDと違って、気軽に持ち運べる「可換性」が特徴で あって、HDディスクのようにドライブ一体での商品ではない.

このような光ディスクの特徴を生かして, 高密度化を 狙う技術として、1993年に安田等が提案した高密度ROM ディスクをマスク層(相変化膜(GeSbTe))を透して読み出 す技術がある³⁾. これは,相変化記録膜に集光レーザー ビームを照射し、レーザーパワーを微妙に調節すること で、スポット内の中心部分のみを溶融し、その部分の屈 折率,特に吸収係数を変化させ,光学的微小開口が形成 し、マスク層下にあるピットの解像度を改善するもので ある.この方法を光超解像法と呼ぶ.光超解像法を利用 するためのディスク設計は、従来の薄膜光学手法によっ て容易に計算でき、ピットとマスク薄膜(ここでは相変化 膜)との最適距離は80~160 nmにある(このとき、マスクを 透したピット信号変調度が最大になる).しかし、1993年 には,近接場光とのカップリング効果に関する研究がほ とんどなく,光超解像法に近接場光学を組み合わせるこ とは行われなかった.

我々は、1998年に光超解像法と近接場読み出しを組み 合わせたスーパーレンズ(Super-Resolution Near-Field Structure)と呼ばれる近接場光記録技術を提案した⁴⁾. スーパーレンズは、従来の近接場光記録に内在する空間 制御と近接場強度の問題を一挙に解決する手段を提供し た.従来の近接場光記録では記録ヘッド(プローブ先端 や,SIL底面等)と記録媒体間は空気層であるが、スー パーレンズでは空気層を透明な誘電体層で置換し, ま た、近接場発生機構として光超解像法を採用してSb薄膜 をマスク層に用いた.従来の光超解像法ではマスク層と して相変化記録材料であるGeSbTe薄膜を用いていたが, GeSbTe薄膜は通常のスパッタリング条件ではアモルファ ス膜となるため、光超解像マスク層に利用するには、一 旦, 高パワーのレーザーを用いて初期化と呼ばれる結晶 化処理が必要となる.しかも、散乱される近接場光は微 弱だろうとの予測から、初期化によって結晶粒径が不均 ーになることを嫌ってSb薄膜を用いた.Sb薄膜は結晶化 温度が80℃付近にあり、通常のスパッタリング条件で成

第32巻第1号 超解像光技術-その超高密度光ディスクへの応用-

膜した場合、ほぼディスク表面にわたって均一な微細結 晶状態となる.スーパーレンズでは、結晶化Sb薄膜(15 nm)と相変化記録薄膜GeSbTe(15~20 nm)が20~40 nmの SiN誘電体薄膜で隔離されているため、Sb薄膜中に近接場 開口が発生しても開口部と記録媒体間が接触することは ない.また、スーパーレンズは光超解像技術を継承して いるため、CDやDVDと同様の光ヘッドで記録・再生が可 能である.ディスクの回転速度も実際の光記録と同様,6 m/s程度あるいはそれ以上の速度を利用できる.実際の DVDでデータ転送速度が20 Mbps程度であるから、実際の スーパーレンズでは100 Mbps程度の転送速度が得られて いる. Fig. 3にディスク構成とSbを用いたスーパーレンズ の解像特性を示すが、635 nmの波長で0.6のNAを用いた場 合,(1)式より回折限界は530 nmで,解像限界はこの半分 の270 nm付近にあるが, 読み出しレーザーパワーが低く(1 mW),Sb薄膜に近接場開口が形成されない条件下では、 実験データはほぼ理論解像度と一致している.しかし、 レーザーパワーを3.5 mW程度まで上げ、同様の実験を行 うと、約60 nm程度まで僅かではあるが信号が検出でき る. Sb薄膜を用いる開口型スーパーレンズでは, 100 nm マークサイズで約25dBの近接場信号を得ることが可能で、 理論回折限界の約1/9程度の解像度を得ることができる.

しかし,1998年にSb薄膜型スーパーレンズによる近接 場光記録を発表の後,次第に開口型スーパーレンズの欠 点が明らかとなってきた.まず,第一に微小ピット(100 nm以下)では,開口から散乱されファーフィールド光とし てピックアップに戻ってくる光量は,それ以外(Sb表面) からの戻り光と比較して圧倒的に小さい.したがって, 実用的な光ディスクと同等な信号強度を得ることは非常 に困難である.さらに,開口型の近接場光記録の致命的 な欠点は,開口径と記録膜面までの距離によって,ある 特定マーク長において信号が極度に低下する特徴があ る.この現象は,開口エッジに強く発生する近接場光と マークエッジに発生する近接場光が相互に破壊的に干渉

Fig. 3 Super-resolution property of Sb based super-RENS disk. A: no aperture generated by low power laser beam (1.0 mW), and B: aperture generated by high power laser (3.5 mW). The optical system with 635 nm wavelength and NA 0.60 was used for the measurement.

することに起因する. Fig. 3では, 200 nmのマーク読み出 しがその部分に相当する. この干渉を回避する方法は, 中間誘電体の膜厚を厚くすることである. 実験では60 nm 以上でドロップは解消するが, 100 nm以下のマーク信号 感度は急激に減衰する. この結果は, FDTDシミュレー ションでも確認されており, 今後のあらゆる開口型近接 場光記録において問題になるだろう. こうした欠点を克 服し, 100 nm以下の記録マークでも40 dB以上のCNRを確 保する方法は,開口型近接場光ヘッドを用いるのではな く,単一散乱型近接場光ヘッドをスーパーレンズに導入 することである.

1999年から、旧工業技術院ではシャープ(株)と共同 で, 光散乱型スーパーレンズ・ディスクに向けた研究開 発を行った⁵⁾.光散乱型として最初に材料として注目した ものは、Agの薄膜であるが、SbをAgで代用しても超解像 効果は全く得られなかった.そこで,我々は酸化銀 (AgO_x)薄膜が160°CでAg に熱分解することに着目し、 AgOxを用いて第二世代と呼ばれるスーパーレンズを開発 した⁵⁾. 当初は, AgO_xが可逆的に変化するものと考えた が、最近の研究では完全な可逆変化ではないことが断面 TEM像の観察からわかっている.しかし、高いレーザー パワーの記録後のAgO、層には分解によって発生した酸素 ガスピットには、100 nm程度の粒径をもつAg結晶粒が散 在していることが確認されており, ナノサイズの金属粒 子が回折限界以下のマークの読み出しに対して、何らか の形で信号増幅に関与しているようであるが、詳細な原 理解明は始まったばかりである. 原理解明にはまだまだ 時間が必要であるが、第2世代型スーパーレンズの特性か ら、産総研と民間企業8社の共同研究チームは、ナノ粒子 のサイズおよび熱的安定性,正確なサイズのガスピット 記録が、100 nm以下の次世代スーパーレンズ開発の鍵と 考え、2002年から酸化白金(PtOx)を用いたスーパーレン ズの開発に移行した.その最新成果は、2003年5月にカナ ダで開催された[Optical Data Storage 2003, ODS2003]で、 TDK(株), 韓国サムソン電子(株)によって発表され, PtO_x 型スーパーレンズ(これを第3世代型と呼ぶ)を用いれば、 赤色DVD光学系でも100 nmでCNR > 47 dB, 80 nmでも> 42 dBの信号強度を安定に確保できるまでに至った^{6,7)}. 研 究開発に携わった各企業研究者の努力とその粘りに感謝 したい.

酸化白金型のスーパーレンズについては、割愛させて 頂くが、第3世代型スーパーレンズの超解像特性は、第1 世代とはどうやら大きく異なることが少しずつ解明され つつあり、詳細な超解像信号再生原理については、今 後、報告させていただく.

金属ナノ粒子と局在プラズモン光の 光ディスクへの応用

さて、第2章で解説したが、表面プラズモン光や局在プ ラズモン光の光ディスクへ導入は、今後の光ディスクの 特性向上や記録密度の向上につながることは言うまでも なかろう.第1世代のスーパーレンズでは、微小開口を用 て開口部に近接場光を発生させたが、回折限界以下の マーク径を持つ記録マーク列は、回折格子として作用す ることから、表面プラズモン光を利用した方がより効果 的である.また、ナノ粒子等を用いればさらに一層の、 電場増強と信号増幅が期待できる.こうした期待を込め て、光ディスクの反射層や記録補助層として、プラズモ ン光を発生させる仕掛けを導入できないだろうか.

この期待に応える方法を, 最近, 産総研において開発 したので、以下に簡単に解説する^{8,9)}. 基本となる基盤技 術は、第二世代スーパーレンズにある、第二世代では、 光散乱中心層としてAgO_vを用いていたが、AgO_vは非常に 興味のある分解を起こす.特に,有機溶媒中ではレー ザーと組み合わせると、Agのナノ粒子やナノワイヤーを 簡単に得られるばかりでなく(少量ではあるが),表面増強 ラマン分光が観測できることが我々の研究グループに よってすでに確認されている.これらの基礎実験では、 レーザースポットサイズは1 um²程度で、工業的にはあま りメリットはない.しかし、レーザー等で簡単にナノ構 造が得られるのであれば,真空装置内で水素還元によっ て大量のナノ粒子や大面積でナノ構造を形成できる可能 性があるに違いない.しかし、そう簡単にはナノ化は達 成できず、水素リッチな条件で還元処理を行うと、1~2 秒で平坦なAg薄膜へと還元されてしまう.したがって, AgOx薄膜からAg ナノ構造を得るための条件として、①還 元速度の制御, ②ナノ粒子化のための核形成方法の開発 があげられる. ①は比較的容易で、酸素ガスをダミーと して水素ガスと共にエッチングチャンバーに流し、ガス 流量比率を制御することで達成可能であることがわかっ た. また、②は AgO_x と AgF_y とのエッチング時間差を利用 すると、AgF₂とAgO_xの生成ギプス・エネルギーΔGの差に よって、AgFが核を発生することがわかった.このため、 水素-酸素混合ガス中に、初期の段階でCF4ガスを少量添加 し、核が形成できた時点でCF₄のガスを止める操作を行 う.実験条件の詳細は、参考文献9)を参照いただきたい.

最近の実験から、12 cm径の光ディスク基板上(誘電体を 20 nmほど成膜してあるが)の一面にAgのナノ粒子やナノ 構造を形成することが可能となった(Fig. 4 (a), (b)).

Agナノ粒子やナノワイヤーの直径は, AgO_xの出発組成 である程度制御可能であるが, だいたい20~30 nmであ る.こうして形成したAgナノ粒子にDVD記録用テスター (635 nm/NA 0.60)でパルス記録し, 超解像特性を測定した 結果をFig.5に示す.

ここで,注意していただきたいのは,基板とAgナノ粒 子層との間には20 nmの薄いZnS-SiO₂誘電体があるだけ で,それ以外には相変化記録層などは一切成膜されてい ない.SEM像(Fig.4 (a))で明らかなように,パルスレー ザーの記録によってナノ粒子構造が変化し,これが信号 成分となっていることがわかる.さらに驚くことに, レーザーは基板を通して導入され,100 nmのAg粒子化層 を透過しているにもかかわらず,Agナノ粒子層が厚くな るに従って超解像特性が向上することは注目に値する. 一般にはAg薄膜の厚さが30 nm以上では,表面プラズモン 光は反対側に励起できない.実験結果は,この信号増強

レーザー研究 2004年1月

Fig. 4 (a) 12 cm PC disk covered with Ag nanoparticles, and (b) typical Ag nanoparticles generated by AgOx film deoxidation in this method.

Fig. 5 Super-resolution signals from Ag nanostructured film deformed by pulsed laser recording. It should be noticed that no recording film was deposited on the top layer.

は、表面プラズモン光ではなく、Agナノ粒子間に発生す る局在プラズモン光に起因することを裏付けている.今

光超解像(Super-Resolution)

顕微鏡等を用いた微小物体の分解能は,光の回折原理 によって,使用する光の波長とレンズの開口数で決定さ れる.さらに解像度を向上するために開発されたのが光 超解像と呼ばれる技術である.たとえば,観察物体表面 上を不透明な膜で覆い,その一部に微小な光学的開口を 後,局在プラズモン光の光ディスクへの応用は,ヘッド および媒体開発の双方で活発になるであろう.

5. まとめ

光超解像手法とスーパーレンズと呼ばれる近接場光を 応用した新しい光超解像方法について解説すると共に, 金属ナノ粒子を応用した局在プラズモン光読み出しにつ いて紹介した.スーパーレンズは,開口型近接場光特性 を応用した基礎研究段階から,ガスピット形成型の第3世 代へと進化を遂げてきたが,共同研究企業の絶大なるご 支援のお陰で,実用的な信号レベルに近づいてきた.原 理的な解明はまだまだ不十分ではあるが,今後の進展に 期待したい.

謝 辞

第3世代型スーパーレンズの研究開発については、旧工 業技術院産業技術融合領域研究所、産業技術総合研究所 次世代光工学研究ラボ、近接場光応用工学研究センター において、民間企業との共同研究によって行われた成果 である.また、Agナノ粒子を用いたスーパーレンズの研 究開発は、2002年からスタートした経済産業省「大容量光 ストレージ」プロジェクト、および粒子の制御技術につい ては、産総研内部グラント「ハイテクものづくり」の支援を 受けた.関連各位に深く感謝したい.特に、第3世代まで のスーパーレンズの開発に関して、特に、シャープ(株)藤 寛氏、TDK(株)菊川隆氏、韓国サムソン電子(株)Kim Joo Ho博士、産総研の中野隆志博士、島隆之博士の協力に感 謝する.

参考文献

- 1)河田 聡編:「超解像の光学」学会出版センター, 1999年.
- 2) H. Raether: "Surface Plasmon on smooth and rough surfaces and on grating," Springer-Verlag, Berlin Heidelberg, 1988.
- 3) Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko: Jpn. J. Appl. Phys. 35 (1996) 423.
- J. Tominaga, T. Nakano, and N. Atoda: Appl. Phys. Lett. 73 (1998) 2078.
- 5) H. Fuji, H. Katayama, J. Tominaga, L. Men, T. Nakano, and N. Atoda: Jpn. J. Appl. Phys. **39** (2000) 980.
- 6) T. Kikukawa, H. Fuji, T. Shima, and J. Tominaga: Technical Digest of Optical Data Storage 2003, Vancouver, Canada, May 2003, 21.
- 7) J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga: Technical Digest of Optical Data Storage 2003, Vancouver, Canada, May 2003, 24.
- 8) J. Tominaga: Technical Digest of Optical Data Storage 2003, Vancouver, Canada, May 2003, 18.
- 9) J. Tominaga: J. Phys: Condens. Matter. 15 (2003) R1101-R1122.

形成し,その開口を物体表面にわたって走査すれば,高 解像度の物体表像を構成できる.光超解像効果は,近 年,光記録媒体の密度向上に応用されようとしている. (富永 淳二)

第32巻第1号 超解像光技術-その超高密度光ディスクへの応用-

レーザーワード