
Efficient Asynchronous Multiparty Computation with

Optimal Resilience

Arpita Patra Ashish Choudhary C. Pandu Rangan
Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai India 600036

Email:{ arpita,ashishc }@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract

We propose an efficient information theoretic secure asynchronous multiparty computation (AMPC)
protocol with optimal fault tolerance; i.e., with n = 3t + 1, where n is the total number of parties and
t is the number of parties that can be under the influence of a Byzantine (active) adversary At having
unbounded computing power. Our protocol communicates O(n5κ) bits per multiplication and involves
a negligible error probability of 2−O(κ), where κ is the error parameter. As far as our knowledge is
concerned, the only known AMPC protocol with n = 3t+1 providing information theoretic security with
negligible error probability is due to [9], which communicates Ω(n11κ4) bits and A-Casts Ω(n11κ2 log(n))
bits per multiplication. Here A-Cast is an asynchronous broadcast primitive, which allows a party to
send the same information to all other parties identically. Thus our AMPC protocol shows significant
improvement in communication complexity over the AMPC protocol of [9]. As a tool for our AMPC
protocol, we introduce a new asynchronous primitive called Asynchronous Complete Verifiable Secret
Sharing (ACVSS), which is first of its kind and is of independent interest. For designing our ACVSS,
we employ a new asynchronous verifiable secret sharing (AVSS) protocol which is better than all known
communication-efficient AVSS protocols with n = 3t + 1.

1 Introduction

Secure Multiparty Computation (MPC): Secure multiparty computation (MPC) [32] allows a set
of n parties to securely compute an agreed function f , even if up to t parties are under the control of
a centralized adversary, having unbounded computing power. More specifically, assume that the agreed
function f can be expressed as f : ({0, 1}∗)n → ({0, 1}∗)n and party Pi has input xi ∈ {0, 1}∗. At the
end of the computation of f , Pi gets yi ∈ {0, 1}∗, where (y1, . . . , yn) = f(x1, . . . , xn). The function f
has to be computed securely using a MPC protocol where at the end of the protocol all (honest) parties
receive correct outputs and the messages seen by the adversary during the protocol contain no additional
information about the inputs and outputs of the honest parties, other than what can be computed from
the inputs and outputs of the corrupted parties. The MPC problem has been studied extensively over
synchronous networks (see [8, 13, 30, 3, 21, 26, 6, 22, 16, 15, 4] and their references), which assumes that
there is a global clock and the delay of any message in the network channels is bounded. However, such
networks do not model adequately real life networks like Internet.

Asynchronous Networks: Asynchronous networks model real life networks like the Internet much bet-
ter than their synchronous counterpart. Here the communication channels between the parties have
arbitrary, yet finite delay (i.e the messages are guaranteed to reach eventually). To model this, the ad-
versary is given the power to schedule the delivery of messages. The inherent difficulty in designing a
protocol in asynchronous network, comes from the fact that when a party does not receive an expected
message then he cannot decide whether the sender is corrupted (and did not send the message at all)
or the message is just delayed in the network. Therefore it is impossible to consider the inputs of all
uncorrupted parties in case of AMPC. So input of up to t (potentially honest) parties may get ignored
because waiting for them could turn out to be endless. Moreover the asynchronity of network calls for a
complete new set of primitives for designing protocols. For a comprehensive introduction to asynchronous
protocols, the readers may refer to [11].

Asynchronous Multiparty Computation (AMPC): Unlike MPC in synchronous networks, design-
ing AMPC protocols has received very less attention due to their inherent difficulty. It is known that

1

AMPC under cryptographic assumptions [23, 24] is possible iff n ≥ 3t + 1. In information theoretic set-
tings, AMPC with zero error (i.e., perfectly secure AMPC) is possible iff n ≥ 4t + 1 [7], whereas AMPC
with negligible error probability is possible iff n ≥ 3t + 1 [9]. The communication complexities per mul-
tiplication of the best known AMPC protocols in different settings are given in the following table. So,
in the table, CM denotes the number of multiplication gates in arithmetic circuit computing the function
f (general MPC/AMPC protocols assume that the function f is to be computed over a finite field F
and the function can be expressed as an arithmetic circuit over F, consisting of input, random, linear,
multiplication and output gates). Moreover, IT denotes Information Theoretic security. Furthermore, for
cryptographic AMPC, κ is the security parameter, while for information theoretic AMPC (with negligible
error probability), κ is the error parameter.

Reference Type of Security Resilience Communication Complexity in bits

[23] Cryptographic t < n/3 (optimal) O(CMn3κ)

[24] Cryptographic t < n/3 (optimal) O(CMn2κ)

[31] IT (no error) t < n/4 (optimal) Ω(CMn5 log(|F|))
[5] IT (no error) t < n/4 (optimal) O(CMn3 log(|F|))
[9] IT (negligible error) t < n/3 (optimal) private - Ω(CMn11κ4)

A-Cast - Ω(CMn11κ2 log(n))

[28] IT (negligible error) t < n/4 (non-optimal) O(CMn4κ)

From the table, we find that the only known information theoretic secure AMPC with n = 3t+1, involves
high communication complexity 1. Recently in [17], the authors have designed communication efficient
MPC protocols over networks that exhibit partial asynchrony (where the network is synchronous up to
certain point and becomes completely asynchronous after that) and hence we do not compare it with our
MPC protocol, which is designed in completely asynchronous settings.

Our Contribution: We design an efficient information theoretic secure AMPC protocol with n = 3t+1
having a negligible error probability of 2−O(κ). Our AMPC protocol (privately) communicates O(n5κ)
bits per multiplication, thus significantly improving the communication complexity of the only known
AMPC protocol of [9] in the same settings. As a tool for our AMPC protocol, we introduce a new
asynchronous primitive called Asynchronous Complete Verifiable Secret Sharing (ACVSS). For designing
our ACVSS, we present a new asynchronous verifiable secret sharing (AVSS) protocol, which is the most
communication-efficient AVSS protocol so far with n = 3t + 1. We believe that our ACVSS and the tools
that we use for designing ACVSS can be used in many other applications for improving communication
complexity and hence are of independent interest.

A Brief Discussion on the Approaches used in the AMPC of [9] and Current Article:

1. The AMPC protocol of [9] proceeds in two phases: input phase and computation phase. In the input
phase every party shares (or commits) his input xi. All the parties then decide on a set of n − t parties
who have done proper sharing of their input. Now for sharing/committing inputs (secrets), a natural
choice is to use AVSS protocol which can be treated as a form of commitment, where the commitment is
held in a distributed fashion among the parties. Before [9], the only known AVSS scheme with n = 3t + 1
was due to [12]. But it is shown in [9] that the use of the AVSS protocol of [12] for committing inputs
(secrets), does not allow to compute the circuit robustly in a straight-forward way. This is because for
robust computation of the circuit, it is to be ensured that at the end of AVSS sharing phase, every honest
party should have access to proper share of the secret. Unfortunately the AVSS of [12] does not guarantee
the above property, which we may refer as ultimate property. This very reason motivated Ben-Or et. al [9]
to introduce a new asynchronous primitive called Ultimate Secret Sharing (USS) which not only ensures
that every honest party has access to the proper share of secret, but also offers all the properties of AVSS.
Thus [9] presents an USS scheme with n = 3t + 1 using the AVSS protocol of Canetti and Rabin [12] as a
building block. Essentially, in the USS protocol of [9], every share of the secret is committed using AVSS
of [12] which ensures that each honest party Pi can have an access to the ith share of secret by means of
private reconstruction of AVSS. A secret s that is shared using USS is called ultimately shared. Now in
the input phase of AMPC in [9], parties ultimately share their inputs. Then in the computation phase,
for every gate (except output gate), ultimate sharing of the output is computed from the ultimate sharing
of the inputs, following approach of [8, 30].

1The communication complexity analysis of the AMPC protocol of [9] was not done earlier and for the sake of completeness,
we carry out the same in APPENDIX A.

2

2. Our AMPC protocol is presented in preprocessing model of [2] and proceeds in three phases: preparation
phase, input phase and computation phase. We call a triple (a, b, c) as a random multiplication triple if
a, b are random and c = ab. In the preparation phase, sharing of cM + cR random multiplication triples
are generated, where cM and cR are the number of multiplication and random gates in the circuit. Each
multiplication and random gate of the circuit is associated with a multiplication triple. In the input phase
the parties share (commit) their inputs and agree on a core set of n− t parties who correctly shared their
inputs. In the computation phase, the actual circuit will be computed gate by gate, based on the inputs
of the parties in core set. Due to the linearity of the used secret-sharing, the linear gates can be computed
locally. Each multiplication gate will be evaluated using the circuit randomization technique of Beaver
[2] with the help of a multiplication triple.

For committing/sharing secrets, we use a new asynchronous primitive called ACVSS in our AMPC
protocol. There is a slight definitional difference between the USS of [9] and our ACVSS, though both
of them offer all the properties of AVSS. While USS of [9] ensures that every honest party has access to
proper share of secret (but may not hold the share directly), our ACVSS ensures that every honest party
holds proper share of secret. We may refer to the above property of ACVSS as completeness property.
The advantages of ACVSS over USS are: (a) it makes the computation of the gates very simple, (b)
reconstruction phase of ACVSS is very simple, efficient and can be achieved using on-line error correction
of [11]. Apart from these advantages, our ACVSS is strikingly better than USS of [9] in terms of commu-
nication complexity. While our ACVSS share protocol communicates O((`n4 + n5κ)κ)) bits and A-casts
O(n4 log(n)) bits to share ` secrets concurrently, the USS share protocol of [9] communicates Ω(n10κ4)
bits and A-casts Ω(n10κ2 log(n)) bits to share only one secret. To design our ACVSS, we design a new
AVSS scheme with n = 3t + 1.

Comparison of Our AVSS Protocol with Existing AVSS Protocols: Our AVSS is to be compared
with the AVSS protocols of [12] and [27] with n = 3t + 1. Notice that all the three AVSS protocols lack
both ultimate and completeness property and hence they cannot be directly used in AMPC. While AVSS
of [12] was extended to USS [9], we extend our AVSS to ACVSS before applying for AMPC. While the
AVSS protocol of [12] shares a single secret and requires private communication of O(n9κ4) bits and A-Cast
O(n9κ2 log(n)) bits, our AVSS protocol shares ` secrets concurrently and requires private communication
of O((`n3 + n4κ)κ) bits and A-cast O(n3 log n) bits. Our AVSS protocol is superior to the AVSS protocol
of [27] both property-wise and communication-wise (though both of them share ` secrets concurrently).
While the AVSS protocol of [27] does not bar a corrupted D to commit NULL 6∈ F during sharing phase,
our AVSS protocol stops D to do so and allows D to commit ` secrets from F only. Though it looks like
a slightly stronger property, it calls for a completely new design approach. Moreover, while it is very easy
to design an ACVSS protocol using our AVSS protocol as a building block, it may not be the case for the
AVSS protocol of [27]. Now the AVSS of [27] requires private communication of O((`n3 + n4)κ) bits and
A-casts O((`n3 + n4)κ) bits. Comparing this with our AVSS, we find that our AVSS calls for A-casts that
is independent of ` while keeping private communication almost same. The AVSS of [27] is used to design
efficient ABA protocol, where the maximum value of ` can be n. But in AMPC, the size of ` depends
upon the circuit size and can be arbitrarily large. So in the context of AMPC, our AVSS, whose A-Cast
is independent of `, fits better than AVSS of [27].

The improvements in our AVSS protocol are due to the key factors like: (a) new design approach,
(b) use of efficient building blocks, (c) harnessing the advantages offered by dealing with multiple secrets
concurrently. To emphasize on the last factor, we remark that our protocols dealing with ` secrets
concurrently are far better than ` repeated applications of protocols dealing with single secret.

2 Preliminaries

Model: We follow the network model of [9], where there is a set of n parties denoted by P = {P1, . . . , Pn},
who are pairwise connected by secure asynchronous channels. An adversaryAt with unbounded computing
power can control at most t < n

3 parties in Byzantine fashion and can make the corrupted parties to deviate
from the protocol arbitrarily. Moreover, At is given the power to schedule messages over each channel.
But he will have no access to the messages sent by honest parties. The function to be computed is
specified by an arithmetic circuit over a finite field F. The circuit consists of input, linear (e.g. addition),
multiplication, random and output gates. We denote the number of gates of each type by cI , cL, cM , cR

and cO respectively. Our AMPC protocol involves a negligible error probability of 2−O(κ), where κ is the

3

error parameter. To bound the error probability by 2−O(κ), all our computations are performed over F,
where F = GF (2κ). Thus each field element can be represented by κ bits. Moreover, without loss of
generality, we assume that n = poly(κ).

A-cast, Agreement on a Core Set (ACS), AWSS, AVSS and ACVSS

A-Cast[12]: It is an asynchronous broadcast primitive, introduced and implemented in [10] with n = 3t+1.
From [10], A-Cast of b bits incurs a private communication of O(n2b) bits. Let Π be an asynchronous
protocol initiated by a special party (called sender), having input m (the message to be broadcast). We
say that Π is a t-resilient A-cast protocol if following holds, for every At and input m:
• Termination: 1. If the sender is honest and all the honest parties participate in the protocol, then each honest party

will eventually complete the protocol.

2. Irrespective of the behavior of the sender, if any honest party completes the protocol then each honest party will eventually

complete the protocol.

• Correctness: If the honest parties complete the protocol then they have a common output m∗. Furthermore, if the

sender is honest then m∗ = m.

In the sequel, we use following convention: we say that Pj listens m from the A-Cast of Pi, indicating that
Pj has completed the execution of Pi’s A-Cast with output m.

ACS[5]: It is a primitive presented in [7, 9] to determine a set of n− t parties that correctly shared their
values. More specifically, each party starts ACS protocol with an accumulative set of parties who from his
view point correctly shared their values. The output of the protocol is a set of n− t parties, who correctly
shared their values. The communication cost of an ACS is O(poly(n, κ)) bits.

Asynchronous Weak Secret Sharing (AWSS) [12]: Let (Sh, Rec) be a pair of protocols in which a dealer
D ∈ P shares a secret S = (s1 . . . s`) containing ` ≥ 1 field elements. We say that (Sh, Rec) is a t-resilient
AWSS scheme for n parties if the following hold for every possible At.

• Termination: With probability at least 1− 2−O(κ), the following requirements hold:

1. If D is honest then each party will eventually terminate protocol Sh.

2. If some honest party has terminated protocol Sh, then irrespective of the behavior of D, each honest party will
eventually terminate Sh.

3. If an honest party has terminated Sh and all the honest parties invoke protocol Rec, then each honest party will
eventually terminate Rec.

• Correctness: With probability at least 1− 2−O(κ), the following requirements hold:

1. If D is honest then each honest party upon completing protocol Rec, outputs the shared secret S.

2. If D is faulty and some honest party has terminated Sh, then there exists a unique S′ = (s′1 . . . s′`) ∈ (F` ∪NULL),
such that each honest party upon completing Rec, will output either S′ or NULL.

• Secrecy: If D is honest and no honest party has begun executing protocol Rec, then the corrupted parties have no

information about S.

AVSS [12]: The Termination and Secrecy conditions for AVSS is same as in AWSS. The only difference
is in the Correctness 2 property:
Correctness 2: If D is faulty and some honest party has terminated Sh, then there exists a unique S′ = (s′1 . . . s′`) ∈ F`,

such that with probability at least 1− 2−O(κ), each honest party upon completing Rec, will output only S′.

ACVSS: The termination, correctness and secrecy property of ACVSS are same as in AVSS. In
addition, ACVSS requires the following completeness property: every honest party holds proper share of
secret at the end of Sh.

3 Asynchronous Complete Verifiable Secret Sharing (ACVSS)
We now present a novel ACVSS protocol that allows a dealer D ∈ P to generate complete sharing of `
secrets. To design our ACVSS, we first design a sequence of asynchronous primitives, namely Information
Checking Protocol (ICP), AWSS and AVSS.

4

3.1 Information Checking Protocol and IC Signature

The Information Checking Protocol (ICP) is a tool for authenticating messages in the presence of compu-
tationally unbounded corrupted parties. The notion of ICP was first introduced by Rabin et.al [30, 29].
The ICP of Rabin et. al. was also used as a tool by Canetti et. al. [12] for designing asynchronous
Byzantine Agreement (ABA) with optimal resilience (i.e n = 3t + 1). As described in [30, 29, 12, 15], an
ICP is executed among three parties: a dealer D, an intermediary INT and a verifier R. The dealer D
hands a secret value s to INT . At a later stage, INT is required to hand over s to R and convince R
that s is indeed the value which INT received from D.

The basic definition of ICP involves only a single verifier R and deals with only one secret s [29, 15, 12].
We extend this notion to multiple verifiers, where all the n parties in P act as verifiers. Thus our ICP is
executed among three entities: the dealer D ∈ P, an intermediary INT ∈ P and entire set P acting as
verifiers. This will be later helpful in using ICP as a tool in AWSS protocol. Moreover, when appropriate,
we run our ICP to concurrently work on multiple secrets, denoted by S, which contains ` ≥ 1 secret values.
So, instead of repeating multiple instances of ICP dealing with single secret, we can run a single instance
of ICP dealing with multiple secrets concurrently, leading to significant reduction in communication
complexity. We use our ICP in our AWSS schemes, where it is required to execute instances of ICP dealing
with multiple secrets concurrently. Note that, as opposed to the case of a single verifier, when multiple
verifiers simultaneously participate in ICP, we need to distinguish between synchronity and asynchronity
of the network. Our ICP is executed in asynchronous settings and is denoted by A-ICP(D, INT, P, S).

Recently, in [27] an A-ICP protocol is proposed, dealing with multiple secrets and multiple verifiers in
asynchronous settings. The A-ICP is further used in [27] to design an efficient ABA protocol. However,
the A-ICP protocol of [27] incurs a private communication of O((` + n)κ) bits and A-Cast of O((` + n)κ)
bits. On the other hand, our A-ICP incurs only private communication of O((` + nκ)κ) bits (and no
A-cast). As in [30, 29, 12], our A-ICP is also structured in three phases:

1. Generation Phase: is initiated D. Here D hands over the secret S, along with authentication
information to intermediary INT and some verification information to individual verifiers in P.

2. Verification Phase: is carried out by INT and the set of verifiers P. Here INT decides whether to
continue or abort the protocol depending upon the prediction whether in Revelation Phase, the secret
S held by INT will be (eventually) accepted/will be considered as valid by the honest verifier(s) in P.
INT achieves this by setting a boolean variable Ver = 0/1, where Ver = 0 (resp. 1) implies abortion
(resp. continuation) of the protocol. If Ver = 1, then the authentication information, along with S, held
by INT at the end of Verification Phase is called D’s IC signature on S.

3. Revelation Phase: is carried out by INT and the verifiers in P. Revelation Phase can be presented
in two flavors: (i) Public Revelation of IC signature to all the parties in P; (ii) Pα-private-revelation of
IC signature: Here the signature is privately revealed to only a specific party Pα. First, INT reveals his
secret S along with the authentication information to Pα. The verifiers reveal their respective verification
information to Pα. Then Pα privately performs some checking with the information received from INT
and verifiers and finally either accepts INT ’s secret S or rejects it. We denote the acceptance by verifier
Pα, (resp., rejection) by Revealα = S (resp., NULL).
Protocol A-ICP satisfies the following properties:

1. If D and INT are honest, then S will be accepted in Revelation phase by each honest verifier.

2. If INT is honest and Ver =1, then S held by INT will be accepted in Revelation phase by each
honest verifier, except with probability 2−O(κ).

3. If D is honest, then during Revelation phase, with probability at least 1 − 2−O(κ), every S′ 6= S
produced by a corrupted INT will be not be accepted by an honest verifier.

4. If D and INT are honest and INT has not started Revelation phase, then S is information
theoretically secure.

Notice that unlike other asynchronous primitives (e.g. AWSS, AVSS, ACVSS), A-ICP need not have
to satisfy any termination property. The reason is that A-ICP will never be executed as a stand alone
application. Rather, A-ICP will act as a tool to design AWSS, which has its own termination properties.
This is in line with [12], where ICP is defined without termination property and is used as a tool in

5

AWSS/AVSS protocol. We now present our A-ICP, which allows D to deal with secret S containing ` ≥ 1
field elements, where n = 3t + 1. In our implementation of AWSS, AVSS and ACVSS protocols, we do
not require public revelation of IC signature. So we give the details of private revelation of IC signature
only (though we claim to have an implementation of public revelation of IC signature). For the proof of
the properties of our A-ICP, see APPENDIX B.

Protocol A-ICP(D,INT ,P,S)

Generation Phase: Gen(D, INT,P, S)

1. The dealer D, having secret S = (s1, . . . , s`), selects a random `+ tκ degree polynomial f(x) whose lower order
` coefficients are the secrets in S. D also picks nκ random non-zero elements from F, denoted by αi

1, . . . , α
i
κ,

for 1 ≤ i ≤ n.

2. D sends f(x) to INT and the verification tags zi
1 = (αi

1, a
i
1), . . . , z

i
κ = (αi

κ, ai
κ) to Pi, where ai

j = f(αi
j).

Verification Phase: Ver(D, INT,P, S)

1. Every verifier Pi randomly partitions the index set {1, . . . , κ} into two sets Ii and Ii of (almost) equal size
and sends Ii and zi

j for all j ∈ Ii to INT .

2. For every verifier Pi from which INT has received values, INT checks whether for every j ∈ Ii, f(αi
j)

?
= ai

j .

3. (a) If for at least 2t + 1 verifiers, the above condition is satisfied, then INT sets Ver = 1. If Ver = 1, then
the information held by INT is called D’s IC signature on S.

(b) If for at least t + 1 verifiers, the above condition is not satisfied, then INT sets Ver = 0.

Revelation Phase: Reveal-Private(D, INT,P, S, Pα): Pα-private-revelation of IC signature

1. To party Pα, INT sends f(x).

2. To party Pα, every verifier Pi sends the index set Ii and all zi
j such that j ∈ Ii.

3. Upon receiving the values from verifier Pi, Pα checks whether for any j ∈ Ii, f(αi
j)

?
= ai

j .

(a) If for at least t + 1 verifiers the condition is satisfied, then Pα sets Revealα = S, where S is lower order
` coefficients of f(x). In this case, we say that INT is ’successful’ in producing IC signature to Pα.

(b) If for at least 2t + 1 verifiers the above condition is not satisfied, then Pα sets Revealα = NULL. In this
case, we say that INT ’fails’ in producing IC signature to Pα.

Lemma 1 Protocol Gen, Ver and Reveal-Private privately communicate O((` + nκ)κ) bits each.

3.2 Asynchronous Weak Secret Sharing

We now present an AWSS protocol called AWSS with n = 3t + 1, which allows D to share a secret S
containing ` ≥ 1 field elements from F. The protocol is similar to the AWSS protocol AWSS-Multiple-Secret
given in [27] (which also deals with multiple secrets), except with the following difference: AWSS-Multiple-
Secret uses the A-ICP protocol of [27] as a black-box. We use our new A-ICP protocol to design our
AWSS protocol. Thus our AWSS protocol requires significantly less A-Cast than AWSS-Multiple-Secret of
[27]. Due to the similarity of our AWSS protocol with AWSS-Multiple-Secret of [27], we present AWSS
in APPENDIX C. We request the reader to go through APPENDIX C, as we have introduced few
new key words/terminologies in our AWSS protocol (not present in AWSS-Multiple-Secret), which will
be later used in the description of our new AVSS protocol. For the ease of reference, we provide the
communication complexity of protocol AWSS in the following lemma:

Lemma 14: Protocol AWSS-Share privately communicates O((`n2 + n3κ)κ) bits and A-casts O(n2 log n)
bits. Protocol AWSS-Rec-Private privately communicates O((`n2 + n3κ)κ) bits.

3.3 Asynchronous Verifiable Secret Sharing

We now present a novel AVSS protocol called AVSS with n = 3t + 1, which allows D to share a secret S
containing ` ≥ 1 field elements from F. We first design an AVSS protocol, called AVSS-Single that deals
with a single secret s. Later we present AVSS which is a simple extension of AVSS-Single.

Broad-level Discussion of AVSS-Single: D selects a random degree-t polynomial g(x) such that
g(0) = s. Now party Pi has to hold g(i), the ith share of s, in a way that ensures robust reconstruction
of s later in reconstruction phase. In order to do so, D is first asked to commit n points on g(x), namely

6

g(1), . . . , g(n) using n distinct invocations of our AWSS protocol. Here is the problem that may arise
when D is corrupted:
D may commit n values which do not lie on a t degree polynomial. In order to deal with this, in our pro-
tocol D is asked to do the following: D selects random t-degree polynomials f1(x), . . . , f t+1(x), such that
for i = 1, . . . , t + 1, f i(0) = g(i). Using these polynomials, D constructs additional t-degree polynomi-
als f t+2(x), . . . , fn(x), such that for j = 0, . . . , n, the points f1(j), . . . , fn(j) lie on a unique t-degree
polynomial. Note that this ensures for i = 1, . . . , n, f i(0) = g(i) holds. Thus essentially, D con-
structs an n × n matrix M , where each row and each column of M are t-consistent. Moreover given
any (t + 1) rows and columns of M , M is completely and uniquely fixed and so is the secret s. So
given g(x), the aforementioned technique of generating f1(x), . . . , fn(x) can be captured as a function:
(f1(x), . . . , fn(x)) = Generate(g(x)). Now D commits M by committing its columns i.e f1(x), . . . , fn(x)
using n distinct invocations of AWSS protocol. Consequently, each Pi receives ith point on the polyno-
mials, namely f1(i), . . . , fn(i) which is the ith row of M . Now we let Pi participate further in the AWSS
instances only if (f1(i), . . . , fn(i)) is t-consistent. So if the AWSS instances of D terminate with a common
WCORE, then all the honest parties (at least t + 1) in the WCORE ensure that they hold a potential
t-consistent row of M . Now to check whether D has committed at least t + 1 columns of M properly,
the reconstruction of ith invocation of D’s AWSS is executed to enable Pi-weak-private-reconstruction of
f i(x) (for the meaning of Pi-weak-private-reconstruction, see protocol AWSS-Single in APPENDIX C).
In case Pi reconstructs f i(x) then Pi’s task is to let the other parties know about it. Once the parties
know that enough number of honest parties (at least t + 1) have reconstructed their respective f i(x)’s,
they will be convinced that D has indeed committed at least (t+1) proper rows and columns of M , which
in turn fix M and the secret. So sharing phase of AVSS can be terminated.

The last concern now is how do we ensure the robust reconstruction of s in the reconstruction phase
of AVSS. The reconstruction of the AWSS instances of D does not assure reconstruction of committed
secret s, because for a corrupted D, the reconstruction of the D’s AWSS instances may output NULL.
So we do the following trick in the sharing phase of AVSS: When Pi reconstructs f i(x) from Pi-weak-
private-reconstruction, Pi acts as a dealer to initiate a new instance of AWSS to re-commit f i(x). At
this point, if Pi attempts to re-commit any polynomial, other than f i(x), then his re-commitment will
not be terminated. Moreover, the sharing phase of AVSS terminates only when 2t + 1 parties have
successfully re-committed their polynomials in their respective AWSS instances. This re-commitment by
2t + 1 parties serves dual purpose: (a) Every Pi among these 2t + 1 parties informs others that he has
reconstructed f i(x), (b) it allows robust reconstruction of s later in reconstruction phase. In fact, during
the reconstruction phase of the AVSS, an honest Pi’s instance of AWSS will always reconstruct f i(x),
while a corrupted Pi’s instance will output either f i(x) or NULL. Since during the sharing phase of
AVSS, the sharing phase of AWSS instances for 2t + 1 parties had terminated, the reconstruction phase
of at least t + 1 among them will be successful. This will enable the robust reconstruction of s.

Micro-level Discussion of AVSS-Single: Since there are many subtle steps in the protocol, we try to
facilitate the readers to build up their intuition as they move along the protocol steps. We motivate each
involved step in our protocol along with the explanation on what it achieves. We request the reader to
read this discussion along with protocol steps, to get an easy understanding of the protocol. In step [D’s
Commitment], D commits f1(x), . . . , fn(x) by executing n invocations of AWSS-Single-Share. This can
be viewed as D is asked to commit n columns of the matrix M . Now in sub-step [Code for Pi], we
want Pi to synchronize all the n invocations of D’s AWSS-Single-Share in order to end up with a common
set WCORED for all these n invocations (instead of n different WCOREs). A common WCORED not
only makes the life simple, but also ensures that all the n invocations terminate simultaneously. Also in
sub-step [Code for Pi], Pi verifies whether ((1, f1(i)), . . . , (n, fn(i))) lie on a t degree polynomial, where
Pi obtains f j(i) in the jth invocation of D’s AWSS-Single-Share. This is to assure Pi that (f1(i), . . . , fn(i))
may be the potential ith row of matrix M that D is supposed to commit. So if all the n invocations of
D’s AWSS-Single-Share terminate with WCORED, then everyone knows that at least t + 1 honest Pi’s
in WCORED are holding t + 1 potential rows of M . Now to be sure that D has indeed committed M ,
everyone should know that at least t+1 potential columns of M are also t-consistent. This is accomplished
by several moves in our protocol.
The first move is that the potential jth column of M , f j(x) which is committed by D, is Pj-weak-private-
reconstructed by executing the step [Pj-Weak-Private-Reconstruction of f j(x) for j = 1, . . . , n:].

7

When Pj recovers f j(x), he further acts as a dealer himself and initiates an instance of AWSS-Single-Share
to re-commit f j(x). This recommitment serves dual purpose as described in our Broad-level discussion.

Protocol AVSS-Single(D,P, s)
AVSS-Single-Share(D,P, s)

D’s Commitment:

i. Code for D:

1. Select a degree-t random polynomial g(x) with g(0) = s. Compute (f1(x), . . . , fn(x)) = Generate(g(x)).

2. For i = 1, . . . , n, initiate AWSS-Single-Share(D,P, f i(x)) for sharing f i(x) (see Note 5 in APPENDIX C
for the interpretation of sharing polynomial using AWSS-Single-Share).

ii. Code for Pi:

1. For j = 1, . . . , n, synchronize each step of [Verification: Code for Pi] in AWSS-Single-Share(D,P, f j(x)).
That is, execute step k of [Verification: Code for Pi] in all these n invocations and if the requirements
(if any) of kth step are met for all the n invocations, then proceed to step k + 1 for all n invocations.

2. As an additional requirement, after the completion of step 1 of [Verification: Code for Pi] for all the n
invocations, check whether (1, f1(i)), (2, f2(i)), . . . , (n, fn(i)) lies on a degree-t polynomial. If yes proceed
further to participate and execute step 2 of [Verification: Code for Pi] for all the n invocations.

3. If step 4 of [Verification: Code for Pi] is executed successfully for all n invocations of D’s AWSS-Single-
Share, then A-cast a single OK(Pi, Pj) for all n invocations instead of n OK(Pi, Pj)’s for each of them.

iii. WCore Construction: Code for D– Construct only one copy of WCORE, called WCORED, common for
all the n invocations of AWSS initiated by D, by following the steps for core construction in AWSS-Single-Share.

iv. WCore verification & Agreement: Code for Pi– Similar to the description in AWSS-Single-Share.

Pj-Weak-Private-Reconstruction of f j(x) for j = 1, . . . , n: (Code for Pi:)

1. After executing step iv. of D’s Commitment, participate in AWSS-Single-Rec-Private(D,P, f j(x), Pj) (see
Note 5 in APPENDIX C)), for j = 1, . . . , n, to enable Pj privately reconstruct f j(x). At the completion
of AWSS-Single-Rec-Private(D,P, f i(x), Pi), obtain either t-degree polynomial f i(x) or NULL.

Re-Commitment by Individual Party

i. Code for Pi:

1. If f i(x) is reconstructed in AWSS-Single-Rec-Private(D,P, f i(x), Pi), then acting as a dealer, initiate
AWSS-Single-Share(Pi,P, f i(x)) to recommit f i(x).

2. Construct WCORED
i = WCORED, where WCORED

i denotes the local copy of WCORED for party Pi.
Keep updating WCORED

i locally with new parties, where a new Pj will be added to WCORED
i if 2t + 1

OK(., Pj)s are A-casted in the AWSS instances initiated by D, i.e |OKSetPj | ≥ 2t + 1.

3. If Pj is a new entrant in WCORED
i , then participate (as INT or/and as verifier) in IC-Reconstructing fk(j)

towards Pk for k = 1, . . . , n (for the meaning of IC-Reconstruction, see protocol AWSS-Single).

4. Participate in AWSS-Single-Share(Pj ,P, f j(x)) if (A) Pi ∈ WCORED
i and (B) the f j(i) received from D in

AWSS-Single-Share(D,P, f j(x)) is same as f j(i) now received from Pj in AWSS-Single-Share(Pj ,P, f j(x)).

5. WCOREPi Construction for AWSS-Single-Share(Pi,P, f i(x)): Here Pi as a dealer, constructs WCORE
for AWSS-Single-Share(Pi,P, f i(x)) in a different way (this is not same as in protocol AWSS-Single-Share) to
prove that he has indeed re-committed f i(x).

(a) Construct a set ProbCOREPi (= ∅ initially). Include Pj in ProbCOREPi and A-cast
Message(Pj , P robCOREPi) if (A) At least 2t + 1 A-casts of the form OK(., Pj) are heard in the in-
stance AWSS-Single-Share(Pi,P, f i(x)), (B) Pj ∈ WCORED

i , and (C) Pj ’s point on f i(x) (namely
f i(j)), which is IC-Reconstructed towards Pi is consistent with re-committed polynomial f i(x).

(b) On listening Message(Pj , P robCOREPk), consider it as valid if there are at least 2t + 1 A-casts of the
form OK(., Pj) in the instance AWSS-Single-Share(Pk,P, fk(x)).

(c) Construct WCOREPi . Add Pj in WCOREPi if (A) Pj ∈ ProbCOREPi and (B) for at least 2t + 1
Pk’s, valid Message(Pj , P robCOREPk) are listened. A-cast WCOREPi when |WCOREPi | = 2t + 1.

ii. Final CORE Construction: Code for D

1. Create a list V CORE. Include Pi in V CORE if a valid WCOREPi is listened from Pi. Here WCOREPi

is valid, if Pi has indeed constructed it following the steps in 5 (a(A), c(B)). /* After listening WCOREPi ,
any party can verify whether Pi has indeed constructed WCOREPi using steps in 5 (a(A), c(B)). */

2. A-cast V CORE and WCOREPi ’s for each Pi in V CORE, when |V CORE| = 2t + 1.

iii. Final CORE Verification & Agreement on CORE: Code for Pi

1. Terminate after listening V CORE and WCOREPj ’s from D’s A-Cast, where |V CORE| = 2t+1, such that
for each Pj in V CORE, WCOREPj is valid.

8

Thus when the (honest) parties see that enough number of parties (at least 2t+1) have recommitted their
reconstructed polynomial, then they are convinced that D has indeed committed M . The recommitment
part is achieved in step [Re-Commitment by Individual Party]. But now it is to be ensured each
Pi indeed re-commits f i(x), as a corrupted Pi may try to recommit f i(x) 6= f i(x). When D is honest,
then it is very easy to make a corrupted Pi recommit f i(x). This is ensured in step 4. of sub-step [Code
for Pi]. Steps 2 and 3 in sub-step [Code for Pi] are required to enable the parties who were outside of
WCORED but hold correct values on fk(x)’s in D’s AWSS instances, to participate in the re-commitment
of fk(x)’s. This is crucial, as even for an honest D, an honest Pi’s re-commitment on f i(x) may not be
completed in the absence of steps 2 and 3. This is because for an honest D, WCORED may contain only
t+1 honest parties. So t potentially corrupted parties from WCORED may not purposefully participate
in the re-commitment of f i(x)’s by honest Pi’s.

Now in the case when D is corrupted but has committed M , it is to be enforced that a corrupted
Pi recommits f i(x). This is ensured in step 5 of sub-step [Code for Pi]. Essentially, a corrupted Pi is
forced to send f i(j) to an honest Pj ∈ WCOREPi during the execution of his AWSS instance. This is
ensured by the following two steps: (i) Pi is allowed to include a party Pj in WCOREPi only when Pj

is in ProbCORE of at least 2t + 1 parties. This implies an honest Pj ∈ WCOREPi holds correct row of
committed M . This is because, out of these 2t + 1 parties at least t + 1 Pk’s are honest and thus their
fk(x)’s are valid columns of M . It implies that Pj has correct points on these t + 1 correct fk(x)’s. This
together with the fact that Pj have also checked t-consistency of (f1(j), . . . , fn(j)) (since Pj is present
in WCORED

i of t + 1 honest parties), implies that Pj has received a valid row of M from D during the
AWSS instances of D. (ii) Finally since Pj has participated in Pi’s recommitment and is considered to be
part of ProbCOREPi , it is clear that Pi has passed on f i(j) to Pj during execution of his recommitment.
The proof of the properties of AVSS-Single is provided in APPENDIX D.

Remark: In protocol AVSS-Single-Share, we assume that when a party Pj A-Cast OK(Pj , Pk) during an
AWSS instance, he also A-Cast the identity of the dealer of that AWSS instance.

Protocol AVSS-Single(D,P, s)

AVSS-Single-Rec-Private(D,P, s, Pα): Private reconstruction of s by party Pα:

Pα-weak-private-reconstruction of f j(x) for every Pj ∈ V CORE: (Code for Pi)

1. Participate in AWSS-Single-Rec-Private(Pj ,P, f j(x), Pα) for every Pj ∈ V CORE.

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either f j(x) or NULL from Pα-weak-private-reconstruction of f j(x).
Add party Pj ∈ V CORE to REC if non-NULL output is obtained.

2. Wait until |REC| = t + 1. Construct polynomial g(x) passing through the points (k, fk(0)) where
Pk ∈ REC. Compute s = g(0) and terminate.

Note 1 In AVSS-Single, we have explained only private reconstruction of the secret by a specific party Pα,
as our implementation of ACVSS (where AVSS is used as a black-box) requires only private reconstruction
of secrets. Though we have protocol for public reconstruction, we skip it here.

Note 2 (Important Remark:) We may invoke AVSS-Single as AVSS-Single(D,P, g(x)) (instead of AVSS-
Single(D,P, s)) and by doing so, we mean that D executes AVSS-Single with a degree-t polynomial g(x)
with g(0) = s. As a result of this, party Pi in V CORE gets g(i). The polynomial g(x) is not completely
random but preserves the secrecy of s = g(0). Similarly, AVSS-Single-Rec-Private(D,P, g(x), Pα) can be
used for reconstructing g(x) for Pα, which we call as Pα-private-reconstruction of g(x).

As mentioned earlier, protocol AVSS, dealing with multiple secrets concurrently, is a simple extension
of AVSS-Single-Secret. We defer the presentation of AVSS along with the proof of its properties in AP-
PENDIX D. For ease of reference, the communication complexity of AVSS is given below:

Lemma 18: Protocol AVSS-Share privately communicates O((`n3 + n4κ)κ) bits and A-casts O(n3 log n)
bits. Protocol AVSS-Rec-Private privately communicates O((`n3 + n4κ)κ) bits.

3.4 Asynchronous Complete Verifiable Secret Sharing

We now present a novel ACVSS protocol called ACVSS with n = 3t + 1, which allows D to share a secret
S containing ` ≥ 1 field elements from F. For the ease of understanding, we first design ACVSS-Single that

9

deals with a single secret s. Briefly the high-level idea of ACVSS-Single is as follows: D selects a random
degree-t polynomial h(x) such that h(0) = s. Then D computes (g1(x), . . . , gn(x)) = Generate(h(x))
satisfying gi(0) = h(i) (for i = 1, . . . , n). Now D commits gi(x) using an instance of AVSS-Single-Share.
When a party Pi receives ith points on all the g polynomials (during the execution of n instances AVSS-
Single-Share), namely g1(i), . . . , gn(i), he checks whether they are t-consistent or not. If yes then only Pi

further performs communication and computation following the protocol steps for all the n instances of
D’s AVSS-Single-Share. Now once all the n instances terminate with a common V CORE, every party
knows that D has committed n polynomials g1(x), . . . , gn(x), each of degree t, such that every honest
party Pi ∈ V CORE has checked that (g1(i), . . . , gn(i)) is t-consistent. Since there are at least t+1 honest
parties in V CORE, it is clear that the points (g1(0), . . . , gn(0)) also defines a t degree polynomial h(x)
whose constant term is the committed secret. Now to achieve completeness property of ACVSS, every
party Pi ∈ P should hold h(i) = gi(0). This is attained by enabling Pi-private-reconstruction of gi(x) (i.e
by executing AVSS-Rec-Private(D,P, gi(x), Pi). Now reconstruction phase of ACVSS becomes very simple
and follows from the On-line error correction method introduced in [7, 11]. It is very easy to see that
protocol ACVSS-Single satisfies all the properties of ACVSS.

Protocol ACVSS-Single(D,P, s)

ACVSS-Single-Share(D,P, s)

D’s Commitment:

i. Code for D:

1. Select a degree-t random polynomial h(x) with h(0) = s. Compute (g1(x), . . . , gn(x)) = Generate(h(x)).

2. For i = 1, . . . , n, initiate AVSS-Single-Share(D,P, gi(x)) to commit gi(x).

ii. Code for Pi:

1. Participate in AVSS-Single-Share(D,P, gj(x)) for j = 1, . . . , n.

2. Wait to construct WCOREPi in each of the n instances of AVSS-Single-Share. For j = 1, . . . , n,
let WCORE(Pi,j) be the WCOREPi constructed by Pi in AVSS-Single-Share(D,P, gj(x)). Wait until
|WCORE(Pi,∗)| ≥ 2t + 1, where WCORE(Pi,∗) = ∩n

i=1WCORE(Pi,j).

3. Check whether the points ((1, g1(i)), . . . , (n, gn(i))) lie on a t degree polynomial, where gj(i) is obtained dur-
ing execution of AVSS-Single-Share(D,P, gj(x)). If yes then A-cast WCORE(Pi,∗) which will be considered
as common WCOREPi for all the instances of AVSS-Single-Share initiated by D.

iii. VCORE Construction: Code for D: Create a single copy of V CORE for all the n instances of AVSS-
Single-Share by following the steps for core construction in AVSS-Single-Share and A-cast the same along with
WCORE(Pi,∗) for each Pi ∈ V CORE.

iv. Verification & Agreement on VCORE: Code for Pi: Similar as in Protocol AVSS-Single-Share.

Pj-private-reconstruction of gj(x) for j = 1, . . . , n: Code for Pi:

1. For j = 1, . . . , n, participate in AVSS-Single-Rec-Private(D,P, gj(x), Pj) for Pj-private-reconstruction of
gj(x), after terminating all the n instances of AVSS-Single-Share.

2. Obtain gi(x) from AVSS-Single-Rec-Private(D,P, gi(x), Pi), compute h(i) = gi(0), the ith share of s and
terminate ACVSS-Single-Share.

ACVSS-Single-Rec-Private(D,P, s, Pα): Pα-private-reconstruction of s:

Code for Pi 1. Send h(i), the ith share of the secret to Pα.

Local Computation: Code for Pα

1. Upon receiving at least 2t + 1 t-consistent shares, h(i)’s, interpolate a degree-t polynomial h(x), compute the
secret s = h(0) and terminate ACVSS-Single-Rec-Private. This method of reconstruction is called On-line error
correction [7, 11].

ACVSS-Single-Rec-Public(D,P, S,P): Public reconstruction of s: Run ACVSS-Rec-Private(D,P, s, Pα) for every Pα ∈ P.

We now extend ACVSS-Single to ACVSS which deals with ` secrets from F. The description of ACVSS is
given in APPENDIX E. The communication complexity of ACVSS is stated in the following:
Theorem 1 Protocol ACVSS-Share privately communicates O((`n4 +n5κ)κ) bits and A-casts O(n4 log n)
bits. Protocol ACVSS-Rec-Public privately communicates O(`n2κ) bits.

Note 3 We can invoke ACVSS as ACVSS(D,P, (h1(x), . . . , h`(x))) and by doing so, we mean that D
executes ACVSS with ` degree-t polynomials h1(x), . . . , h`(x) such that for l = 1, . . . , `, hl(0) = sl. The
polynomials h1(x), . . . , h`(x) are not completely random but preserves the secrecy of their constant terms.
As a result of this execution, each party Pi gets the shares h1(i), . . . , h`(i).

10

Note 4 (Random Number Generation) Using our ACVSS scheme, we now design a protocol RNG
that allows the parties to jointly generate a random number: each Pi shares a random non-zero ri ∈ F
using ACVSS-Share. The parties then run ACS to agree on a core set of 2t + 1 parties who did proper
sharing of their ri’s. Once core set is determined, each party locally adds their shares of ri’s corresponding
to each Pi in the core set and then publicly reconstruct the sum of these ri’s. It is easy to see that the
sum value is random. RNG privately communicates O(n6κ2) bits and A-casts O(n5 log n) bits.

Definition 1 (t-1D-Sharing) If a secret s is shared using ACVSS-Share, then we say that s is t-1D-
shared, denoted as [s]t, which means that there exists a t degree polynomial f(x), with f(0) = s, such that
each (honest) Pi holds the ith share f(i) = si of s.

4 Generating t-2D-Sharing

We now present a protocol that allows a dealer D to generate correct t-2D-sharing of secret(s). The
protocol will be required for generating multiplication triples. We first define t-2D-sharing.

Definition 2 (t-2D-sharing [4]) : A value s is t-2D-shared among the parties in P if there exists t
degree polynomials f(x), f1(x), . . . , fn(x) with f(0) = s and for i = 1, . . . , n, f i(0) = f(i). Moreover,
every (honest) party Pi ∈ P holds a share si = f(i) of s, the polynomial f i(x) for sharing si and a
share-share sji = f j(i) of the share sj of every party Pj ∈ P. We denote t-2D-sharing of s as [[s]]t.

The t-2D-sharing of s implies that s as well as it’s shares are individually t-1D-shared. Now we present
a protocol t-2D-Share which allows D to generate t-2D-sharing of ` ≥ 1 secrets, namely s1, . . . , s`. If
D is correct, then every honest party will eventually complete t-2D-Share, and if some honest party has
completed t-2D-Share, then all the honest parties will eventually complete t-2D-Share. The high level idea
of the protocol is as follows: D selects a random value s0 ∈ F and hides each si in the constant term
of a random t-degree polynomial qi(x). D then t-1D-shares the secrets S0 = (s0, . . . , s`) as well as their
ith shares Si = (q0(i), . . . , q`(i)). The parties then jointly employ a verification technique to ensure that
D indeed t-1D-shared Si for i = 1, . . . , n which defines S0. A similar verification technique was used in
[4]. The secret s0 is used to ensure the secrecy during the verification process. After verification, the
polynomials used for the t-1D-sharing Si are privately reconstructed for Pi to complete the specification
of t-2D-sharing. The protocol is given below:

Protocol t-2D-Share(D,P, S)

Sharing by D: Code for D

1. Select s0 ∈R F and ` + 1 degree-t random polynomials q0(x), . . . , q`(x) such that for l = 0, . . . , `, ql(0) = sl. Let
sl

i = ql(i) and Si = (q0(i), . . . , q`(i)) for i = 0, . . . , n. So S0 = (s0, . . . , s`) and Si = (s0
i , . . . , s

`
i).

2. For l = 0, . . . , ` and i = 1, . . . , n, select random t-degree polynomials q(l,i)(x), such that q(l,i)(0) = ql(i) = sl
i. Let

Sij = (q(0,i)(j), q(1,i)(j), . . . , q(`,i)(j)) = (s0
ij , s

1
ij , . . . , s

`
ij).

3. Invoke ACVSS-Share(D,P, (q0(x), q1(x), . . . , q`(x))) for generating t-1D-sharing of S0 where Pj receives the shares
Sj . Denote this instance of ACVSS-Share by ACVSS-Share0.

4. For i = 1, . . . , n, invoke ACVSS-Share(D,P, (q(0,i)(x), q(1,i)(x), . . . , q(`,i)(x))) for generating t-1D-sharing of Si where
Pj receives the share-shares Sij . Denote this instance of ACVSS-Share by ACVSS-Sharei.

Verification: Code for Pi

1. Upon completion of ACVSS-Sharej for all j ∈ {0, . . . , n}, participate in protocol RNG to jointly generate a random
value r ∈ F (see Note 4 in section 3.4).

2. Once r is generated, locally compute s∗i =
∑`

l=0 rlsl
i which is the ith share of s∗ =

∑`
l=0 rlsl. In addition, for

j = 1, . . . , n, locally compute s∗ji =
∑`

l=0 rlsl
ji which is the ith share-share of s∗j .

3. Participate in ACVSS-Rec-Public(D,P, (s∗, s∗1, . . . , s
∗
n),P) to publicly reconstruct s∗, s∗1, . . . , s

∗
n. This results in every

party reconstructing q∗(x) and q∗1(x), . . . , q∗n(x) with q∗(0) = s∗ and q∗i (0) = s∗i .

4. Check whether for i = 1, . . . , n, q∗(i)
?
= q∗i (0) = s∗i . If yes then set Verj = 1. Else set Verj = 0. Here Verj = 1 (0)

means means that D has (not) done proper t-1D-sharing of Sj for j = 0, . . . , n.

Private Reconstruction of polynomials used for sharing Sj towards Pj: Code for Pi:

1. If Veri = 1, then for j = 1, . . . , n, participate in ACVSS-Rec-Private(D,P, Sj , Pj) for enabling Pj to privately
reconstruct the polynomials q(0,j)(x), . . . , q(`,j)(x) which were used by D to share Sj .

2. Wait to privately reconstruct q(0,i)(x), . . . , q(`,i)(x) from ACVSS-Rec-Private(D,P, Si, Pi) and terminate.

11

For the proof of the properties of t-2D-Share, see APPENDIX F.

Theorem 2 t-2D-Share communicates O((`n5 + n6κ)κ) bits and A-casts O(n5 log(n)) bits.

5 Preparation Phase

Here we generate correct t-1D-sharing of cM + cR secret random multiplication triples (ak, bk, ck), such
that for k = 1, . . . , cM + cR, ck = akbk. For this we first generate t-2D-sharing of secret random doubles
([[ak]]t, [[bk]]t) for k = 1, . . . , cM + cR. Given these random doubles, we generate t-1D-sharing of ck, for
k = 1, . . . , cM + cR, by adapting a technique from [15] which was given for synchronous settings.

5.1 Generating Secret and Random t-2D-Sharing

In section 4, we have presented a protocol called t-2D-Share which allows a D ∈ P to generate t-2D-
sharing of ` secrets. We now present a protocol called Random-t-2D-Share which allows the parties to
jointly generate random t-2D-sharing of ` secrets, unknown to At. Random-t-2D-Share asks individual
party to act as dealer and t-2D-Share `

n−2t random secrets. Then we run ACS protocol to agree on a core
set of n− t parties who have correctly t-2D-shared `

n−2t random secrets. Now out of these n− t parties,
at least n− 2t are honest. Hence the secrets that are t-2D-shared by these n− 2t honest parties are truly
random and unknown to At. So if we consider the `

n−2t t-2D-sharing done by only the honest parties in
core set, then we will get `

n−2t ∗ (n− 2t) = ` random t-2D-sharing. For this, we use Vandermonde Matrix
[16] and its ability to extract randomness which has been exploited by [16, 5]. Protocol Random-t-2D-Share
is given in APPENDIX G.
Lemma 2 Protocol Random-t-2D-Share (eventually) terminates with very high probability for every hon-
est party. It outputs t-2D-sharings of ` random secret values, unknown to At. The protocol privately
communicates O((`n5 + n7κ)κ) bits, A-Cast O(n6 log(n)) bits and requires one invocation of ACS.

5.2 Proving c = ab

Consider the following problem: let D ∈ P has t-1D-shared ` pairs of values (a1, b1), . . . , (a`, b`). Now D
wants to t-1D-share c1, . . . , c` where cl = albl without leaking any additional information about al, bl and
cl. We propose a protocol ProveCeqAB to achieve this task in asynchronous settings, following a technique
proposed in [15] for synchronous settings. The idea of the protocol for a single pair (a, b) is as follows. D
selects a random non-zero β ∈ F and generates t-1D-sharing of c, β and βb. Then all the parties in P jointly
generate a random value r. Each party locally computes the sharing of p = ra + β and then p is publicly
reconstructed. Then each party locally computes the sharing of q = pb − bβ − rc = (ra + β)b − bβ − rc
and then q is publicly reconstructed. If q = 0, then each party believes that with very high probability, D
has indeed t-1D-shared c = ab. Moreover, if D is honest then a, b and c will remain information theoretic
secure. For the proof of correctness and secrecy, see [15]. If D is correct, then every honest party will
eventually complete ProveCeqAB, and if some honest party has completed ProveCeqAB, then all the honest
parties will eventually complete ProveCeqAB. The protocol is given in APPENDIX G.
Lemma 3 ProveCeqAB privately communicates O((`n4 + n6κ)κ) bits and A-Casts O(n5 log(n)) bits. If
an honest party terminates, then with high probability, D has t-1D-shared cl = albl, for 1 ≤ l ≤ `.

5.3 Generating Multiplication Triples; The Preparation Phase Main Protocol

We now present protocol PreparationPhase which generates t-1D-sharing of cM + cR multiplication triples
(ak, bk, ck). We explain the idea considering a single triplet (a, b, c). First, Random-t-2D-Share is invoked
to generate t-2D-sharing of (a, b) which results in Pi holding the ith share of a and b, namely ai and bi

respectively. Now if each Pi locally computes ei = aibi, then this results in 2t-1D-sharing of c. But we
want each (honest) Pi to hold ci, where (c1, . . . , cn) is the t-1D-sharing of c. For this we adapt a technique
given in [19] for synchronous settings: Each Pi invokes ProveCeqAB to t-1D-share ei. Now an instance of
ACS will be executed to agree on a core set of n− t = 2t + 1 parties whose instances of ProveCeqAB has
been terminated. For simplicity let core set contains P1, . . . , P2t+1. Since e1, . . . , e2t+1 are 2t + 1 distinct
points on a 2t degree polynomial, say C(x) where C(0) = c, by Lagrange interpolation formula [14], c can
be computed as c =

∑n−t
i=1 riei where ri =

∏2t+1
j=1,j 6=i

x−j
i−j . The vector (r1, . . . , r2t+1) is called recombination

vector [14] and is known publicly. Now to get t-1D-sharing of c, Pj locally computes cj =
∑2t+1

i=1 rieij

where eij is the jth share of ei. The protocol is given in APPENDIX G.

12

Lemma 4 PreparationPhase terminates with very high probability. It privately communicates O(((cM +
cR)n5 + n7κ)κ) bits, A-Cast O(n6 log(n)) bits and requires three invocations of ACS.

6 Input Phase

In protocol InputPhase, each Pi acts as a dealer to t-1D-share his input Xi containing ci values. So
cI =

∑n
i=1 ci. The asynchrony of the network does not allow the parties to wait for more than n−t ACVSS-

Share protocols to be completed. To agree on the parties whose inputs will be taken into consideration
for computation (of the circuit), an ACS is run. InputPhase is given in APPENDIX H.

Lemma 5 InputPhase eventually terminates and outputs t-1D-sharing of inputs of the parties in agreed
core set C with very high probability. It privately communicates O((cIn

4+n6κ)κ) bits, A-Casts O(n5 log(n))
bits and requires one invocation of ACS.

7 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated gate by gate, where all
inputs and intermediate values are t-1D-shared among the parties. As soon as a party holds his shares of
the input values of a gate, he joins the computation of the gate.

Due to the linearity of the secret-sharing scheme, linear gates can be computed locally by applying the
linear function to the shares, i.e. for any linear function c = f(a, b), the sharing [c]t is computed by letting
every party Pi to compute ci = f(ai, bi), where ai, bi and ci are the ith shares of a, b and c respectively. With
every random gate, one random triple (from the preparation phase) is associated, whose first component is
directly used as outcome of the random gate. With every multiplication gate, one random triple (from the
preparation phase) is associated, which is then used to compute t-1D-sharing of the product, following the
circuit randomization technique of Beaver [2]. Given a preprocessed random multiplication triple, which
is already correctly t-1D-shared, Circuit Randomization [2] allows to evaluate a multiplication gate at the
cost of two public reconstructions. Let z = xy, where x, y are the inputs of the multiplication gate. Now z
can be expressed as z = ((x−a)+a)((y−b)+b) = (α+a)(β+b), where (a, b, c) is a random multiplication
triple. So given ([a]t, [b]t, [c]t), [z]t can be computed as [z]t = αβ + α[b]t + β[a]t + [c]t after reconstructing
α and β publicly. The security follows from the fact that α and β are random and independent of x and
y, for a random (a, b, c). The protocol ComputationPhase for computation phase is given in APPENDIX
I.

Lemma 6 Protocol ComputationPhase (eventually) terminates with very high probability. Given t-1D-
sharing of cM + cR secret random triples, it computes the outputs of the circuit correctly and privately, by
privately communicating O(n2(cM + cO)κ) bits.

8 The New AMPC Protocol with Optimal Resilience

Now our new AMPC protocol AMPC for evaluating function f which is represented by a circuit con-
taining cI , cL, cM , cR and cO input, linear, multiplication, random and output gates, is: (1). Invoke
PreparationPhase (2). Invoke InputPhase (3). Invoke ComputationPhase.

Theorem 3 For every coalition of up to t < n/3 bad parties, the protocol AMPC securely computes the
circuit representing function f and eventually terminates with very high probability for all the honest
parties. AMPC privately communicates O((cIn

4 + cMn5 + cRn5 + cOn2 +n7κ)κ) bits, A-Cast O(n6 log(n))
bits and requires 4 invocations to ACS.

9 Conclusion and Open Problems

In this paper, we have designed an information theoretically secure AMPC protocol with n = 3t+1, having
negligible error probability of 2−O(κ), where κ is the error parameter. Our AMPC protocol significantly
improves the communication complexity of the only known AMPC protocol of [9] in the same settings.
Here we summarize the key factors that has contributed for the gain in the communication complexity: (a)
we introduce a new asynchronous primitive called ACVSS which is first of its kind and is of independent
interest, (b) our ACVSS protocol is very efficient in terms of communication complexity and uses a new

13

AVSS protocol as a building block which is the most communication-efficient AVSS so far with n = 3t+1.
It would be interesting to see whether it is possible to further reduce the communication complexity of
the AMPC protocol with n = 3t + 1 by using techniques such as player elimination [21].

References

[1] I. Abraham, D. Dolev, and J. Y. Halpern. An almostsurely terminating polynomial protocol for
asynchronous byzantine agreement with optimal resilience. In PODC, pages 405–414, 2008.

[2] D. Beaver. Efficient multiparty protocols using circuit randomization. In Proc. of CRYPTO 1991,
volume 576 of LNCS, pages 420–432. Springer Verlag, 1991.

[3] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4(4):75–122, 1991.

[4] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In
Proc. of TCC, volume 3876 of LNCS, pages 305–328. Springer Verlag, 2006.

[5] Z. Beerliová-Trub́ıniová and M. Hirt. Simple and efficient perfectly-secure asynchronous mpc. In
ASIACRYPT, volume 4833 of LNCS, pages 376–392. Springer Verlag, 2007.

[6] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communication complexity.
In Proc. of TCC 2008, volume 4948 of LNCS, pages 213–230. Springer Verlag, 2008.

[7] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In STOC, pages 52–61,
1993.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proc. of 20th ACM STOC, pages 1–10, 1988.

[9] M. BenOr, B. Kelmer, and T. Rabin. Asynchronous secure computations with optimal resilience. In
PODC, pages 183–192, 1994.

[10] G. Bracha. An asynchronous b(n−1)/3c-resilient consensus protocol. In 3rd ACM PODC, pages 154
– 162, 1984.

[11] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute, Israel, 1995.

[12] R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal resilience. In Proc.
of STOC 1993, pages 42–51. ACM, 1993.

[13] D. Chaum, C. Crpeau, and I. Damg̊ard. Multiparty unconditionally secure protocols (extended
abstract). In Proc. of FOCS 1988, pages 11–19, 1988.

[14] R. Cramer and I. Damg̊ard. Multiparty Computation, an Introduction. Contemporary Cryptography.
Birkhuser Basel, 2005.

[15] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations
secure against an adaptive adversary. In Proc. of EUROCRYPT 1999, volume 1592 of LNCS, pages
311–326. Springer Verlag, 1999.

[16] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In Proc.
of CRYPTO, volume 4622 of LNCS, pages 572–590. Springer Verlag, 2007.

[17] I. Damgrd, M. Geisler, M. Krigaard, and J. Buus Nielsen. Asynchronous multiparty computation:
Theory and implementation. Cryptology ePrint Archive, Report 2008/415, 2008.

[18] M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-optimal and efficient
verifiable secret sharing. In Proc. of TCC 2006, volume 3876 of LNCS, pages 329–342. Springer
Verlag, 2006.

14

[19] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fact-track multiparty computations
with applications to threshold cryptography. In PODC, pages 101–111, 1998.

[20] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of verifiable
secret sharing and secure multicast. In STOC, pages 580–589, 2001.

[21] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multiparty computation. In Proc. of ASI-
ACRYPT 2000, volume 1976 of LNCS, pages 143–161. Springer Verlag, 2000.

[22] M. Hirt and U. M. Maurer. Robustness for free in unconditional multi-party computation. In Proc.
of CRYPTO 2001, volume 2139 of LNCS, pages 101–118. Springer Verlag, 2001.

[23] M. Hirt, J. B Nielsen, and B. Przydatek. Cryptographic asynchronous multi-party computation with
optimal resilience (extended abstract). In EUROCRYPT, volume 3494 of LNCS, pages 322–340.
Springer Verlag, 2005.

[24] M. Hirt, J. B Nielsen, and B. Przydatek. Asynchronous multi-party computation with quadratic
communication. In ICALP (2), volume 5126 of LNCS, pages 473–485. Springer Verlag, 2008.

[25] J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of VSS in point-to-point
networks. In ICALP(2), volume 5126 of LNCS, pages 499–510. Springer Verlag, 2008.

[26] J. Katz and C. Y. Koo. Round-efficient secure computation in point-to-point networks. In Proc. of
EUROCRYPT 2007, volume 4515 of LNCS, pages 311–328. Springer Verlag, 2007.

[27] A. Patra, A. Choudhary, and C. Pandu Rangan. Simple and efficient asynchronous byzantine agree-
ment with optimal resilience. Cryptology ePrint Archive, Report 2008/424, 2008.

[28] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Trading players for efficiency in unconditional
multiparty computation. In SCN, volume 2576 of LNCS, pages 342–353. Springer Verlag, 2002.

[29] T. Rabin. Robust sharing of secrets when the dealer is honest or cheating. J. ACM, 41(6):1089–1109,
1994.

[30] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In STOC, pages 73–85, 1989.

[31] K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty distributed computa-
tion. In INDOCRYPT, volume 1977 of LNCS, pages 117–129. Springer Verlag, 2000.

[32] A. C. Yao. Protocols for secure computations. In Proc. of 23rd IEEE FOCS, pages 160–164, 1982.

APPENDIX A: Communication Complexity Analysis of the AMPC
Protocol of [9]

The communication complexity analysis of the AMPC protocol of [9] was not done anywhere before.
So we have carried out the same at this juncture. The main tool used in the AMPC protocol of [9] is
USS. So we first analyze the communication complexity of the USS protocol of [9]. The USS protocol
of [9] is designed using the AVSS scheme of [12]. Recently, in [27], the authors have carried out the
communication complexity analysis of the AVSS scheme of [12]. In [27], it is shown that for a single
secret, the sharing phase of the AVSS scheme of [12] involves a private communication of O(n9κ4) bits
and A-Cast of O(n9κ2 log(n)) bits, while the reconstruction phase involves private communication of
O(n6κ3) bits and A-cast of O(n6κ log(n)) bits.

Now the sharing phase of the USS scheme of [9] is as follows: Dealer D ∈ P, having an input secret s,
selects a random t-degree polynomial f(x), such that f(0) = s. D then computes f(i), for 1 ≤ i ≤ n and
shares each f(i) by using the AVSS share protocol of [12]. Thus this step requires a private communication
of O(n10κ4) bits and A-Cast of O(n10κ2 log(n)) bits. Ignoring other steps in the USS protocol of [9], we
conclude that the USS sharing phase incurs a private communication of Ω(n10κ4) bits and A-Cast of
Ω(n10κ2 log(n)) bits.

15

Now using their USS scheme, the authors of [9] compute the circuit using the approach of [8]. To com-
pute multiplication gates, the parties proceed as follows: suppose u and v are the inputs of a multiplication
gate. Moreover, both u and v are already ultimately shared by the USS sharing protocol. To compute the
ultimate sharing of uv, each party locally computes the product of their shares of u and v and then share
the product share using USS protocol. This incurs a communication complexity of Ω(n11κ4) bits and
A-Cast of Ω(n11κ2 log(n)) bits. Ignoring other steps of the multiplication protocol and the computation
of other gates (namely, addition and output gates), we conclude that the AMPC protocol of [9] incurs a
private communication of Ω(n11κ4) bits and A-Cast of Ω(n11κ2 log(n)) bits per multiplication gate.

APPENDIX B: Proof of the Properties of Protocol A-ICP

Lemma 7 If D and INT are honest, then S will be accepted by honest verifier Pα.

Proof(sketch): For an honest D and honest INT , Ver = 1 at the end of Verification phase and
honest Pα will eventually output Revealα = S at the end of Revelation phase. 2

Lemma 8 If INT is honest and Ver = 1 at the end of Verification phase, then S held by INT will be
accepted in Revelation phase by honest Pα, except with probability 2−O(κ).

Proof: We have to consider the case when D is corrupted. Since INT is honest and Ver = 1 at the end
of Verification phase, INT has ensured that for at least 2t + 1 verifiers the condition specified in step
2 of verification phase has been satisfied. Among these 2t + 1 verifiers, at least t + 1 are honest, say
denoted as H. So |H| ≥ t+1. To prove the lemma, we prove that corresponding to each verifier in H, the
condition stated in step 3 of Reveal-Private will be satisfied with very high probability. We first note that
corresponding to a verifier Pi in H, the condition stated in step 3 of Reveal-Private will fail if for all j ∈ Ii,
f(αi

j) 6= ai
j . This implies that D (who is corrupted in this case) must have distributed f(x) (to INT) and

zi
j (to Pi) inconsistently for all j ∈ Ii and it so happens that Pi has partitioned {1, . . . , κ} into two sets

Ii and Ii such that Ii contains only inconsistent tuples (zi
j ’s). Thus corresponding to a verifier Pi in H,

the probability that the condition stated in step 3 of Reveal-Private fails is same as the probability of Pi

selecting all consistent tuples in Ii (or selecting all inconsistent tuples in Ii), which is at most 2−O(κ). 2

Lemma 9 If D is honest, then during Revelation phase, with probability at least 1 − 2−O(κ), every
S′ 6= S produced by a corrupted INT will be rejected by honest Pα.

Proof: For a corrupted INT producing S′ 6= S in Reveal-Private, t corrupted verifiers may produce
verification information such that the condition stated in step 3 of Reveal-Private gets satisfied for all of
them. So D’s signature on S′ will be validated if the condition stated in step 3 of Reveal-Private gets
satisfied corresponding to at least one honest verifier (in addition to t corrupted verifiers). So we have to
analyze: what is the probability that corresponding to an honest verifier Pi, the condition stated in step
3 of Reveal-Private gets satisfied. The probability of the above event is same as the probability that a
corrupted INT can guess a verification tag zj

i for at least one j ∈ Ii for any Ii corresponding to honest
parties, which is at most 2−O(κ). 2

Lemma 10 If D and INT are honest and INT has not started Revelation phase, then S is information
theoretically secure from At controlling t verifiers in P.

Proof: The adversary will know only tκ points on f(x). Since f(x) is a polynomial of degree ` + tκ, the
secret S will remain information theoretically secure. 2

APPENDIX C: AWSS Protocols and Their Properties

Before presenting protocol AWSS, for the ease of understanding, we first design protocol AWSS-Single
that deals with a single secret. The protocol is similar to protocol AWSS-Single-Secret of [27], except
that we use our new A-ICP protocol instead of the A-ICP protocol of [27]. This results in significant
reduction in the bits A-Casted in our protocol. Moreover, AWSS-Single-Secret of [27] is presented with
public reconstruction, where at the end of reconstruction phase, the secret is publicly available to all the

16

parties. However, we present our protocol AWSS-Single (as well as AWSS) with private reconstruction,
where the secret is available only to a specific party Pα at the end of reconstruction phase. We call the
private reconstruction as Pα-weak-private-reconstruction. Thus though we have an implementation for
the public reconstruction of AWSS-Single, we skip it here as our implementation of AVSS protocol (where
AWSS is used as a black-box) requires only private reconstruction of AWSS-Single and AWSS.

We first describe the high level idea used in AWSS-Single which is mostly same as that provided in [27]
for AWSS-Single-Secret. The protocol follows the general idea of [8, 15, 20, 18, 25] in synchronous settings
for sharing the secret s with a degree-t symmetric bivariate polynomial F (x, y), where each party Pi gets
the univariate polynomial fi(x) = F (x, i). In particular, protocol AWSS-Single is somewhat inspired by
the WSS protocol given in [15], for synchronous settings.

In the sharing phase of AWSS-Single, D first commits to n points on fi(x) (which means committing
fi(x)) to Pi by giving his IC signature on these values. Then D, in conjunction with all other parties,
perform a sequence of communication and computation. As a result of this, at the end of the sharing
phase, every party agrees on a set of 2t+1 parties, called WCORE, such that every party Pj ∈ WCORE
is confirmed by 2t + 1 parties which are listed in a set OKSetPj . The protocol ensures that every party
Pk ∈ OKSetPj provides the confirmation to Pj , only when it possesses proper IC signature of D on
fk(j) (jth point on polynomial fk(x), that Pk is entitled to receive from D) as well as IC signature of
Pj on the point fj(k) (kth point on polynomial fj(x), which Pj is entitled to receive from D), such that
fj(k) = fk(j) holds (which should ideally hold due to the selection and distribution of symmetric bivariate
polynomial). In some sense, we may view these checkings as every Pj ∈ WCORE is attempting to commit
his polynomial fj(x) among the parties in OKSetPj (by giving IC Signature on one point of fj(x) to
each party) and the parties in OKSetPj are allowing him to do so after verifying that they have got
D’s IC signature on the same value of fj(x). We will refer this commitment as Pj ’s IC-Commitment on
fj(x). Notice that for an honest D, the degree-t univariate polynomial F (x, 0) = f0(x) is used to share
s, where party Pi gets the share f0(i) = fi(0) = F (i, 0) = F (0, i), the polynomial fi(x) = F (x, i) and the
share-share fj(i) = F (i, j) = fi(j) corresponding to every other party Pj .

Achieving the agreement (among the parties) on WCORE and corresponding OKSets is a bit tricky
in asynchronous network. Even though the confirmations are A-casted by parties, parties may end up
with different versions of WCORE and OKSet’s while attempting to generate them locally, due to
the asynchronous nature of the network. We solve this problem by asking D to construct WCORE
and OKSets after listening confirmations and ask D to A-cast the same. After listening WCORE and
OKSets from the A-cast of D, individual parties ensure the validity of (verifies) these sets by listening the
same confirmations from the parties in the received OKSets. Once the verification is done, every honest
party agree on these sets. A similar approach was used in the protocols of [1].

In the reconstruction phase, the parties in WCORE and corresponding OKSet’s are used for recon-
structing the secret. Precisely, in the reconstruction phase, Pj ’s IC-Commitment on fj(x) is revealed by
reconstructing it with the help of the parties in OKSetPj for every Pj ∈ WCORE. Then the values
fj(0)’s are used to construct the polynomial (if possible) f0(x) that is committed by D during sharing
phase. Since fj(x) is a degree-t polynomial, any t + 1 points on it are enough to interpolate fj(x). The
points on fj(x) are obtained by requesting each party Pk in OKSetPj to reveal IC signature of D on
fk(j) and IC signature of Pj on fj(k) such that fj(k) = fk(j) holds. Asking Pk ∈ OKSetPj to reveal
D’s signature ensures that when D is honest, then even for a corrupted Pj ∈ WCORE, the reconstructed
polynomial fj(x) will be same as the one handed over by D to Pj in sharing phase. This helps the AWSS
protocol to satisfy Correctness 1 property. Now asking Pk in OKSetPj to reveal Pj ’s signature ensures
that even if D is corrupted, for an honest Pj ∈ WCORE, the reconstructed polynomial fj(x) will be same
as the one received by Pj from D in the sharing phase. This ensures correctness 2 property of AWSS.
Summing up, when at least one of D and Pj is honest, Pj ’s IC-Commitment on fj(x) is revealed properly.
But when both D and Pj are corrupted, Pj ’s IC-Commitment on fj(x) can be revealed as any t-degree
polynomial fj(x). It is this property that makes the protocol to qualify as an AWSS protocol rather than
an AVSS protocol. Protocol AWSS-Single is given in Table 1.

Lemma 11 Protocol AWSS-Single satisfies termination property.

Proof: Termination 1: When D is honest, then every honest Pj will eventually complete its IC-
Commitment on fj(x) with at least 2t+1 honest parties in OKSetPj . Hence, D will include all the 2t+1
honest parties in WCORE and A-cast the same. Now by the property of A-cast, each honest party will

17

eventually listen WCORE from the A-cast of D. Finally, since honest D had included Pj in WCORE
after listening the OK signals from the parties in OKSetPj ’s, each honest party will also listen them and
will terminate AWSS-Single-Share.

Protocol AWSS-Single(D,P, s)

AWSS-Single-Share(D,P, s)

Distribution: Code for D

1. Select a random degree-t symmetric bivariate polynomial F (x, y) such that F (0, 0) = s.

2. For 1 ≤ i ≤ n, deliver fi(x) = F (x, i) to Pi, along with IC signature on each fi(j) by considering Pi as
INT and executing Gen(D, Pi,P, fi(j)) for every j ∈ {1, . . . , n}.

Verification: Code for Pi

1. Wait until Gen(D, Pi,P, fi(j)) is completed for every j ∈ {1, . . . , n}.
2. If (fi(1), . . . , fi(n) is t-consistent, then acting as INT , execute Ver(D, Pi,P, fi(j)) for every j ∈
{1, . . . , n}.

3. If Ver(D, Pi,P, fi(j)) is completed with Ver = 1 for all j ∈ {1, . . . , n}, then hand over fi(j) to Pj , along
with IC signature by acting as dealer, treating Pj as INT and executing Gen(Pi, Pj ,P, fi(j)) for all
j ∈ {1, . . . , n}. In addition, participate in Gen(Pj , Pi,P, fj(i)) for all j ∈ {1, . . . , n} by acting as INT .

4. Wait until Gen(Pj , Pi,P, fj(i)) is completed. If fi(j) = fj(i) then execute Ver(Pj , Pi,P, fj(i)) as an
INT . If Ver(Pj , Pi,P, fj(i)) is completed with Ver = 1, then A-cast OK(Pi, Pj). Here j ∈ {1, . . . , n}.

Core Construction : Code for D

1. For each Pj , build a set OKSetPj = {Pi|D listens OK(Pi, Pj)}. When |OKSetPj | = 2t + 1, then Pj ’s
IC-Commitment on fj(x) is over and add Pj in WCORE (which is initially empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKSetPj for all Pj ∈ WCORE.

Core Verification & Agreement on Core : Code for Pi

1. Wait to obtain WCORE and OKSetPj for all Pj ∈ WCORE from D’s A-cast, such that |WCORE| =
2t + 1 and |OKSetPj | = 2t + 1 for each Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKSetPj and Pj ∈ WCORE. After receiving, accept the
WCORE and OKSetPj ’s and terminate AWSS-Single-Share.

AWSS-Single-Rec-Private(D,P, s, Pα): Pα-weak-private-reconstruction of s:

Signature Revelation: Code for Pi

1. If Pi belongs to OKSetPj for some Pj ∈ WCORE, then participate in Reveal-Private(D, Pi,P, fi(j), Pα)
and Reveal-Private(Pj , Pi,P, fj(i), Pα) as an INT .

2. Participate in Reveal-Private(D, Pk,P, fk(j), Pα) and Reveal-Private(Pj , Pk,P, fj(k), Pα) for all Pk ∈
OKSetPj and Pj ∈ WCORE as a verifier.

Local Computation: Code for Pα

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-Commitment as follows:

(a) Construct a set V alidSetPj = ∅.
(b) Add party Pk ∈ OKSetPj to V alidSetPj if both the following conditions are true:

i. Reveal-Private(D, Pk,P, fk(j), Pα) and Reveal-Private(Pj , Pk,P, fj(k), Pα) are successfully com-
pleted, with outputs, Revealα = fk(j) and Revealα = fj(k) respectively; and

ii. fk(j) = fj(k).

(c) Wait until |V alidSetPj | = t+1. Construct a polynomial fj(x) passing through the points (k, fj(k))
where Pk ∈ V alidSetPj . Associate fj(0) with Pj ∈ WCORE. We say that fj(0) = f0(j) is IC-
Reconstructed towards Pα with the help of the parties in OKSetPj .

2. Wait for fj(0) = f0(j) to be IC-Reconstructed for every Pj in WCORE.

3. Check whether the points (j, fj(0)) for Pj ∈ WCORE lie on a unique t degree polynomial f0(x). If yes,
then compute s = f0(0) and terminate. Else set s = NULL and terminate.

Table 1: AWSS for Sharing a Single Secret s with n = 3t + 1

Termination 2: If an honest Pi has completed AWSS-Single-Share, then he must have listened WCORE
and OKSetPj ’s from the A-cast of D and verified their validity. By properties of A-cast, each honest
party will also listen the same and will eventually terminate AWSS-Single-Share.

18

Termination 3: By Lemma 8, if Pi (acting as INT) is honest and Ver = 1 at the end of Verification
Phase, then IC signature produced by Pi during Reveal-Private will be accepted by an honest Pα, except
with probability 2−O(κ). Since for every Pj ∈ WCORE, |OKSetPj | = 2t + 1, there are at least t + 1
honest parties in OKSetPj who will be present in V alidSetPj with very high probability. Hence for every
Pj ∈ WCORE, Pj ’s IC-Commitment will be reconstructed. Thus with very high probability, an honest Pα

will terminate AWSS-Single-Rec-Private after executing the remaining steps of [Local Computation].
2

Lemma 12 Protocol AWSS-Single satisfies secrecy property.

proof: Follows from the secrecy of A-ICP and properties of symmetric bivariate polynomial. 2

Lemma 13 Protocol AWSS-Single satisfies correctness property.

Proof: Correctness 1: Here we have to consider the case when D is honest. We first prove that
if D is honest, then with very high probability, for each Pj ∈ WCORE, the value fj(0) which is IC-
reconstructed towards Pα, is same as fj(0) that was selected by D. From the property of A-ICP, for
an honest Pj ∈ WCORE, a corrupted Pk ∈ OKSetPj can produce Pj ’s valid signature on incorrect
fj(k) 6= fj(k) with negligible probability (see Lemma 9). Hence with very high probability fj(k) is same
as fj(k) for all Pk ∈ V alidSetPj . Thus the polynomial fj(x) reconstructed by Pα corresponding to an
honest Pj in WCORE is same as fj(x) that was selected by honest D. On the other hand, for a corrupted
Pj ∈ WCORE, a corrupted Pk ∈ OKSetPj can produce Pj ’s valid signature on any fj(k) 6= fj(k) but Pk

will fail to produce honest D’s signature on fk(j) = fj(k), with very high probability. Hence Pk will not
be included in V alidSetPj . Thus again the reconstructed polynomial fj(x) corresponding to a corrupted
Pj in WCORE is same as fj(x). So Pα will correctly reconstruct f0(x) = F (x, 0) and hence the secret
s = f0(0) with very high probability.

Correctness 2: Here we have to consider the case, when D is corrupted. Since in AWSS-Single-Share,
every honest party agrees on a WCORE and OKSetPj for Pj ∈ WCORE, a unique secret s′ ∈ F∪NULL
is defined by (at least t+1) honest parties in WCORE at the end of sharing phase. The committed secret
s′ is the constant term of the polynomial passing through points (j, fj(0))’s, corresponding to honest Pj ’s
in WCORE. If the points (j, fj(0)) corresponding to honest Pj ’s in WCORE define a unique t degree
polynomial, say f0(x), then we say that D’s committed secret is s′ = f0(0). Otherwise, we say that D’s
committed secret is s′ = NULL. Whatever may be case, we show that with very high probability, an
honest Pα will either reconstruct s′ or NULL.

We consider the first case when s′ = f0(0). This implies that the points (j, fj(0)) corresponding to
honest Pj ’s in WCORE define a unique t-degree polynomial f0(x). We now claim that with very high
probability, the value fj(0) (hence the polynomial fj(x)) corresponding to an honest Pj ∈ WCORE, that
is IC-Reconstructed towards Pα, is same as fj(x) that Pj received in sharing phase. This claim follows from
the argument given in Correctness 1. We next claim that the value fj(0) (hence the polynomial fj(x))
corresponding to a corrupted Pj ∈ WCORE, which is IC-Reconstructed towards Pα can be any value.
This is because for a corrupted Pj in WCORE, a corrupted Pk ∈ OKSetPj can produce a valid signature
of Pj on any fj(k) as well as a valid signature of D (who is corrupted as well) on fk(j). Also adversary
can delay the messages such that the values (along with the signatures) of all corrupted Pk ∈ OKSetPj

are revealed to Pα before the values of honest parties in OKSetPj . Thus the reconstructed polynomial
fj(x) can be any t-degree polynomial according to the choice of At. Now there are two possibilities: if the
points (j, fj(0)) corresponding to honest Pj ’s in WCORE, along with the points (j, fj(0)) corresponding
to corrupted Pj ’s in WCORE lie on f0(x), then s′ will be reconstructed. Otherwise NULL will be
reconstructed. Notice that since for all honest parties in WCORE, fj(0) = fj(0), no other secret (other
than s′) can be reconstructed with very high probability.

We next consider the second case when D’s committed secret is NULL. This implies that the points
(j, fj(0)) corresponding to honest Pj ’s in WCORE do not define a unique t-degree polynomial. It is easy
to see that in this case, irrespective of the behavior of the corrupted parties NULL will be reconstructed.
This is because the points fj(0) corresponding to each honest Pj ∈ WCORE will be reconstructed
correctly with very high probability. 2

Theorem 4 The pair (AWSS-Single-Share, AWSS-Single-Rec-Private) constitutes a valid AWSS scheme
for n = 3t + 1 parties, which shares a single secret and satisfies the properties of AWSS.

19

Note 5 (Important Remark:) In AWSS-Single, the degree-t univariate polynomial F (x, 0) = f0(x) is
used to share the secret s. In the following we will say that D shares a degree-t polynomial f(x) using
protocol AWSS-Single by executing AWSS-Single-Share(D,P, f(x)). For this D selects a t-degree symmetric
bivariate polynomial F (x, y), such that F (x, 0) = f(x) and execute the protocol. The polynomial f(x) is
not random but only preserves the secrecy of the constant term; i.e., s = f(0). Yet, this distribution of
polynomials is sufficient to provide the secrecy requirements needed by our AVSS, where AWSS is used
as a black box. If D indeed selects the bivariate polynomial in the above way and follows the protocol
steps correctly, then as a result of the above execution, party Pi in WCORE will hold the ith share
f(i) = F (i, 0) = F (0, i) of s, the polynomial fi(x) = F (x, i) and the share-share fj(i) = F (i, j) = fi(j)
corresponding to every other party Pj. Similarly, AWSS-Single-Rec-Private(D,P, f(x), Pα) can be used for
the private reconstruction of f(x) and the secret s = f(0) for Pα. We call this reconstruction as Pα-weak-
private-reconstruction of f(x). Note that if D is corrupted, then Pα-weak-private-reconstruction
of f(x) may reconstruct either a t-degree polynomial f(x) or NULL.

We now extend protocol AWSS-Single (which shares a single secret) to protocol AWSS (given in Table 2)
which concurrently shares a secret S = (s1 . . . s`), containing ` secret field elements. The properties of
AWSS follows from the properties of AWSS-Single.

Lemma 14 Protocol AWSS-Share privately communicates O((`n2 + n3κ)κ) bits and A-casts O(n2 log n)
bits. Protocol AWSS-Rec-Private privately communicates O((`n2 + n3κ)κ) bits.

Proof: AWSS-Share executes at most n + n2 = Θ(n2) instances of Gen and Ver. Hence by Lemma 1,
AWSS-Share privately communicates O((`n2 +n3κ)κ) bits. A-casting of WCORE and OKSetPj ’s require
A-cast of O(n2 log n) bits. Protocol AWSS-Rec-Private executes Θ(n2) instances of Reveal-Private and
hence by Lemma 1, AWSS-Rec-Private privately communicates O((`n2 + n3κ)κ) bits. 2

Theorem 5 The pair (AWSS-Share, AWSS-Rec-Private) constitutes a valid AWSS scheme with n = 3t+1
parties, which shares ` secrets simultaneously and satisfies the properties of AWSS except with an error
probability of 2−O(κ).

Note 6 (Important Remark:) As in AWSS-Single, in AWSS, the degree-t univariate polynomial
F l(x, 0) = f l

0(x) is used to share the secret sl for l = 1, . . . , `. In the following, we will say that D
shares ` degree-t polynomials f1(x), . . . , f `(x) simultaneously using protocol AWSS by executing AWSS-
Share(D,P, f1(x), . . . , f `(x)). For this D selects ` t-degree symmetric bivariate polynomials F 1(x, y), . . . ,
F `(x, y), such that for l = 1, . . . , `, F l(x, 0) = f l(x) and execute the protocol. The polynomials f l(x)’s
are not random but only preserve the secrecy of the constant terms sl = f l(0)’s. Yet, this distribution
of polynomials is sufficient to provide the secrecy requirements needed by our AVSS, where AWSS is
used as a building block. If D indeed selects the bivariate polynomial in the above way and follows the
protocol steps correctly, then as a result of the above execution, party Pi in WCORE holds the ith share
f l(i) = F l(i, 0) = F l(0, i) of sl, the polynomial f l

i (x) = F l(x, i) and the share-share f l
j(i) = F l(i, j) = f l

i (j)
corresponding to every other party Pj. Similarly, AWSS-Rec-Private(D,P, f1(x), . . . , f l(x), Pα) can be
used for the private reconstruction of f1(x), . . . , f l(x) and the secrets s1 = f1(0), . . . , s` = f `(0) for
Pα. We call this reconstruction as Pα-weak-private-reconstruction of f1(x), . . . , f `(x). Note that if D
is corrupted then Pα-weak-private-reconstruction of f1(x), . . . , f `(x) may reconstruct either
t-degree polynomials f1(x), . . . , f `(x) or NULL.

APPENDIX D: Protocol AVSS and Proof of Its Properties

Lemma 15 Protocol AVSS-Single satisfies termination property.

Proof: Termination 1: When D is honest, the AWSS instances initiated by D, namely AWSS-Single-Share
(D,P, f i(x)) for i = 1, . . . , n will eventually terminate. Moreover, every Pi will privately reconstruct f i(x)
during AWSS-Single-Rec-Private(D,P, f i(x), Pi). Finally corresponding to every honest Pi,
AWSS-Single-Share(Pi,P, f i(x)) will eventually terminate with WCOREPi containing all the honest par-
ties. Hence D will eventually include all the honest parties in V CORE and every honest party will
eventually terminate AVSS-Single-Share after listening V CORE from D and verifying the same.

20

Protocol AWSS(D,P, S)

AWSS-Share(D,P, S)

Distribution: Code for D

1. Select ` degree-t random symmetric bivariate polynomials F 1(x, y), . . . , F `(x, y) such that for l = 1, . . . , `,
F l(0, 0) = sl.

2. For l = 1, . . . , `, deliver f l
i (x) = F l(x, i) to Pi, along with IC signature by considering Pi as INT and executing

Gen(D, Pi,P, Γij) for every j ∈ {1, . . . , n} where Γij = (f1
i (j), . . . , f `

i (j)).

Verification: Code for Pi

1. Wait until Gen(D, Pi,P, Γij) for every j ∈ {1, . . . , n} are completed.

2. For l = 1, . . . , `, check whether (f l
i (1), . . . , f l

i (n)) is t-consistent. If yes, then acting as INT , execute
Ver(D, Pi,P, Γij) for every j ∈ {1, . . . , n}.

3. If for all j ∈ {1, . . . , n}, Ver(D, Pi,P, Γij) gets over with Ver = 1, then hand over Γij to Pj , along with IC
signature by executing Gen(Pi, Pj ,P, Γij) for all j ∈ {1, . . . , n}. In addition, participate in Gen(Pj , Pi,P, Γji)
for all j ∈ {1, . . . , n} by acting as INT and considering Pj as dealer.

4. Wait until Gen(Pj , Pi,P, Γji) is completed. If Γij = Γji (i.e. for l = 1, . . . , ` f l
i (j) = f l

j(i)), then execute
Ver(Pj , Pi,P, Γji). If Ver(Pj , Pi,P, Γji) gets over with Ver = 1, then A-cast OK(Pi, Pj). Here j ∈ {1, . . . , n}.

Core Construction : Code for D– Same as in Protocol AWSS-Single-Share

Core verification & Agreement on Core : Code for Pi– same as in Protocol AWSS-Single-Share

AWSS-Rec-Private(D,P, S, Pα): Pα-weak-private-reconstruction of S:

Signature Revelation: Code for Pi

1. If Pi belongs to OKSetPj for some Pj ∈ WCORE, then participate in Reveal-Private(D, Pi,P, Γij , Pα) and
Reveal-Private(Pj , Pi,P, Γji, Pα) as an INT .

2. Participate in Reveal-Private(D, Pk,P, Γkj , Pα) and Reveal-Private(Pj , Pk,P, Γjk, Pα) for all Pk ∈ OKSetPj

and Pj ∈ WCORE as a verifier.

Local Computation: Code for Pα

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-Commitment as follows:

(a) Construct a set V alidSetPj = ∅.
(b) Add party Pk ∈ OKSetPj to V alidSetPj if both the following conditions are true:

i. Reveal-Private(D, Pk,P, Γkj , Pα) and Reveal-Private(Pj , Pk,P, Γjk, Pα) are successfully completed,

with Revealα = Γkj = (f1
k (j), . . . , f `

k(j)) and Revealα = Γjk = (f1
j (k), . . . , f `

j (k)) respectively;

ii. Γkj = Γjk i.e. For l = 1, . . . , `, f l
k(j) = f l

j(k).

(c) Wait until |V alidSetPj | = t+1. For l = 1, . . . , `, construct a polynomial f l
j(x) passing through the points

(k, f l
j(k)) where Pk ∈ V alidSetPj . Associate f l

j(0) with Pj ∈ WCORE. We say that for l = 1, . . . , `,

f l
j(0) = f l

0(j) are IC-Reconstructed towards Pα with the help of the parties in OKSetPj .

2. For every Pj in WCORE, wait for f l
j(0) = f l

0(j) to be IC-Reconstructed for l = 1, . . . , `.

3. For every l ∈ {1, . . . , `} do the following: Check whether the points (j, f l
j(0)) for Pj ∈ WCORE lie on a

unique t degree polynomial f l
0(x). If yes, then set sl = f l

0(0), output S = (sl, . . . , s`) and terminate. Else if

there exists an l ∈ {1, . . . , `}, such that points (j, f l
j(0)) for Pj ∈ WCORE does not lie on a unique t degree

polynomial, then output S = NULL and terminate.

Table 2: AWSS for Sharing Secret S = (s1, . . . , s`) containing ` field elements with n = 3t + 1

Termination 2: If an honest Pi has completed AVSS-Single-Share, then he must have listened V CORE
and WCOREPj ’s from the A-cast of D and is assured about their validity. By properties of A-cast, each
honest party will also listen the same and will eventually terminate AVSS-Single-Share.

Termination 3: By Termination 3 and Correctness 1 of AWSS protocol (see Lemma 11 and Lemma
13), AWSS-Single(Pi,P, f i(x)) initiated by an honest Pi in V CORE, will eventually lead to the recon-
struction of f i(x) in its reconstruction phase with very high probability. But AWSS-Single(Pi,P, f i(x))
initiated by a corrupted Pi in V CORE, may lead to the reconstruction of NULL in its reconstruction
phase. Since |V CORE| = 2t+1, for at least t+1 honest parties from V CORE, reconstruction of f i(x)’s
will be successful. This is enough to reconstruct the secret s. Hence if an honest party terminates AVSS-

21

Single-Share and every (honest) party starts AVSS-Single-Rec-Private, then an honest Pα will eventually
terminate AVSS-Single-Rec-Private. 2

Lemma 16 Protocol AVSS-Single satisfies secrecy property.

proof: Follows from the secrecy of AWSS-Single and properties of t-degree polynomials. 2

Lemma 17 Protocol AVSS-Single satisfies correctness property.

Proof: Correctness 1: We have to consider the case when D is honest. We now prove that if D is
honest, then with very high probability, for every Pj ∈ REC, f j(x) is equal to f j(x) that is selected by D
at the beginning of AVSS-Single-Share. For an honest Pj , this is true. If Pj is corrupted then also our claim
holds. This is because of the incorporation of step 4 in [Re-commitment by Individual Party] of
our protocol. The step 4 ensures that if a corrupted Pj completes his instance of re-commitment, namely
AWSS-Single-Share(Pj ,P, f j(x)), with WCOREPj , then the honest parties (at least t + 1) in WCOREPj

defines the same f j(x) as selected by D at the beginning of AVSS-Single-Share.

Correctness 2: Here we have to consider the case, when D is corrupted and some honest party has
terminated AVSS-Single-Share. We now show that D has indeed committed a secret s′ ∈ F, which will
be uniquely reconstructed in the reconstruction phase. The secret s′ is defined by a unique n× n matrix
M , whose each row and column is t-consistent (recall our discussion before the presentation of protocol
AVSS-Single). If an honest Pi ∈ WCORED has received f1(i), . . . , fn(i) from D’s AWSS instances, then
f1(i), . . . , fn(i) is the ith row of M , where f1(i), . . . , fn(i) is t-consistent. The columns (at least (t + 1))
of M are defined by the polynomials (of degree t) that the honest parties (at least t + 1) in V CORE
have recommitted. So if an honest Pi ∈ V CORE has recommitted f i(x), then (f i(1), . . . , f i(n)) is the
ith column of M . It is easy to see that these (at least t + 1) t-consistent rows and t-consistent columns of
M (defined by the honest parties in V CORE and WCORED) uniquely and completely fix the remaining
elements of M . Let us denote the t degree polynomial defined by the values in jth column of M as f j(x)
for every Pj ∈ P \ V CORE. It should be noted that if an honest party Pi ∈ P \ V CORE initiates
recommitment (by initiating an AWSS instance as a dealer), then he is intending to recommit f i(x). We
now show that s′ defined by M will be reconstructed in the reconstruction phase.

To show this, it enough to show that every Pi ∈ V CORE has recommitted f i(x) to the honest
parties in WCOREPi . For an honest Pi ∈ V CORE, this is always true. Now to prevent a corrupted
Pi ∈ V CORE from recommitting f i(x) 6= f i(x) (i.e something other than ith column of M), a corrupted
Pi is forced to deliver f i(j) to every honest party Pj ∈ WCOREPi during his recommitment. To prove
the above statement, consider an honest Pj ∈ WCOREPi . Pj is allowed to be included in WCOREPi

only when Pj is in ProbCORE of at least 2t + 1 parties. Out of these 2t + 1 parties at least t + 1 Pk’s
are honest and thus their fk(x)’s defines valid columns of M . Now since Pj is honest, it implies that Pj

has correct points on these t + 1 correct fk(x)’s. This together with the fact that Pj have also checked
t-consistency of (f1(j), . . . , fn(j)) (since Pj is present in ProbCOREPk and hence WCORED

k of t + 1
honest Pk’s), implies that Pj has received a valid row of M from D during the AWSS instances of D.
Finally since Pj has participated in Pi’s recommitment and is considered to be part of ProbCOREPi ,
it is clear that Pi has passed on f i(j) to Pj during execution of his recommitment. This clearly implies
that Pi has recommitted f i(x) to the honest in WCOREPi . In the reconstruction phase, for a corrupted
Pi, AWSS-Single-Rec-Private(Pi,P, f i(x), Pα) can not reveal any t-degree polynomial other than f i(x).
Therefore in the reconstruction phase s′ will be reconstructed. 2

We now present protocol AVSS, dealing with multiple secrets concurrently. The proofs of the properties
of AVSS follows from the properties of AVSS-Single.

22

Protocol AVSS(D,P, S): S = (s1, . . . , s`)

AVSS-Share(D,P, S)

D’s Commitment:

i. Code for D:

1. Select ` degree-t random univariate polynomials g1(x), . . . , g`(x) such that for l = 1, . . . , `, gl(0) = sl. Compute
(f (l,1)(x), . . . , f (l,n)(x)) = Generate(gl(x)).

2. Denote Si = (f (1,i)(x), . . . , f (`,i)(x)). Initiate n instances of AWSS-Share, AWSS-Share(D,P, Si) for i =
1, . . . , n, by executing the code in [Distribution: Code for D] given in Table 2.

ii. Code for Pi:

1. For j = 1, . . . , n, synchronize each step of [Verification: Code for Pi] in AWSS-Share(D,P, Sj). That is,
execute step k of [Verification: Code for Pi] and if the requirements (if any) of kth step are met for all
the n instances, then proceed to step k + 1 for all n instances.

2. As an additional requirement, after the completion of step 1 of [Verification: Code for Pi], check whether
(1, f (l,1)(i)), (2, f (l,2)(i)), . . . , (n, f (l,n)(i)) lies on a degree-t polynomial, for each l ∈ {1, . . . , `}. If yes proceed
further to participate and execute step 2 of [Verification: Code for Pi] for all the n instances.

3. If step 4 of [Verification: Code for Pi] is executed successfully for all the n instances of D’s AWSS-Share,
then A-Cast a single OK(Pi, Pj) for all the n instances instead of n OK(Pi, Pj)’s for each one of them.

iii. WCore Construction: Code for D– Construct only one copy of WCORE, called WCORED, common for
all the n invocations of AWSS initiated by D, by following the steps for core construction in AWSS-Share.

iv. WCore verification & Agreement: Code for Pi– Similar to the description in AWSS-Share.

Pj-Weak-Private-Reconstruction of Sj for j = 1, . . . , n: (Code for Pi:)

1. After executing step iv. of D’s Commitment, participate in AWSS-Rec-Private(D,P, Sj , Pj), for j = 1, . . . , n,
for enabling Pj to privately reconstruct Sj . At the completion of AWSS-Rec-Private(D,P, Si, Pi), obtain either
Si = (f (1,i)(x), . . . , f (`,i)(x)) consisting of ` degree-t polynomials or Si = NULL.

Re-Commitment by Individual Party

i. Code for Pi

1. If Si = (f (1,i)(x), . . . , f (`,i)(x)) is reconstructed in AWSS-Rec-Private(D,P, Si, Pi), then acting as a dealer,
initiate AWSS-Share(Pi,P, Si).

2. Assign WCORED
i = WCORED, where WCORED

i denotes the local copy of WCORED for party Pi. Keep
updating WCORED

i locally with new parties, where a new party Pj will be included in WCORED
i if at least

2t + 1 OK(., Pj)s are A-casted in the AWSS instances initiated by D, i.e |OKSetPj | ≥ 2t + 1.

3. If Pj is a new entrant in WCORED, participate (as INT or/and as verifier) in IC-Reconstructing
(f (1,k)(j), . . . , f (`,k)(j)) towards Pk for k = 1, . . . , n.

4. Participate in AWSS-Share(Pj ,P, Sj) if (A) Pi ∈ WCORED
i and (B) f (1,j)(i), . . . , f (`,j)(i) received from D in

AWSS-Share(D,P, Sj) is same as f (1,j)(i), . . . , f (`,j)(i) now received from Pj in AWSS-Share(Pj ,P, Sj).

5. WCOREPi Construction for AWSS-Share(Pi,P, Si): Here Pi as a dealer, constructs WCORE for
AWSS-Share(Pi,P, Si) in a different way (this is not same as in protocol AWSS-Share) to prove that he has
indeed re-committed Si.

(a) Construct a set ProbCOREPi (= ∅ initially). Include a party Pj in ProbCOREPi and A-cast
Message(Pj , P robCOREPi) if (A) At least 2t + 1 A-casts of the form OK(., Pj) are heard in the in-
stance AWSS-Share(Pi,P, Si), (B) Pj ∈ WCORED

i and (C) Pj ’s points on f (1,i)(x), . . . , f (`,i)(x) (namely
(f (1,i)(j), . . . , f (`,i)(j))) which are IC-Reconstructed towards Pi are consistent with the re-committed poly-
nomials (f (1,i)(x), . . . , f (`,i)(x)).

(b) On listening Message(Pj , P robCOREPk), consider it as valid if there are at least 2t + 1 A-casts of the
form OK(., Pj) in the instance AWSS-Share(Pk,P, Sk).

(c) Construct WCOREPi . Add Pj in WCOREPi if (A) Pj ∈ ProbCOREPi and (B) for at least 2t+1 Pk’s,
valid Message(Pj , P robCOREPk) is obtained. A-cast WCOREPi when |WCOREPi | = 2t + 1.

ii. Final CORE Construction: Code for D

1. Create a list V CORE. Include Pi in V CORE if a valid WCOREPi is listened from Pi. Here WCOREPi is
valid, if Pi has indeed constructed it by following the steps in 5 (a(A), c(B)).

2. A-cast V CORE and WCOREPi ’s for each Pi in V CORE when |V CORE| = 2t + 1.

iii. CORE Verification & Agreement on CORE: Code for Pi

1. Terminate after listening V CORE and WCOREPj ’s from D’s A-Cast, where |V CORE| = 2t + 1, such that
for each Pj in V CORE, WCOREPj is valid.

23

Protocol AVSS(D,P, S): S = (s1, . . . , s`)

AVSS-Rec-Private(D,P, S, Pα): Private reconstruction of S by party Pα:

Pα-weak-private-reconstruction of Sj for every Pj ∈ V CORE: Code for Pi

1. Participate in AWSS-Rec-Private(Pj ,P, Sj , Pα) for every Pj ∈ V CORE.

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either Sj = (f (1,j)(x), . . . , f (`,j)(x)) or NULL from Pα-weak-private-
reconstruction of Sj .

2. Add party Pj ∈ V CORE to REC if Sj 6= NULL.

3. Wait until |REC| = t + 1. For every l = {1, . . . , `}, construct polynomial gl(x) passing through the

points (k, f (l,k)(0)) where Pk ∈ REC.

4. Compute sl = gl(0) for l = 1, . . . , ` and terminate.

We presented AVSS with private reconstruction, where the secrets are available only to a specific party
Pα at the end of reconstruction phase. We call the private reconstruction as Pα-private-reconstruction.
Thus though we have an implementation of public reconstruction for AVSS, we skip it here as our im-
plementation of ACVSS protocol (where AVSS is used as a black-box), requires private reconstruction of
secrets. So we have the following theorem:

Theorem 6 The pair (AVSS-Share, AVSS-Rec-Private) constitutes a valid AVSS scheme with n = 3t + 1,
which shares ` ≥ 1 secret values concurrently and satisfies the properties of AVSS except with an error
probability of 2−O(κ).

Lemma 18 Protocol AVSS-Share privately communicates O((`n3 + n4κ)κ) bits and A-casts O(n3 log n)
bits. Protocol AVSS-Rec-Private privately communicates O((`n3 + n4κ)κ) bits.

Proof: AVSS-Share executes 2n instances of AWSS-Share and n instances of AWSS-Rec-Private. Hence
by Lemma 14, AVSS-Share privately communicates O((`n3 + n4κ)κ) bits and A-casts O(n3 log n) bits.
AVSS-Rec-Private executes n instances of AWSS-Rec-Private and hence by Lemma 14, AVSS-Rec-Private
privately communicates O((`n3 + n4κ)κ) bits. 2

Note 7 (Important Remark:) As in AVSS-Single, we may invoke AVSS as AVSS-Share(D,P, g1(x), . . . ,
g`(x)) (instead of AVSS-Share(D,P, S)) and by doing so, we mean that D executes AVSS-Share with `
degree-t polynomials g1(x), . . . , g`(x), such that for l = 1, . . . , `, gl(0) = sl. As a result of this, party Pi

in V CORE gets the shares g1(i), . . . , g`(i). The polynomials g1(x), . . . , g`(x) are not completely random
but preserves the secrecy of s1 = g1(0), . . . , s` = g`(0).

24

APPENDIX E: Protocol ACVSS
Protocol ACVSS(D,P, S): S = (s1, . . . , s`)

ACVSS-Share(D,P, S)

D’s Commitment:

i. Code for D:

1. For l = 1, . . . , `, select a degree-t random polynomial hl(x) with hl(0) = sl and compute
(g(l,1)(x), . . . , g(l,n)(x)) = Generate(hl(x)).

2. Denote ∆i = (g(1,i)(x), . . . , g(`,i)(x)). For i = 1, . . . , n, initiate AVSS-Share(D,P, ∆i).

ii. Code for Pi:

1. Participate in AVSS-Share(D,P, ∆j) for j = 1, . . . , n.

2. Wait to construct WCOREPi in each of the n instances of AVSS-Share. For j = 1, . . . , n, let WCORE(Pi,j)

be the WCOREPi , constructed by Pi in AVSS-Share(D,P, ∆j). Wait until |WCORE(Pi,∗)| ≥ 2t +1, where
WCORE(Pi,∗) = ∩n

i=1WCORE(Pi,j).

3. For every l = 1, . . . , `, check whether the points ((1, g(l,1)(i)), . . . , (n, g(l,n)(i))) lie on a t degree polynomial,
where g(l,j)(i) is obtained during execution of AVSS-Share(D,P, ∆j). If yes then A-cast WCORE(Pi,∗) which
will be considered as common WCOREPi for all the n instances of AVSS-Share initiated by D.

iii. VCORE Construction: Code for D: Create a single copy of V CORE for all the n instances of AVSS-Share
by following the steps for core construction and A-cast the same along with WCORE(Pi,∗) for each Pi ∈ V CORE.

iv. Verification & Agreement on VCORE: Code for Pi: Similar as in Protocol AVSS-Share.

Pj-private-reconstruction of ∆j for j = 1, . . . , n: Code for Pi:

1. For j = 1, . . . , n, participate in AVSS-Rec-Private(D,P, ∆j , Pj) for Pj-private-reconstruction of ∆j , after
terminating all the n instances of AVSS-Share.

2. Obtain ∆i = (g(1,i)(x), . . . , g(`,i)(x)) from AVSS-Rec-Private(D,P, ∆i, Pi), compute hl(i) = g(l,i)(0), the ith

shares of sl for l = 1, . . . , ` and terminate ACVSS-Share.

ACVSS-Rec-Private(D,P, S, Pα): Private reconstruction of S by party Pα:

Code for Pi 1. For l = 1, . . . , `, send hl(i), the ith shares of the secrets to Pα.

Local Computation: Code for Pα

1. For l = 1, . . . , `, upon receiving at least 2t + 1 t-consistent shares, hl(i)’s, interpolate a degree-t polynomial
hl(x), compute the secret sl = hl(0) and terminate ACVSS-Rec-Private.

ACVSS-Rec-Public(D,P, S,P): Public reconstruction of S for P:

1. Run ACVSS-Rec-Private(D,P, S, Pα) for every Pα ∈ P.

APPENDIX F: Proof of the Properties of t-2D-Share

Lemma 19 In protocol t-2D-Share, if D is honest, then each honest party will eventually terminate with
correct t-2D-sharing. If D is corrupted, then with very high probability, the honest parties will terminate
only if D has done correct t-2D-sharing.

Proof: The first part is easy to proof. For the second part, we consider the case when D is corrupted.
For i = 0, . . . , n, ACVSS-Sharei ensures that D has correctly t-1D-shared some Si. But it may happen
that some Si t-1D-shared by D does not contain the correct ith shares of S0. Assume that D has
t-1D-shared Sj 6= Sj in ACVSS-Sharej . This implies that in ACVSS-Sharej , D has used polynomials
q(0,j)(x), . . . , q(`,j)(x) to share Sj , such that for at least one l ∈ {0, . . . , `}, q(l,j)(0) 6= ql(j) = sl

j . That is,

q(l,j)(0) = sl
j 6= sl

j . Now consider q∗j (0) = s0
j + rs1

j + . . . + rlsl
j + . . . + r`s`

j . We claim that with very high
probability q∗(j) 6= q∗j (0). The probability that q∗(j) = q∗j (0) is same as the probability that two different

` degree polynomials with coefficients (s0
j , . . . , s

l
j , . . . , s

`
j) and (s0

j , . . . , s
l
j , . . . , s

`
j) intersect at a random

value r. Since any two ` degree polynomial can intersect each other at most at ` values, r has to be one
of the ` values. But r is chosen randomly after the completion of all ACVSS-Sharej for j = 0, . . . , n (so
during executions of ACVSS-Sharei’s D is unaware of r). So the above event can happen with probability
at most `

|F| ≈ 2−O(κ). Thus with probability at least 1− 2−O(κ), q∗(j) 6= q∗j (0). So Veri will be 0 for every
honest Pi ∈ P and thus no honest party will terminate the protocol. 2

Lemma 20 If D is honest, then s1, . . . , s` will remain information theoretically secure in t-2D-Share.

25

Proof: Without loss of generality, let P1, . . . , Pt be under the control of At. If D is honest then from
the properties of ACVSS-Share, the secrets s0, s1, . . . , s` and shares St+1, . . . , Sn will remain secure after
the execution of ACVSS-Share0 and ACVSS-Sharet+1, . . . ,ACVSS-Sharen respectively. It is easy to see that
even if s∗ and s∗i ’s are publicly reconstructed, the secrets s1, . . . , s` will remain information theoretic
secure. 2

Theorem 2: t-2D-Share communicates O((`n5 + n6κ)κ) bits and A-casts O(n5 log(n)) bits.

Proof: Protocol t-2D-Share calls n + 1 instances of ACVSS-Share with ` + 1 secrets each. Hence by
Theorem 1, it incurs a private communication of O((`n5+n6κ)κ) bits and A-cast of O(n5 log(n)) bits. The
protocol for random number generation, privately communicates O(n6κ2) bits and A-casts O(n5 log n) bits
. The instance of ACVSS-Rec-Public requires O(n3κ) bits of private communication. Finally, n instances
of ACVSS-Rec-Private requires O(`n2κ) bits of private communication. 2

APPENDIX G: Protocols used in Preparation Phase
Protocol Random-t-2D-Share(P, `)

Code for Pi:

1. Select L = `
n−2t

random secret elements (s(i,1), . . . , s(i,L)). As a dealer, invoke t-2D-Share(Pi,P, Si) to generate

t-2D-sharing of Si = (s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, participate in t-2D-Share(Pj ,P, Sj).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon completing t-2D-Share(Pj ,P, Sj), include Pj in Ci.

2. Take part in ACS with the accumulative set Ci as input.

Generation of Random t-2D-sharing: Code for Pi:

1. Wait until ACS completes with output C containing n − t parties. For every Pj ∈ C, obtain the ith shares

s
(j,1)
i , . . . , s

(j,L)
i of Sj and ith share-share s

(j,1)
ki , . . . , s

(j,L)
ki of shares s

(j,1)
k , . . . , s

(j,L)
k , corresponding to each Pk,

for k = 1, . . . , n. Without loss of generality, let C = {P1, . . . , Pn−t}.
2. Let V denotes a (n− t)× (n− 2t) publicly known Vandermonde Matrix [16] over F.

(a) For every k ∈ {1, . . . , L}, let (r(1,k), . . . , r(n−2t,k)) = (s(1,k), . . . , s(n−t,k))V .

(b) Locally compute ith share of r(1,k), . . . , r(n−2t,k) as (r
(1,k)
i , . . . , r

(n−2t,k)
i) = (s

(1,k)
i , . . . , s

(n−t,k)
i)V .

(c) For each 1 ≤ j ≤ n, locally compute the ith share-share of share (r
(1,k)
j , . . . , r

(n−2t,k)
j) as

(r
(1,k)
ji , . . . , r

(n−2t,k)
ji) = (s

(1,k)
ji , . . . , s

(n−t,k)
ji)V and terminate.

The values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L) denotes the ` random secrets which are t-2D-shared.

Table 3: Protocol for Collectively Generating t-2D-Sharing of ` secrets, n = 3t + 1

Protocol ProveCeqAB(D,P, [a1]t, . . . , [a
`]t, [b

1]t, . . . , [b
`]t)

Sharing by D:

1. Code for D: (a) Select ` non-zero random elements β1, . . . , β` from F. For 1 ≤ l ≤ `, let cl = albl and
dl = blβl. Let B = (β1, . . . , β`), C = (c1, . . . , c`) and Λ = (d1, . . . , d`).

(b) Invoke ACVSS-Share(D,P,B), ACVSS-Share(D,P, C) and ACVSS-Share(D,P, Λ).

2. Code for Pi: Participate in the ACVSS-Share protocols initiated by D to obtain the ith share (β1
i , . . . , β`

i),
(c1

i , . . . , c
`
i) and (d1

i , . . . , d
`
i) of B, C and Λ respectively.

Verifying whether cl = al.bl: Code for Pi

1. Once the three instances of ACVSS-Share initiated by D are terminated, participate in protocol RNG (given
in Note 4 in section 3.4) to jointly generate a random non-zero value r ∈ F.

2. For l = 1, . . . , `, locally compute pl
i = ral

i + βl
i, the ith share pl = ral + βl. Participate in ACVSS-Rec-

Public(D,P, (p1, . . . , p`),P) to publicly reconstruct pl for l = 1, . . . , `.

3. Upon reconstruction of pl’s, locally compute ql
i = plbl

i − dl
i − rcl

i for 1 ≤ l ≤ `, to get the ith share of
ql = plbl − dl − rcl. Participate in ACVSS-Rec-Public(D,P, (q1, . . . , q`),P) to publicly reconstruct ql for
l = 1, . . . , `.

4. Upon reconstruction of ql’s, locally check whether for l = 1, . . . , `, ql ?
= 0. If yes then terminate.

Table 4: Protocol for Generating t-1D-sharing of [c1]t = [a1]t.[b1]t, . . . , [c`]t = [a`]t.[b`]t, n = 3t + 1

26

Protocol PreparationPhase(P)

Code for Pi:

1. Participate in two instances of Random-t-2D-Share(P, cM + cR) to generate t-2D-sharing of
a1, . . . , acM +cR and b1, . . . , bcM +cR . Obtain the ith shares a1

i , . . . , a
cM +cR
i , b1

i , . . . , b
cM +cR
i and share-shares

a1
ji, . . . , a

cM+cR
ji , b1

ji, . . . , b
cM +cR
ji .

2. For 1 ≤ k ≤ cM + cR, let ck = akbk. Upon termination of both the instances of Random-t-2D-Share, invoke
ProveCeqAB(Pi,P, [a1

i]t, . . . , [a
cM+cR
i]t, [b

1
i]t, . . . , [b

cM +cR
i]t) as a dealer, to generate t-1D-sharing of c1

i , . . . , c
cM +cR
i ,

where ck
i is the ith share of ck.

3. For j = 1, . . . , n, participate in ProveCeqAB(Pj ,P, [a1
j]t, . . . , [a

cM+cR
j]t, [b

1
j]t, . . . , [b

cM +cR
j]t).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon completing ProveCeqAB(Pj ,P, [a1
j]t, . . . , [a

cM +cR
j]t, [b

1
j]t, . . . , [b

cM+cR
j]t)

with dealer Pj , add Pj in Ci.

2. Take part in ACS with the accumulative set Ci as input.

Generation of t-1D-sharing of c1, . . . , ccM +cR : Code for Pi

1. Wait until ACS completes with output C containing 2t+1 parties. For simplicity, assume that C = {P1, . . . , P2t+1}.
2. For k = 1, . . . , cM + cR, locally compute ck

i =
∑2t+1

j=1 rjc
k
ji the ith share of ck = r1c

k
1 + . . . + r2t+1c

k
2t+1, where

(r1, . . . , r2t+1) is the publicly known recombination vector.

Table 5: Protocol for Generating t-1D-sharing of cM + cR secret random multiple triples

APPENDIX H: Protocol for Input Phase
Protocol InputPhase(P)

Secret Sharing: Code for Pi

1. On input Xi, invoke ACVSS-Share(Pi,P, Xi) to generate t-1D-sharing of Xi.

2. For every j = 1, . . . , n, participate in ACVSS-Share(Pj ,P, Xj).

Agreement on a Core-Set: Code for Pi

1. Create an accumulative set Ci = ∅. Upon completing ACVSS-Share(Pj ,P, xj) with dealer Pj , add Pj in Ci.

2. Participate in ACS with the accumulative set Ci as input.

3. Output core-set C containing 2t + 1 parties and local shares of all inputs corresponding to parties in C.

Table 6: Protocol for Sharing Inputs, n = 3t + 1

APPENDIX I: Protocol for Computation Phase
Protocol ComputationPhase(P)

For every gate in the circuit: Code for Pi

Wait until the ith share of each of the inputs of the gate is available. Now depending on the type of the gate, proceed
as follows:

1. Input Gate: [s]t = IGate([s]t): There is nothing to be done here.

2. Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Compute zi = LGate(xi, yi, . . .), the ith share of z = LGate(x, y, . . .),
where xi, yi, . . . denotes ith share of x, y,

3. Multiplication Gate: [z]t = MGate([x]t, [y]t, ([a
k]t, [b

k]t, [c
k]t)):

(a) Let ([ak]t, [b
k]t, [c

k]t) be the random triple associated with the multiplication gate.

(b) Compute αi = xi − ai and βi = yi − bi, the ith share of α = (x− a) and β = (y − b) respectively.

(c) Participate in ACVSS-Rec-Public(P, α,P) and ACVSS-Rec-Public(P, β,P) to reconstruct α and β.

(d) Upon completion of both the instances of ACVSS-Rec-Public, compute zi = αβ + αbi + βai + ci, the ith

share of z = αβ + αb + βa + c = xy.

4. Random Gate: [r]t = RGate([ak]t, [b
k]t, [c

k]t): Let ([ak]t, [b
k]t, [c

k]t) be the random triple associated with
the random gate. Compute ri = ak

i as the ith share of r.

5. Output Gate: x = OGate([x]t): Participate in ACVSS-Rec-Public(P, x,P) and output x.

Table 7: Protocol for Evaluating the Circuit, n = 3t + 1

27

