
Complexity of Multiparty Computation Problems:

The Case of 2-Party Symmetric Secure Function Evaluation

Hemanta Maji∗ Manoj Prabhakaran∗ Mike Rosulek∗

October 22, 2008

Abstract

In symmetric secure function evaluation (SSFE), Alice has an input x, Bob has an input
y, and both parties wish to securely compute f(x, y). We classify these functions f according
to their “cryptographic complexities,” and show that the landscape of complexity among these
functions is surprisingly rich.

We give combinatorial characterizations of the SSFE functions f that have passive-secure
protocols, and those which are protocols secure in the standalone setting. With respect to uni-
versally composable security (for unbounded parties), we show that there is an infinite hierarchy
of increasing complexity for SSFE functions, That is, we describe a family of SSFE functions
f1, f2, . . . such that there exists a UC-secure protocol for fi in the fj-hybrid world if and only if
i ≤ j.

Our main technical tool for deriving complexity separations is a powerful protocol simulation
theorem which states that, even in the strict setting of UC security, the canonical protocol for f
is as secure as any other protocol for f , as long as f satisfies a certain combinatorial characteriza-
tion. We can then show intuitively clear impossibility results by establishing the combinatorial
properties of f and then describing attacks against the very simple canonical protocols, which
by extension are also feasible attacks against any protocol for the same functionality.

∗Department of Computer Science, University of Illinois, Urbana-Champaign. {hmaji2,mmp,rosulek}@uiuc.edu.
Partially supported by NSF grant CNS 07-47027.

1 Introduction

In the classical setting of secure multiparty computation, Alice and Bob have private inputs x and y
respectively, and they want to to jointly compute a common value f(x, y) in a secure way. Starting
from Yao’s millionaire’s problem [10], such symmetric secure function evaluation (SSFE) problems
have remained the most widely studied multiparty computation problems. A SSFE problem is fully
specified by the function table of f (i.e., a matrix M with Mx,y = f(x, y)); studying this matrix can
tell us everything about the corresponding SSFE problem. Despite this apparent simplicity, and
several works carefully exploring SSFE problems, the landscape of such problems has remained far
from complete.

In this work we uncover a rich structure and delineate several distinct classes of functions with
varying levels of “cryptographic complexity.” To make the most fine-grained complexity distinctions
among SSFE functions, we deploy the lens of the strongest security notion for multiparty computa-
tion: universally composable (UC) security [3] in computationally unbounded environments against
active adversaries. We use this security notion to define our notion of reduction between functions,
which in turn forms the basis of our complexity classifications. Under less stringent notions of secu-
rity many of the separations we draw disappear. Nevertheless, our techniques and our results draw
liberally from the more classical security notions, namely, security in standalone environments, and
security against passive adversaries.

Kilian [6] characterized the SSFE functions which are complete, as those functions that contain
a generalized “OR-minor.” On the other end of the spectrum, it immediately follows from charac-
terization of realizable SFE functions in [4, 9] that the only realizable SSFE functions in the UC
framework are those which depend on only one party’s input. The vast region between these two
extreme levels of complexity is the subject of our investigation.1

1.1 Our Results

Security against passive adversaries. The oldest and most widely studied model for SSFE
is security against passive adversaries (honest-but-curious security). Beaver [2] and Kushilevitz [8]
independently showed that for the case of perfect security, there is a simple and natural combi-
natorial characterization for realizable SSFE functions. We prove that the same characterization
also extends to the model wherein only statistical security is required (Theorem 2). Chor and
Kushilevitz [5] and Kilian [7] also characterized completeness for (subclasses of) SSFE functions.

We show that the SSFE functions that have UC-secure protocols in the Fcom-hybrid world (i.e.,
realizable against active adversaries in the UC framework, using the commitment functionality) are
exactly the functions which have passive-secure protocols (Theorem 3).

Protocol Simulation. The characterization of Beaver and Kushilevitz gives very simple deter-
ministic protocols for SSFE functions f , which we call canonical protocols. These protocols closely
follow the structure required in f by the combinatorial characterization. Our extension of this
characterization follows the intuition that any secure protocol for f must reveal information about
inputs in the same order as the canonical protocol for f .

1Interestingly, in contrast, for one-sided output SFE (a.k.a asymmetric SFE in which only one party receives the
output), such a region does not exist: for asymmetric SFE every function either is realizable or is complete for secure
MPC. This follows from the characterizations in [7] and [9].

1

In Theorem 1, which is our main technical tool for deriving complexity separations, we formally
express this intuitive connection between protocols for f and the steps of the canonical protocol.
We show that, for a natural class of SSFE functions f , and any secure protocol π for f , the canonical
protocol for f is “as secure as” π. That is, any feasible attack on the canonical protocol is also a
feasible attack against π. Furthermore, this equivalence holds with respect to standalone as well
as UC adversaries. Using Theorem 1, we are able to show separations among functionalities by
simply describing attacks against canonical protocols.

Security against active adversaries in standalone environments. Unsurprisingly, the struc-
ture of SSFE functions is not as clear-cut in the standalone setting. Of particular interest is charac-
terizing the functions which are standalone secure but not UC-secure. An interesting instance of a
function which is securely realizable in standalone environments, but not in general environments,
was pointed out by Backes et al. [1] However, the problem of identifying all such functions has
remained open.

We give an explicit (and simple) combinatorial characterization of the functions which have
standalone-secure protocols (Theorem 4). To show that certain functions do not have standalone-
secure protocols, we crucially use the protocol simulation theorem Theorem 1, and show a simple
attack on the corresponding canonical protocols.

We also observe that for every function that is realizable against standalone environments but
not general environments, there is a “concurrent attack” where a standalone environment runs two
sessions of the protocol with same roles for the two parties in both sessions. From Theorem 1 and
our characterization of functions with standalone-secure protocols, it is easy to see that any such
protocol will suffer from the same concurrent attack as the canonical protocol. This answers an
open question from [1].

Separations in UC model. We further apply Theorem 1 to the setting of protocols that use
ideal UC functionalities. We describe a combinatorial criterion of two functions f , g which implies
that there is no UC-secure protocol for f that uses calls to an ideal functionality for g. (Theorem 5).
Again, the result is obtained simply by describing a particular kind of attack on simple canonical
protocols.

We apply these separations to particular functions f to obtain a strict, infinite hierarchy of
complexities among SSFE functions. That is, we describe a sequence of functionalities f1, f2, . . .
such that there is a secure protocol for fi using calls to fi+1, but not vice-versa. Since these
functions fi are standalone secure and passive-secure, this hierarchy also implies that there is no
complete function for the class of SSFE functions with standalone-secure protocols, or the class of
functions with passive-secure protocols (Corollary 7).

Our separation results also demonstrate functionalities of incomparable complexities. A function
which has a passive-secure protocol but no standalone-secure protocol cannot be implemented using
any function with standalone-secure protocol, since the class of standalone security is closed under
this operation. Conversely, Theorem 5 shows that in many instances, there is no secure protocol
for certain standalone-secure functions function using certain passive-secure functions.

2

2 Preliminaries

In this section we present some standard notions, and also introduce some concepts and definitions
used in our constructions and proofs.

MPC Problems and Secure Realization. Following the Universal Composition [3] framework,
a multi-party computation problem is defined by the code of a trusted (probabilistic, interactive)
entity called a functionality. A protocol π is said to securely realize an MPC functionality F , if for all
(static) active adversaries, there exists a simulator such that for all environments, |Pr[execF = 1]−
Pr[execπ]| ≤ ε(k), for some negligible function ε. Here k is the security parameter that is an input
to the protocol and simulator. execF denotes the environment’s output distribution in the “ideal”
execution: involving F , the environment, and the simulator; execπ denotes the environment’s
output in the “real” execution: involving an instance of the protocol, the environment, and the
adversary. Throughout this paper, we consider a UC model in which all entities are computationally
unbounded.

We also consider hybrid worlds, in which protocols may also have access to a particular ideal
functionality. In a G-hybrid world, parties running the protocol π can invoke up any number
of independent, asynchronous instances of G. Regular protocols could be considered to use the
(authenticated) communication functionality. If a protocol π securely realizes a functionality F in
the G-hybrid world, we shall write F v G. The v relation is transitive and reflexive, and it provides
our basis for comparing the complexity of various functionalities.

We also consider two common restrictions of the security model, which will prove useful in
our results. If we restrict the security definition to environments which do not interact with the
adversary during the protocol execution, we get a weaker notion of security, called standalone
security. If we restrict to adversaries and simulators which receive an input from the environment
and run the protocol honestly, we get a different relaxation of security called passive security. Note
that in this definition, simulators must behave honestly in the ideal world, which means they simply
pass the input directly to the functionality.

Symmetric SFE Functionalities. In this paper we focus exclusively on classifying 2-party sym-
metric secure function evaluation (SSFE) functionalities. A SSFE functionality Ff is parameterized
by a function f : X × Y → Z, where X, Y, Z are finite sets. The functionality Ff simply receives
the inputs from the two parties, computes f on the inputs and sends the result to both the parties.
However, as is standard, we also allow the adversary to first receive the outcome of the function
evaluation and then block output delivery if desires (see Figure 1). For convenience, we shall often
write f instead of Ff .

• Wait for input x from Alice and input y from Bob.

• When both x and y have been received, send (Output, f(x, y)) to the adversary.

• On input Deliver from the adversary, if both x and y have already been received, send
f(x, y) to both Alice and Bob.

Figure 1: Functionality Ff : Symmetric Secure Function Evaluation of f with abort

3

2.1 Structure of Functions and Protocols

We say that two functions are isomorphic if each one can be computed using a single call to the
other (after local processing of the inputs and output). That is, Alice and Bob can independently
map their inputs for f function to inputs for g, carryout the computation for g, and then locally
(using their private inputs) map the output of g to the output of f (and vice-versa).

Definition 1 (Function Isomorphism, ∼=). Let f : X × Y → D and g : X ′ × Y ′ → D′ be two
functions. Suppose there exists functions IA : X → X ′, IB : Y → Y ′, MA : X × D′ → D and
MB : Y × D′ → D, such that for any x ∈ X and y ∈ Y f(x, y) = MA(x, g(IA(x), IB(y))) =
MB(y, g(IA(x), IB(y))); then we say f ≤ g. If f ≤ g and g ≤ f then f ∼= g (f is isomorphic to g).

For example, the functions
0 1
1 0

(XOR) and
1 2
3 4

are isomorphic to each other.

Definition 2 (Decomposable). A function f : X×Y → {0, 1}∗ is row decomposable if there exists
a partition X = X1 ∪ · · · ∪Xk (Xi 6= ∅), k ≥ 2, such that the following hold for all i ≤ k:

• for all y ∈ Y , x ∈ Xi, x′ ∈ (X \Xi), we have f(x, y) 6= f(x′y); and

• f
∣∣
Xi×Y

is either a constant function or column decomposable, where f
∣∣
Xi×Y

denotes the
restriction of f to the domain Xi × Y .

We define being column decomposable symmetrically with respect to X and Y . We say that f is
simply decomposable if it is either constant, row decomposable, or column decomposable.

Note that our definition insists that row and column decomposition steps must alternate. We
say that a function f is uniquely decomposable if its decomposition is unique, up to re-indexing the
sets X1, . . . , Xk (Y1, . . . , Yk) at each level.

We define a decomposition tree of f to be the natural representation of the decomposition of f ,
where each node of the tree is associated with some subdomain X ′×Y ′ ⊆ X ×Y , and the children
of a node correspond to the partitioning of the domain induced by the row or column decomposition
step.

If f is decomposable, then a canonical protocol for f is a deterministic protocol defined induc-
tively as follows [8]:

• If f is a constant function, both parties output the output value of f , without interaction.

• If f is row decomposable as X = X1 ∪ · · · ∪ Xk, then party 1 announces the unique i such
that its input x ∈ Xi. Then both parties run a canonical protocol for f

∣∣
Xi×Y

.

• If f is column decomposable as Y = Y1 ∪ · · · ∪ Yk, then party 2 announces the unique i such
that its input y ∈ Yi. Then both parties run a canonical protocol for f

∣∣
X×Yi

.

Note that the canonical protocol could alternately be defined as a traversal from root to leaf of
f ’s decomposition tree. It is a simple exercise to see that a canonical protocol is a perfectly secure
protocol for f against passive adversaries.

4

Normal form for protocols. For simplicity in our proofs, we will often assume that a protocol
is given in the following normal form:

1. At the end of the interaction, both parties include their outputs in the transcript as their
last message before terminating, so that each party’s output is a function of the transcript alone
(i.e., not a function of their input and random tape, etc.). Since both parties should receive the
same output, this is without loss of generality.

2. Each message in the protocol is a single bit, and the rounds alternate between the two parties.
3. The honest protocol does not require the parties to maintain a persistent state (in particular

a random tape). Instead, the protocol is simply a mapping P : {0, 1}∗×{0, 1}∗ → [0, 1], indicating
that if t is the transcript so far, and a party’s input is x, then its next message is 1 with probability
P (t, x), and 0 with probability 1− P (t, x). For computationally unbounded parties, requiring this
normal form is without loss of generality, because the probabilities P (t, x) fully define the behavior
of the parties in the protocol.2

SSFE Functions are “Deviation Revealing.” In [9] it is shown that for the so-called “de-
viation revealing” functionalities, if a protocol π is a UC-secure realization of that functionality,
then the same protocol is also secure against passive adversaries. It is easy to verify that SSFE
functionalities are deviation revealing. Thus:

Lemma 1 ([9]). Let π be a UC-secure protocol (perhaps in a hybrid world) for a SSFE f . Then π
itself is a passive-secure protocol for f as well.

We include in Appendix A an adapted version of the argument in [9]. Note that standalone
security is a restriction of UC security to a particular class of environments, and thus the claim
applies also to protocols π which are only standalone-secure.

Note that Lemma 1 does not hold in general for non-symmetric SFE functionalities. For exam-
ple, the SFE where Alice gets no output but Bob gets the boolean-OR of both parties’ inputs is
not passively realizable. However, the protocol where Alice simply sends her input to Bob is secure
in the UC setting, since a malicious Bob in the ideal world can always learn her input by sending
0 as its input to the functionality.

3 Simulation of Canonical Protocol in a General Protocol

In this section, we develop our main new technical tool, the protocol simulation theorem.

Definition 3. We say that x, x′, y, y′ forms a -minor (resp. -minor) in f if:

f(x, y) = f(x, y′)
6= 6=

f(x′, y) 6= f(x′, y′)

resp. if
f(x, y) 6= f(x, y′)

= 6=
f(x′, y) 6= f(x′, y′)


In a canonical protocol for a function that is entirely a -minor, Alice must completely reveal

her input before Bob reveals anything about his input. We first show that, in general, this intuition
carries through for any protocol, with respect to any or -minor. There must be a point during
the protocol at which Alice has completely made the distinction between two of her inputs, but
Bob has not made any distinction between two of his inputs.

2Note that because of this, security against adaptive corruption and static corruption are the same for this setting.

5

For the remainder of this section we fix a SSFE f with domain X × Y , and secure protocol π
for f .

Definition 4. Let Pr[u|x, y] denote the probability that π generates a transcript that has u as a
prefix, when executed honestly with x and y as inputs.

Let F be a set of strings that is prefix-free. Define Pr[F |x, y] =
∑

u∈F Pr[u|x, y]. We call F
a frontier if F is maximal – that is, if Pr[F |x, y] = 1 for all x, y. Define Dx,y

F as the probability
distribution over F , where u ∈ F is chosen with probability Pr[u|x, y].

Lemma 2 (Frontiers). For all x 6= x′ ∈ X, there is a frontier F such that, for all y, y′ ∈ Y :

• if f(x, y) 6= f(x′, y), then SD
(
Dx,y

F ,Dx′,y
F

)
≥ 1− ν, and

• if x, x′, y, y′ form a -minor, then SD
(
Dx,y

F ,Dx,y′

F

)
,SD

(
Dx′,y

F ,Dx′,y′

F

)
≤ ν.

where ν is a negligible function of the security parameter.

Proof. Suppose we have a protocol π in normal form, and let ε denote the simulation error of π
(i.e., the statistical difference between real- and ideal-world outputs). The next message function
depends only on the appropriate party’s input and the transcript so far. For b ∈ {0, 1} and
u ∈ {0, 1}∗, denote by πA(ub, x) is the probability that Alice’s next message is b when running on
input x and the transcript so far is u. Define πB for Bob analogously. Suppose we run π on inputs
x, y, where Alice sends the first message The probability of obtaining a particular transcript prefix
u = u1 · · ·un is (say n is even):

Pr[u|x, y] = πA(u1, x) · πB(u1u2, y) · πA(u1u2u3, x) · · ·πB(u1 · · ·un, y)

=

n/2∏
i=1

πA(u1 · · ·u2i−1, x)

n/2∏
i=1

πB(u1 · · ·u2i, y)

 = α(u, x)β(u, y)

where α(u, x) and β(u, y) are defined to be the parenthesized quantities, respectively.
Given x, x′ as above, and for a fixed µ < 1, to be defined later, we define the frontier F as the

prefix-minimal elements of:

{u | u is a complete transcript, or
∣∣α(u, x)− α(u, x′)

∣∣ ≥ µ(α(u, x) + α(u, x′))}

By “complete transcript”, we mean one on which the parties terminate and give output.
We partition F into Fgood ∪ Fbad, where Fgood are the elements u ∈ F which satisfy

|α(u, x)− α(u, x′)| ≥ µ(α(u, x)+α(u, x′)). Each element u ∈ Fbad therefore satisfies α(u, x)/α(u, x′) ≤
(1 + µ)/(1− µ).

Consider any y such that f(x, y) 6= f(x′, y). Let A ⊆ Fbad be the transcripts in Fbad which do
not induce output f(x, y) (all elements of Fbad are complete transcripts, and the output is a function
of the transcript alone). Similarly let B ⊆ Fbad be the transcripts in Fbad which do not induce
output f(x′, y). Thus Pr[A|x, y] and Pr[B|x′, y] must be at most ε. Observe that Fbad ⊆ A ∪ B.

6

Thus we have:

Pr[Fgood|x, y] = 1− Pr[Fbad|x, y] ≥ 1−
∑
u∈A

α(u, x)β(u, y)−
∑
u∈B

α(u, x)β(u, y)

≥ 1−
(

1 + µ

1− µ

)∑
u∈A

α(u, x)β(u, y)−
(

1 + µ

1− µ

)∑
u∈B

α(u, x′)β(u, y)

= 1−
(

1 + µ

1− µ

)
(Pr[A|x, y] + Pr[B|x′, y]) ≥ 1− 2

(
1 + µ

1− µ

)
ε

The same bound holds for Pr[Fgood|x′, y]. Now,

SD
(
Dx,y

F ,Dx′,y
F

)
=

1
2

∑
u∈F

∣∣α(u, x)− α(u, x′)
∣∣β(u, y) ≥ 1

2

∑
u∈Fgood

µ
(
α(u, x) + α(u, x′)

)
β(u, y)

=
µ

2

(
Pr[Fgood|x, y] + Pr[Fgood|x′, y]

)
≥ µ

(
1− 2

(
1 + µ

1− µ

)
ε

)
Now consider any y and y′ such that x, x′, y, y′ form a -minor. Since f(x, y) = f(x, y′), we must
have SD

(
Dx,y

F ,Dx,y′

F

)
≤ ε by the security of the protocol. Let S be the set of all proper prefixes

of elements F that correspond to points where Alice has just spoken. By Lemma 6 (proven in the
appendix), we can express the statistical difference at F in terms of a linear combination of α(v, x)
values for v ∈ S. Since by definition every v ∈ S satisfies α(v, x′)/α(v, x) ≤ (1 + µ)/(1 − µ), we
have:

SD
(
Dx′,y

F ,Dx′,y′

F

)
=

1
2

∑
u∈F

α(u, x′)
∣∣β(u, y)− β(u, y′)

∣∣ = 1
2

(
cπ +

∑
v∈S

α(v, x′)λ(v, y, y′)

)

≤ 1
2

(
cπ +

1 + µ

1− µ

∑
v∈S

α(v, x)λ(v, y, y′)

)
≤ 1

2

(
1 + µ

1− µ

)(
cπ +

∑
v∈S

α(v, x)λ(v, y, y′)

)

=
(

1 + µ

1− µ

)
SD
(
Dx,y

F ,Dx,y′

F

)
≤
(

1 + µ

1− µ

)
ε

Choosing µ = 1−
√

ε and defining ν = 5
√

ε, we get the desired bounds.

Our main protocol simulation theorem applies this intuition to show that the information dis-
closed during the protocol must come in the same order as in the canonical protocol, as long as the
canonical protocol is unique. This restriction is necessary, as different canonical protocols for the
same f can admit completely different kinds of attacks (e.g., for the XOR function, depending on
which party speaks first).

Theorem 1 (Protocol Simulation). If f has a unique decomposition, then for any protocol π for f ,
the canonical protocol for f is “as secure as” π. That is, for every adversary attacking the canonical
protocol, there is an adversary attacking π which achieves the same effect.

Proof Sketch. The approach is an inductive generalization of Lemma 2. For each step in the
decomposition of X × Y , say X = X0 ∪X1, we define an associated frontier. We show inductively
that the transcript distribution at this frontier statistically reveals whether (in this case) Alice’s

7

input is in X0 or X1, but the distribution is nearly independent of any further distinctions among
either party’s inputs within X × Y . Furthermore, these frontiers are visited in the natural order,
with overwhelming probability.

Given such frontiers, the required simulation is fairly natural. The simulator’s job is to simulate
the canonical protocol toA, while interacting with the honest party in the protocol π. The simulator
S simply keeps track of the current step in the decomposition of f , and runs π honestly with any
representative input. Whenever it reaches the next frontier for a decomposition step by the honest
party, it does the following: By the definition of the frontier it can determine with great certainty
which part of the decomposition the honest party’s input belongs to, and simulate the next step
in the canonical protocol. Then the simulator receives the adversary’s next move in the canonical
protocol and changes its own input for π accordingly, if necessary. By the definition of the frontier,
the transcripts so far are nearly independent of such distinctions among the adversary’s input, so
it is indeed possible to “hot-swap” inputs to π at this point and maintain a sound simulation.

The full details of the proof are given in Appendix A.3.

4 Characterizing Passive Security

Beaver [2] and Kushilevitz [8] showed that f is decomposable if and only if f has a perfectly secure
protocol against passive adversaries. Using Lemma 2, we can generalize this result to the case
where only statistical security is required:

Theorem 2. f is decomposable if and only if f has a (statistically secure) passive-secure protocol.

Proof Sketch. The full proof follows in Appendix A.4. At an intuitive level, our proof approach
generalizes Beaver’s. We use and -minors to identify the first points in the protocol at which
the parties reveal significant information about their inputs. We obtain a contradiction by showing
that neither party can safely be the first to reveal information.

• On input (commit, x) from party P1, send committed to party P2, and remember x.

• On input reveal from party P1, if x has already been recorded, send x to party P2.

Figure 2: Commitment functionality Fcom

Theorem 3. f has a passive-secure protocol if and only if f has a UC-secure protocol in the
Fcom-hybrid world, where Fcom denotes the commitment functionality defined in Figure 2.

Proof Sketch. (⇐) By Lemma 1, any UC-secure protocol π for a symmetric SFE f is also pas-
sively secure. There is a trivial passive-secure protocol for Fcom (the committing party sends
“committed” in the commit phase and sends the correct value in the reveal phase). We can
compose π with the passive-secure Fcom protocol to obtain a passive-secure protocol for f in the
plain model.

(⇒) We will give a general-purpose “compiler” from passive-secure protocols to the UC-secure
Fcom-hybrid protocols. Suppose π is a passive-secure protocol for f , in normal form. For simplicity,
assume for now that π is deterministic. We will describe later the necessary modifications for
randomized protocols. The complete protocol is described in Figure 3, and proof of security is
given in Appendix A.6. Here we sketch the main ideas behind the protocol.

8

Suppose Alice’s input is x ∈ {1, . . . , n}, and let χ ∈ {0, 1}n be the associated characteristic
vector, where χi = 1 if and only if i = x. Alice commits to both χσ(1), . . . , χσ(n) and σ(1), . . . , σ(n)
for many random permutations σ. For each pair of such commitments, Bob will (randomly) ask
Alice to open either all of χσ(1), . . . , χσ(n) (and verify that χ has exactly one 1) or open all σ(i) (and
verify that σ is a permutation). Bob also commits to his own input in a similar way, with Alice
giving challenges. Then both parties simulate the π protocol one step at a time. When it is Alice’s
turn in π, she computes the appropriate next message b ∈ {0, 1} and sends it. For a deterministic
protocol, the next message function is a function of the transcript so far and the input. Given the
partial transcript so far t, both parties can compute the set Xb = {x′ | π(t, x′) = b}; i.e., the set of
inputs for which the protocol instructs Alice to send b at this point. Then Alice can open enough of
her commitments to prove that χi = 0 for all i ∈ X1−b to prove that the message b was consistent
with her committed input and the honest protocol.

To compile a randomized protocol, we make each party commit to its random tape as well.
However, security only holds if the random tape is chosen uniformly. To ensure this, we use a
coin-tossing-into-the-well approach. Let S be the possible space of (input, random tape) pairs. On
input x, Alice chooses a random tape r and “commits” to (x, r) by committing to many random
permutations and permuted characteristic vectors. For each pair of commitments, Bob randomly
asks Alice to completely open one or the other. Then Bob chooses another random tape s (for
Alice) and sends it to Alice. Now Alice runs each step of the protocol on x with random tape r⊕ s.
Both parties know s, so at each move Alice opens the commitments corresponding to the (x′, r′)
pairs such that the protocol prescribes the opposite output on input x′ and random tape r′⊕s.

We note that this Fcom “compiler” works for any passive-secure protocol. In particular, it does
not use the fact that the protocol realizes a functionality with symmetric, deterministic outputs.
Thus the compiler may be of more general interest.

5 Characterizing Standalone Security (Against Active Adversaries)

From Theorem 2 we know that any passive-secure SSFE function is decomposable. However for
many of these functions, the canonical protocol is clearly not secure against active adversaries.
In this section we show that for every decomposition tree, there is exactly one function (up to
isomorphism) that is standalone-secure, and such functions are in fact securely realized by the
canonical protocol. Given any decomposition tree T (i.e., a tree with alternating levels of internal
nodes marked as Alice nodes and Bob nodes) we shall associate a single function fT

max with it
(Definition 7), and obtain:

Theorem 4. f is standalone-secure iff f ∼= fT
max for some decomposition tree T . Further, such an

f has a unique decomposition with decomposition tree T , and its canonical protocol is standalone-
secure.

To prove Theorem 4, we first show that non-uniquely decomposable functions are not standalone-
secure. We can then apply Theorem 1 to show that standalone-secure functions are isomorphic to
their corresponding fT

max.

Lemma 3. If f has a standalone-secure protocol, then f has a unique decomposition.

9

Proof Sketch. We first show in Lemma 9 that any protocol in which the parties agree on the output
is susceptible to a certain kind of “attack,” whereby a malicious party may be able to fix the
output a certain way. We then show in Lemma 10 that when f has multiple decompositions, the
“attack” described in Lemma 9 is not possible in the ideal world; thus it is a true attack against
the protocol.

Definition 5 (Tree-Strategy). Let T be a decomposition tree. VA be the set of nodes which are
marked as ‘Alice nodes’ and VB be the set of nodes marked as ‘Bob nodes’. SA be a subtree of T
such that every Alice node has exactly one outgoing edge and every Bob node has all its outgoing
edges. SA is called an Alice strategy. Similarly, we define Bob Strategy.

We observe that given an Alice strategy and a Bob strategy, their intersection is a path from
the root to a unique leaf of T .

Definition 6 (Input-Strategy). Let f be a two argument function on X × Y with decomposition
T . Let (x, y) be any input from the domain X × Y . Let B(u) be the subset of the input domain
corresponding to the the node u ∈ V (T). We mark nodes u ∈ V (T) such that (x, y) ∈ B(u). These
marked nodes form a path from the root to a leaf. Say, the path is p(x,y). Define S

(x)
A as the tree

obtained by the union of all p(x,y), for all y ∈ Y . S
(x)
A is called an X-input strategy. Similarly, we

define Y -input strategies.

It is easy to observe that every X-input strategy is an Alice strategy and every Y -input strategy
is a Bob strategy.

Lemma 4. f has a standalone secure protocol against active adversaries if and only if f has a
unique tree decomposition T , and every Alice and Bob strategy for T is, respectively, an X-input
strategy and Y -input strategy.

Proof. (⇒): We know that if f is standalone secure against active adversaries, then f has a unique
decomposition T (Lemma 3). If π is a standalone secure protocol for f against active adversaries,
then π is a secure protocol for f against passive adversaries (Lemma 1). Since f has unique tree
decomposition and f has a passive secure protocol π, then for any adversary against the canonical
protocol for f , there exists an adversary which will achieve the same effect in π (Theorem 1).
However, there is a straightforward correspondence between Alice/Bob strategies and steps in the
canonical protocol. Suppose SB is a Bob strategy which is no corresponding a Y -input strategy.
So, for any y′ that the simulator sends to the functionality, there exists x′ such that the output of
the ideal world does not match the output in the real world. So, we have a strategy for Bob on the
canonical tree T which can not be simulated in the ideal world. Hence, contradiction. Thus, every
Alice and Bob strategies are X-input strategies and Y -input strategies, respectively.

(⇐): Given the decomposition T for f , we show that the canonical protocol for f is standalone-
secure. Let Ff be the ideal functionality for f and suppose Bob is corrupt. The simulator fixes
the randomness of Bob and runs Bob for each input x ∈ X (it is a rewinding simulator). Suppose
the output corresponds to the leaf d(x) in T . We construct the tree T ′ by taking union of all the
paths from the root of T to d(x) for all possible x ∈ X. T ′ is subgraph of some Bob strategy
(say SB). Say SB corresponds to Y -input strategy S

(y)
B . The simulator sends y to Ff and receives

f(x, y). Using f(x, y) and y, it can find some x′ ∈ X such that f(x, y) = f(x′, y). Using the same
randomness as earlier, we simulate the protocol with input x′.

10

Definition 7 (Maximal function of a decomposition). Let f be a two argument function with
decomposition T . Let X be the set of all Alice strategies and Y be the set of all Bob strategies. Let
D be the set of leaves of T . We will define a function fT

max : X×Y → D. Let SA ∈ X and SB ∈ Y .
We define fT

max(SA, SB) = d, where d is the leaf in the path corresponding to the intersection of SA

and SB. fT
max is called the maximal function of the decomposition T .

Lemma 5. f has a standalone secure protocol against active adversaries iff f ∼= fT
max for decom-

position T of f .

Proof. (⇒): If f has a standalone secure protocol against active adversaries, then there exists a
bijection between Alice strategies and X-input strategies and Bob strategies and Y -input strategies.

First we show that fT
max ≤ f : We will show that there exists functions such that fmax(SA, SB) =

MA(x, f(IA(SA), IB(SB))) = MB(y, f(IA(SA), IB(SB))). We define IA(SA) = x, where S
(x)
A is the

X-input strategy corresponding to SA. Similarly, we define IB(SB) = y, where S
(y)
B is the Y -input

strategy corresponding to SB. Now, we can determine the leaf in T given f(x, y) and either x or
y. Hence fmax(T) ≤ f .

Now we will show that f ≤ fT
max: We will show that there exists functions such that f(x, y) =

M(fT
max(IA(x), IB(y))). We define IA(x) = SA, where SA is the Alice strategy corresponding to S

(x)
A .

Similarly, IB(y) = SB, where SB is the Bob strategy corresponding to S
(y)
B . Now fT

max(SA, SB) = d,
where the intersection graph of SA and SB is the path from the root of T to d. M(d) = t, where t
is the value of f over the domain represented by d. Hence f ≤ fmax(T). So, f ∼= fmax(T).

(⇐): It is easy to see that the canonical protocol for fT
max is a perfectly secure protocol for f

against active adversaries.

6 A Strict Infinite Hierarchy

Theorem 5. Let f be a SSFE function that has a unique decomposition of depth n. Let F be any
(possibly randomized) UC functionality that has a passive-secure protocol with m < n rounds. Then
there is no UC-secure protocol for f in the F-hybrid world.

Proof Sketch. Suppose for contradiction that π is a protocol for f in the F-hybrid world. By
Lemma 1, we have that π is also a passive-secure protocol. Let us replace each call in π to F with
the m-round passive-secure protocol for F to obtain π̂, a passive-secure protocol for f in the plain
model. For all π̂ transcript prefixes, we mark every prefix that corresponds to a turn in the F
subprotocol, except for the first turn of that subprotocol. Intuitively, a π̂-adversary should always
behave consistently during a marked span, since there may be no equivalent way to achieve the
same effect in π, where F-subprotocols are replaced with calls to the ideal F .

Since f is uniquely decomposable, we will describe an attack on the canonical protocol for f ,
and apply Theorem 1 to obtain an equivalent adversary S for π̂. However, not every adversary
attacking π̂ can be mapped to an adversary attacking π in the F-hybrid world. S runs the π̂
protocol honestly, though it may change the input occasionally. As long as S can be modified to
change its input only at an unmarked node, then the adversary runs every F subprotocol entirely
honestly, with a consistent input. Then every subprotocol call could be replaced with appropriate
calls to F , giving an adversary attacking π in the F-hybrid model.

With overwhelming probability, S encounters each of the n frontiers in strict order (the frontiers
consist of points where alternating parties speak). Note that in any n− 1 consecutive steps in the

11

protocol π̂, at least one of the steps must correspond to an unmarked transcript prefix. Since there
are n frontiers, it must be the case that either the probability of reaching an unmarked Bob step
in the transcript after the first Alice frontier but not after the last Bob frontier is at least half, or
the probability of reaching an unmarked Alice step in the transcript after the last Bob frontier but
not after the first Alice frontier is at least half.

By symmetry, suppose that the probability of Bob reaching such an unmarked node is at least
half. Then as long as we describe an attack for a malicious Bob on the canonical protocol for f
that allows S to change at any time after Alice’s first move and before Bob’s last move, the attack
by S will be successful against π with probability at least half.

Let (x, y) and (x, y′) be two inputs with f(x, y) 6= f(x, y′) which cause the canonical protocol
to take a maximum number of rounds. Let x′ be such that Alice’s first message in the canonical
protocol differs when she has x versus x′. Our attack against the canonical protocol is as follows: If
necessary, send the first message consistent with y (which should also be consistent with y′). After
Alice’s first move, determine whether her input is x or x′, and report it to the environment. Then
receive either y or y′ from the environment, and complete the protocol with answers consistent with
y or y′, as indicated by the environment. The environment outputs 1 if the adversary succeeds (if
the adversary reported the correct input for Alice, and induced the output consistent with either
y or y′, as requested). Since the canonical protocol behavior is the same for y and y′ until Bob’s
last round, our simulator S has sufficient time to switch its input internally, as desired.

It is straight-forward to see that if the environment chooses Alice’s input {x, x′} randomly,
and chooses the adversary’s challenge {y, y′} randomly, no ideal-world adversary can succeed with
probability exceeding 1/2. However, the canonical-protocol adversary can clearly succeed with
probability 1, thus the π̂-attacking adversary S succeeds with probability ≈ 3/4.

Let gn : {0, 2, . . . , 2n} × {1, 3, . . . , 2n + 1} → {0, 1, . . . , 2n} be defined as gn(x, y) = min{x, y}.
It can be seen by inspection that gn has a unique decomposition of depth 2n. The corresponding
canonical protocol is the one in which Alice first announces whether x = 0, then (if necessary) Bob
announces whether y = 1, and so on.

Corollary 6. The functions g1, g2, . . . form a strict, infinite hierarchy of increasing UC complexity.
That is, gi v gi+1, but gi+1 6v gi for all i.

Proof. By Theorem 5, we know that there is no gn protocol in the gm-hybrid world, when m < n. It
suffices to show that there is a UC-secure gn protocol in the gn+1-hybrid world. The input domain
of gn is a subset of the domain of gn+1, so the gn protocol is to simply use gn+1 as if it were an
gn functionality. If the response from gn+1 is out of bounds for gn (i.e., 2n + 1 or 2n + 2), then
abort; otherwise, use the response as the output. Suppose a real-world adversary attempts to send
s to gn+1 in the protocol. If s ≤ 2n + 1, then s is a valid input for gn, and the other party will
accept, so the simulator simply sends s as the input in the ideal world, and delivers the output. If
the corrupt party is Bob, and s = 2n + 3, then since Alice is honest, her input will always be the
minimum. The simulator can send 2n + 1 to gn in the ideal world (the maximum possible value)
and deliver the output. If the corrupt party is Alice and s = 2n + 2, then if Bob’s input to the
protocol was 2n + 1, he would abort in the real world interaction. So the simulator sends 2n to gn

and delivers the output unless the response is 2n.

12

Corollary 7. There is no function f which is complete (with respect to the v relation) for the class
of SSFE functions with passive-secure protocols, or for the class of SSFE functions with standalone-
secure protocols.

Proof. Any candidate function f can only implement functions with decomposition depth at most
n, where n is the minimum round complexity of a protocol for f . Yet there are functions with
arbitrarily high decomposition depth.

References

[1] M. Backes, J. Müller-Quade, and D. Unruh. On the necessity of rewinding in secure multiparty
computation. In S. P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science,
pages 157–173. Springer, 2007.

[2] D. Beaver. Perfect privacy for two-party protocols. In J. Feigenbaum and M. Merritt, editors,
Proceedings of DIMACS Workshop on Distributed Computing and Cryptography, volume 2,
pages 65–77. American Mathematical Society, 1989.

[3] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016, 2001. Previous ver-
sion “A unified framework for analyzing security of protocols” availabe at the ECCC archive
TR01-016. Extended abstract in FOCS 2001.

[4] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In E. Biham, editor, EUROCRYPT, volume
2656 of Lecture Notes in Computer Science. Springer, 2003.

[5] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy (extended abstract). In STOC,
pages 62–72. ACM, 1989.

[6] J. Kilian. A general completeness theorem for two-party games. In STOC, pages 553–560.
ACM, 1991.

[7] J. Kilian. More general completeness theorems for secure two-party computation. In Proc.
32th STOC, pages 316–324. ACM, 2000.

[8] E. Kushilevitz. Privacy and communication complexity. In FOCS, pages 416–421. IEEE, 1989.

[9] M. Prabhakaran and M. Rosulek. Cryptographic complexity of multi-party computation prob-
lems: Classifications and separations. In D. Wagner, editor, CRYPTO, volume 5157 of Lecture
Notes in Computer Science, pages 262–279. Springer, 2008.

[10] A. C. Yao. Protocols for secure computation. In Proc. 23rd FOCS, pages 160–164. IEEE, 1982.

13

A Additional Proofs

A.1 Proof of Lemma 1

Proof of Lemma 1. We show that, without loss of generality, the simulator for π maps passive
real-world adversaries to passive ideal-world adversaries. A passive adversary A for π is one which
receives an input x from the environment, runs π honestly, and then reports its view to the envi-
ronment. Suppose S is the simulator for A. Since in the ideal world, both parties produce output
with overwhelming probability, S must also allow the other party to generate output in the ideal
world with overwhelming probability. S must receive x from the environment, send some x′ to the
ideal functionality f , receive the output f(x′, y), deliver the output, and and then simulate a view
to send to the environment.

Suppose x′ is the input sent by S to f . If f(x, y) 6= f(x′, y) for some input y for the other party,
then consider an environment that uses y for the other party’s input. In this environment, the
other party will report f(x, y) in the real world, but f(x′, y) in the ideal world, so the simulation
is unsound. Thus with overwhelming probability, S sends an input x′ such that f(x, ·) ≡ f(x′, ·).
We may modify S to always send x (originally obtained from the environment) to f instead of x′.
With overwhelming probability, the reply from f is unaltered by replacing x′ with x, and thus the
remainder of its simulation remains the same. This modified S is a passive ideal-world adversary:
it receives x from the environment, sends x to f , and delivers the output.

A.2 Proof of Lemma 2

In Lemma 2, we use the following technical lemma which relates the statistical difference on a
frontier to a function of the prefixes of the frontier.

Let F be the frontier defined in the proof of Lemma 2 (a set of transcript prefixes corresponding
to points where Alice has just spoken), and let S be the set of proper prefixes of F that correspond
to points where Alice has just spoken.

Lemma 6. There exist constants cπ ≥ 0 and λ(v, y, y′) ≥ 0 for all v ∈ S such that:∑
u∈F

α(u, x)
∣∣β(u, y)− β(u, y′)

∣∣ = cπ +
∑
v∈S

α(v, x)λ(v, y, y′)

Proof. Let S0 be the prefix-minimal elements of S (if Alice speaks first in the protocol, then |S0| = 2,
otherwise S0 contains just the empty string). We will define a sequence S0 ⊂ S1 ⊂ · · · ⊂ St

inductively as follows. Let Li be the set of leaves of Si. We define a pop operation on elements of
Li which are not in F . When we pop an element u ∈ Si, we expand the partial transcript u by two
steps, setting Si+1 = Si ∪ {u00, u01, u10, u11}. After some finite number of operations we reach St

such that Lt = F .
We define the weight of a tree Si as:

w(Si) =
∑
u∈Li

α(u, x)
∣∣β(u, y)− β(u, y′)

∣∣
Observe that w(St) = SD

(
Dx,y

F ,Dx,y′

F

)
. For the base case w(S0) = cπ ≥ 0. We define the inter-

mediate quantity δ(u, y, y′) = |β(u, y)− β(u, y′)|. Suppose the node v was popped in Si to obtain

14

Si+1. Then,

w(Si+1)− w(Si) = α(v00, x)δ(v00, y, y′) + α(v01, x)δ(v01, y, y′)
+ α(v10, x)δ(v10, y, y′) + α(v11, x)δ(v11, y, y′)− α(v, x)δ(v, y, y′)

Since v0 and v1 are nodes where Bob has just spoken, we get that δ(v00, y, y′) = δ(v01, y, y′) =
δ(v0, y, y′) and δ(v10, y, y′) = δ(v11, y, y′) = δ(v1, y, y′). Similarly, α(v0, x) = α(v1, x) = α(v, x).
By definition, we have α(v00, x)+α(v01, x) = α(v0, x) and α(v10, x)+α(v11, x) = α(v1, x). Using
these observation we get:

w(Si+1)− w(Si) = (α(v00, x) + α(v01, x)) δ(v0, y, y′)
+ (α(v10, x) + α(v11, x)) δ(v1, y, y′)− α(v, x)δ(v, y, y′)

= α(v0, x)δ(v0, y, y′) + α(v1, x)δ(v1, y, y′)− α(v, x)δ(v, y, y′)
= α(v, x)

[
δ(v0, y, y′) + δ(v1, y, y′)− δ(v, y, y′)

]
Define λ(v, y, y′) = δ(v0, y, y′) + δ(v1, y, y′) − δ(v, y, y′) and it is easy to see that λ(v, y, y′) ≥ 0.
Thus we obtain the desired result:

w(St) = cπ +
∑
v∈S

α(x, v)λ(v, y, y′)

A.3 Proof of Theorem 1

We now prove our main technical result, Theorem 1. First, we establish a convenient lemma:

Lemma 7. For frontiers F and G, let “[G ≺ F |x, y]” denote the event that when running the
protocol on inputs x, y, the transcript reaches G strictly before reaching F . Then

SD
(
Dx,y

F ,Dx′,y′

F

)
≤ SD

(
Dx,y

G ,Dx′,y′

G

)
+

1
2
(Pr[G ≺ F |x, y] + Pr[G ≺ F |x′, y′])

Proof. Partition F into F1 and F2, where F1 are the strings in F which are prefixes of strings in
G. Thus the distribution over the frontier F1 is a function of the distribution over the frontier G.
Then

SD
(
Dx,y

F ,Dx′,y′

F

)
=

1
2

∑
u∈F1

|α(u, x)β(u, y)− α(u, x′)β(u, y′)|+ 1
2

∑
u∈F2

|α(u, x)β(u, y)− α(u, x′)β(u, y′)|

≤ SD
(
Dx,y

G ,Dx′,y′

G

)
+

1
2

∑
u∈F2

(
α(u, x)β(u, y) + α(u, x′)β(u, y′)

)
= SD

(
Dx,y

G ,Dx′,y′

G

)
+

1
2
(
Pr[F2|x, y] + Pr[F2|x′, y′]

)
= SD

(
Dx,y

G ,Dx′,y′

G

)
+

1
2
(Pr[G ≺ F |x, y] + Pr[G ≺ F |x′, y′])

We can now prove Theorem 1. For simplicity, we restrict attention to the case where the decomposi-
tion of f is binary (that is, each row decomposition is X = X0∪X1 and each column decomposition
is Y = Y0 ∪ Y1), as that is all that is needed for our impossibility results, and the proof is much
simpler.

15

As before, let ε be the statistical error of the protocol π, let ν be the negligible error guaranteed
by Lemma 2, and define the quantity µi according to the recurrence µ0 = 2ε and µi+1 = 11ν +16µi.
Note that for fixed i, µi is negligible whenever ε and ν are negligible.

The bulk of the proof is in the following inductive lemma. For each step X × Y in the decom-
position of f , we will construct a frontier F (X, Y) with the following property:

Lemma 8. Let d be the depth (number of decomposition steps) of the decomposition of f
∣∣
X×Y

. For
all x, x′ ∈ X and y, y′ ∈ Y , if (x, y) and (x′, y′) are in different parts of the next decomposition step
of f

∣∣
X×Y

, then SD
(
Dx,y

F (X,Y),D
x′,y′

F (X,Y)

)
≥ 1− µd; otherwise, SD

(
Dx,y

F (X,Y),D
x′,y′

F (X,Y)

)
≤ µd.

Proof. We prove the claim inductively according to the decomposition of f . For X × Y such
that f is constant on X × Y , we define F (X, Y) as the set of complete transcripts (i.e., those
on which the parties terminate and give output). By the security of the protocol, we have that
SD
(
Dx,y

F (X,Y),D
x′,y′

F (X,Y)

)
≤ 2ε = µ0 for all x, x′ ∈ X and y, y′ ∈ Y .

Otherwise suppose that X × Y is further decomposed as X = X0 ∪X1 (the case for a column
decomposition is symmetric). Our first step is to pick representatives x0 ∈ X0 and x1 ∈ X1 so that
there are certain -minors involving x0 and x1, and we will be able to apply Lemma 2 directly.
We pick the representatives as follows:

If f is constant on X1 × Y , then we pick the representative x0 ∈ X0 arbitrarily. Otherwise,
suppose X1 × Y is decomposed as Y = Y0 ∪ Y1. This column decomposition Y0 ∪ Y1 is invalid for
X0×Y , since if it were valid, the decomposition of f would not be unique. Therefore there must be
an x0 ∈ X0, y ∈ Y0, y′ ∈ Y1 such that f(x0, y) = f(x0, y

′). We use this x0 as the representative for
X0. In this way, we have ensured that for any x1 ∈ X1, these values x0, x1, y, y′ form a -minor,
which (intuitively) witnesses the fact that the X = X0∪X1 decomposition must happen before the
Y = Y0 ∪ Y1 decomposition. The representative for X1 is chosen analogously.

Given these representatives x0, x1, we define F (X, Y) to be the frontier given by Lemma 2 for
x0, x1. We refer to F (X, Y) as F for short, and F (X0, Y) as G.

We wish to show that for all x, x′ ∈ X0 and y, y′ ∈ Y , SD
(
Dx,y

F ,Dx′,y′

F

)
≤ µd (the analogous

claim for X1 is symmetric). If f is constant on X0 × Y , then the statistical difference is in fact at
most 2ε by the security of the protocol, and we are done. Otherwise, if X0 × Y is decomposed as
Y = Y0 ∪ Y1, there must be y0 ∈ Y0, y1 ∈ Y1 such that x0, x1, y0, y1 are a minor, by our choice
of x0, x1. Thus by Lemma 2, we have that SD

(
Dx0,y0

F ,Dx0,y1

F

)
≤ ν. However, inductively we also

have that SD
(
Dx0,y0

G ,Dx0,y1

G

)
≥ 1− µd−1. So by Lemma 7, Pr[F ≺ G|x0, y0] ≥ 1− 2(ν + µd−1).

Now, take any x ∈ X0, y ∈ Y0. We have inductively that SD
(
Dx,y

G ,Dx0,y0

G

)
≤ µd−1. Note that

the condition “F ≺ G” for a transcript can be determined by seeing only the transcript up to the
point G. This suggests a statistical test for distributions on G. Thus we must have∣∣∣Pr[F ≺ G|x, y]− Pr[F ≺ G|x0, y0]

∣∣∣ ≤ SD
(
Dx,y

G ,Dx0,y0

G

)
≤ µd−1.

Combining what we know, this implies that Pr[F ≺ G|x, y] ≥ 1 − (2ν + 3µd−1). An analogous
statement also holds for with Y1 in place of Y0.

Now take any x ∈ X0, y ∈ Y0. By Lemma 7, and the inductive hypothesis,

SD
(
Dx,y

F ,Dx0,y0

F

)
≤ SD

(
Dx,y

G ,Dx0,y0

G

)
+

1
2

(
Pr[G ≺ F |x0, y0] + Pr[G ≺ F |x, y]

)
≤ 2ν + 4µd−1

The same bound holds with y1 in place of y0 and Y1 in place of Y0.

16

Finally, combining everything, for any x, x′ ∈ X0, y ∈ Y0, and y′ ∈ Y1, we have by the triangle
inequality:

SD
(
Dx,y

F ,Dx′,y′

F

)
≤ SD

(
Dx,y

F ,Dx0,y0

F

)
+ SD

(
Dx0,y0

F ,Dx0,y1

F

)
+ SD

(
Dx0,y1

F ,Dx′,y′

F

)
≤ (2ν + 4µd−1) + ν + (2ν + 4µd−1) = 5ν + 8µd−1 ≤ µd

The case where y, y′ ∈ Y0 or y, y′ ∈ Y1 is shown in a similar way. This proves the first part of the
inductive claim.

For the other part of the claim, since X = X0 ∪X1 is a valid row-decomposition of X × Y , we
know that f(x0, y) 6= f(x1, y) for every y ∈ Y . Thus SD

(
Dx0,y

F ,Dx1,y
F

)
≥ 1− ν by Lemma 2 and the

definition of F . By a similar triangle inequality argument, we have that for all x ∈ X0, x′ ∈ X1,
y, y′ ∈ Y :

SD
(
Dx,y

F ,Dx′,y′

F

)
≥ −SD

(
Dx,y

F ,Dx0,y
F

)
+ SD

(
Dx0,y

F ,Dx1,y
F

)
− SD

(
Dx1,y

F ,Dx′,y′

F

)
≥ 1− ν − 2(5ν + 8µd−1) ≥ 1− µd−1.

Given the previous lemma, we prove Theorem 1:

Proof of Theorem 1. Given such frontiers corresponding to each decomposition step, the required
simulation is natural. The simulator’s job is to simulate the canonical protocol to A, while interact-
ing with the honest party in the protocol π. The simulator S simply keeps track of a subdomain in
the decomposition of f , and runs π honestly with any representative input. Whenever it reaches the
next frontier for a decomposition step by the honest party, it does the following: By the definition
of the frontier it can determine (with only negligible error) which part of the decomposition the
honest party’s input belongs to, and simulate the next step in the canonical protocol to the adver-
sary. Then the simulator receives the adversary’s next move in the canonical protocol and changes
its own input for π accordingly, if necessary. After the last message of the canonical protocol, S
continues honestly running π until it terminates.

The simulation is perfect except for the following possible sources of error: (1) S may give an
incorrect guess for the honest party’s next canonical-protocol message; (2) when honestly executing
π with the honest party, S often changes its input; and (3) S may reach the frontiers in an
unexpected order. Events 1 and 3 both happen with negligible probability by the constructions of
the frontiers. Furthermore, conditioned on the frontiers being encountered in the expected order, S
only changes its input only at points where the transcript distribution is nearly independent of its
input. In other words, a transcript in which S changes its input, say from x to x′, is indistinguishable
from a transcript in which S had used x′ as its input the whole time. Thus with overwhelming
probability, the transcript seen by the honest party is indistinguishable from one in which S executes
π entirely honestly with an input that is consistent with the entire canonical-protocol transcript,
so the effect given by S (against π) is the same as that of A (against the canonical protocol).

A.4 Proof of Theorem 2

Proof of Theorem 2. (⇒) The canonical protocol for f is passively secure (in fact, with perfect
security) [8].

(⇐) Suppose f has a passive-secure protocol π. Then it cannot have an OR-minor, since such
functions are complete [7]. One can easily verify that if f does not have both a - and -minor,

17

then it is decomposable, and the claim is proven. Otherwise, suppose for contradiction that f is
not decomposable.

Intuitively, by Lemma 2, each -minor x, x′, y, y′ corresponds to a combination of inputs where
Alice must differentiate her input before Bob. Similarly, for a -minor, Bob must differentiate
first. We will leverage these constraints to obtain a contradiction.

For each such minor in f , we can compute the associated frontier F in π. Let Fv be the union of
all F associated with -minors, and Fh be the union of all F associated with -minors. Finally,
let Fv be the prefix-minimal elements of Fv, and Fh be the prefix-minimal elements of Fh.

For an arbitrary x ∈ X, y∗ ∈ Y , we will show that we will inductively construct a sequence
Y1 ⊂ · · · ⊂ Yn = Y such that SD

(
Dx,y∗

Fv
,Dx,y

Fv

)
≤ i·ν for all y ∈ Yi, where ν is the negligible quantity

guaranteed by Lemma 2. That is, at Fv, transcripts are nearly independent of Bob’s input. The
base case is Y1 = {y∗}.

For the inductive step, we know that Y = Yi ∪ Yi is not a valid column decomposition of
f . We must have f(x′, y) = f(x′, y′) for some x′ ∈ X, y ∈ Yi, y′ ∈ Y1. We now consider
the 2 × 2 minor induced by x, x′, y, y′. If f(x, y) = f(x, y′), then clearly by the security of the
protocol, SD

(
Dx,y

Fv
,Dx,y′

Fv

)
≤ ε ≤ ν. If f(x, y) 6= f(x, y′), then we cannot have f(x, y) = f(x′, y) or

f(x, y′) = f(x′, y′), since this induces an OR-minor. The only other case is that this 2× 2 minor is
a -minor. Let F ′ be the minor given by Lemma 2 for this minor. Since Fv contains only prefixes
of F ′, we must have SD

(
Dx,y

Fv
,Dx,y′

Fv

)
≤ SD

(
Dx,y

F ′ ,Dx,y′

F ′

)
≤ ν by Lemma 2. In either of the above

cases, we have:

SD
(
Dx,y∗

Fv
,Dx,y′

Fv

)
≤ SD

(
Dx,y∗

Fv
,Dx,y

Fv

)
+ SD

(
Dx,y

Fv
,Dx,y′

Fv

)
≤ (i− 1)ν + ν = i · ν

Setting Yi+1 = Yi ∪ {y′} completes the inductive step.
Summarizing, for any x ∈ X, the transcript distribution at Fv is nearly independent of Bob’s

input. Symmetrically, for any y ∈ Y , the transcript distribution at Fh is nearly independent of
Alice’s input. We now obtain a contradiction by showing that in any transcript, the probability of
reaching Fv before Fh is negligible, as is the probability of reaching Fh before Fv. Since the two
sets are disjoint (they correspond to rounds in which different parties speak) and must be reached
with overwhelming probability, this is a contradiction.

Let x, x′, y, y′ denote a -minor (that is, Alice must disclose first) with associated frontier
F given by Lemma 2. We must have SD

(
Dx,y

F ,Dx′,y
F

)
≥ 1 − ν. However, at Fh, we must have

SD
(
Dx,y

Fh
,Dx′,y

Fh

)
≤ O(ν) by the above argument. Thus, only a negligible weight of prefixes in F have

a continuation in Fh. Since Fv is composed of the prefix-minimal boundary of at most O(|X|2+|Y |2)
such frontiers F , a union bound shows that the only a negligible weight of prefixes in Fv have a
continuation in Fh. The symmetric argument follows similarly, completing the proof.

A.5 Proof of Lemma 3

Lemma 9. Let π be an arbitrary protocol for two parties to agree on a value in a domain Z with
probability 1. (That is, the outcome of the protocol is a function of the transcript.) Then, for every
partition Z = C ∪D, the protocol π falls into one of the following types:

• “A” if Alice has a strategy to force the outcome to be a value in C with probability 1, and a
strategy to force the outcome to be a value in D with probability 1.

18

• “B” if Bob has a strategy to force the outcome to be a value in C with probability 1, and a
strategy to the outcome to be a value in D with probability 1.

• “C” if both Alice and Bob have a strategy to force the outcome to be in C with probability 1.

• “D” if both Alice and Bob have a strategy to force the outcome to be in D with probability 1.

Proof. The proof is by induction on the maximum number of rounds in π, when π is described in
the normal form for protocols. If π has 0 rounds, π has a constant outcome. So for any partition
Z = C ∪D, π is a C-type or D-type protocol.

Assuming the inductive hypothesis to hold for protocols up to n − 1 rounds, we consider a
protocol π of n rounds. Suppose the first message is sent by Alice. We define two protocols π0

and π1 which are defined as the protocols obtained by assuming the first message in an execution
of π to be 0, and to be 1 respectively. Now, by the inductive hypothesis, π0 and π1 are one of the
four types. We need to consider all combinations of possibilities, but up to symmetries, we need to
consider only the following five cases.

1. If π0 is of A-type so is π, because Alice can first choose to send 0, and then follow the
strategies in π0.

2. If π0 is of B-type and π1 is of C-type, then π is of C-type: Alice can force a C outcome by
sending 1 and following her strategy in π1 after that; for Bob, in both π0 and π1 he has a strategy
to force the outcome to be in C, one of which he will be able to follow after the first message from
Alice.

3. If both π0 and π1 are of B-type, then π is of B-type.
4. If π0 is of C-type and π1 is of D-type, then π is of A-type.
5. If both π0 and π1 are of C-type then π is of C-type too.

Lemma 10. If f is an SSFE function such that it has two distinct decompositions (in the normal
form for decompositions), then there is a partition of the range of f as Z = C ∪D such that one
of the following holds:

1. Alice has no x such that ∀y, f(x, y) ∈ C, and Bob has no y such that ∀y, f(x, y) ∈ D.
2. Alice has no x such that ∀y, f(x, y) ∈ D, and Bob has no y such that ∀y, f(x, y) ∈ C.

Proof. In Claim 1 we show that if f has two distinct decompositions, then there is a decomposition
with some node u in the decomposition with domain Xu × Yu such that f |Xu×Yu is both row and
column decomposable. Let T be the decomposition tree for this decomposition, and u be a node
whose domain is both row and column decomposable.

We show that the leaves of T can be colored as C and D such that the condition in the lemma
holds. For this first we color the leaves of the subtree under the node u, so that both conditions in
the lemma hold. In particular, if u is an Alice node then condition 1 holds and if u is a Bob node
then condition 2 holds. Now we walk up the tree T from the node u to the root and extend the
coloring as follows: at a node v, if v is an Alice node, we color all uncolored leaves under v as D,
and if v is a Bob node, we color all uncolored leaves under v as C. Inductively this maintains the
property that at Alice nodes condition 1 holds and at Bob nodes condition 2 holds.

Claim 1. If f has two distinct decompositions, then there is a decomposition for f with some node u
in the decomposition with domain Xu×Yu such that f |Xu×Yu is both row and column decomposable.

19

Proof. Given two distinct decompositions for f , let T and T ′ be their decomposition trees. If the
T starts with a row decomposition and T ′ starts with a column decomposition, then we can take
X∗ = X and Y ∗ = Y . Else we can start traversing T and T ′ until we find two nodes v and v′, both
say, Alice nodes, in T and T ′ respectively such that the domains associated with them are equal:
Xv ×Yv = X ′

v′ ×Y ′
v′ . Further, Xv = X1 ∪ . . .∪X` and X ′

v′ = X ′
1 ∪ . . .∪X ′

`′ are not identical. Then
it must be the case that there exist Xi, X

′
j such that Xi has non-empty intersections with both X ′

j

and X ′
v′\X ′

j (or symmetrically X ′
j has non-empty intersections with Xi and Xv\Xi). Then, Xi×Yv

must be row decomposable as Xi = Xi∩X ′
j)∪ (Xi\X ′

j). Further, since f is not constant in Xi×Yv

(as it is row decomposable) this node is not a leaf in T ; then, since v is an Alice node in T , it must
be the case that Xi × Yv is a Bob node in T , and hence has a column decomposition as well. Thus
we conclude that in the decomposition T there is a node u (namely the child of v with domain
Xu = Xi), such that f |Xu×Yu is both row and column decomposable.

The above lemmas implies Lemma 3, since there is an adversary who can always force an input
in C (by symmetry), yet there is no corresponding ideal-world input for f that would allow this.

A.6 Compiler from Passive-Secure to UC-Secure

Lemma 11. If π is a passive-secure protocol for f , then the compiled version of π (Figure 3) is a
UC-secure protocol in the Fcom-hybrid world.

Proof. We describe the simulator for a corrupt Alice (the other case is symmetric). In the setup
phase, the simulator simulates Fcom to immediately extract the σ[i, j] and χ[i, j] commitments. It
then picks random bi challenges. If any of the bi will result in the adversary being “caught” in the
setup phase, then the simulator does not contact the ideal functionality for f . The simulator gives
random consistent values for party 2’s commitments in the setup phase, gives the bi challenges, and
then aborts after the adversary opens its commitments.

Otherwise, if the bi challenges would not cause an abort, the simulator will contact the ideal
functionality. We say that σ[i, ·] is valid if it is a permutation of {1, . . . , nx}. We say that χ[i, ·]
is valid if all but one of the values is zero. If for all i, either σ[i, ·] or χ[i, ·] are valid (and yet
the bi challenges did not catch the adversary — an event which can happen only with probability
2−k), the simulator aborts. Otherwise consider an arbitrary i such that both σ[i, ·] and χ[i, ·] are
valid. Let x be the unique value such that χ[i, σ[i, x]] = 1. The simulator will send x to the ideal
functionality on behalf of the adversary, and receive f(x, y). It is finally the simulator’s task to
decide whether to deliver the output to honest Bob.

Given x and f(x, y), choose any y∗ such that f(x, y) = f(x, y∗). The simulator then proceeds
to simulate Bob honestly as if it had input y∗. The simulator can always allow Bob to open his
commitments consistently. If at any point the simulated Bob aborts, the simulation ends without
delivering the output in the ideal world. If simulated Bob terminates successfully, the simulator
delivers the output. Note that the adversary cannot successfully deviate from the steps of π that
are inconsistent with having input x, by virtue of there being a consistent χ[i, ·] and σ[i, ·] uniquely
committed to x. If the adversary tries sending a bit in π inconsistent with its input, there will be no
way for it to consistently open this particular committing σ[i, ·] and χ[i, ·]. Since f(x, y) = f(x, y∗),
the steps of π simulated by the simulator must be statistically indistinguishable. Furthermore, the
commitments opened by the simulator are distributed identically as when Bob runs the protocol
with input y. By the security of π, the simulation is indistinguishable from the real-world interaction
(though with an added error probability of 2−k).

20

Our protocol is essentially symmetric with respect to the two parties. We describe only the
behavior of Alice. We denote the parties’ input ranges as X = {1, . . . , nx} and Y = {1, . . . , ny},
respectively. The protocol’s security parameter is k.

Setup phase:

1. Choose random permutations σ1, . . . , σk of X. Let χ be the characteristic vector of x in
X. Commit to the values χ[i, j] = χσ−1

i (j) and σ[i, j] = σi(j) for i ≤ k and j ≤ nx.

2. Wait for Bob to similarly commit to his own χ′[i, j] and σ′[i, j] values.

3. Receive bi ∈ {0, 1} for i ≤ k. For each i, if bi = 0, then open each σ[i, j] commitment;
otherwise, open each χ[i, j] commitment.

4. Similarly, choose random bi ← {0, 1} for all i ≤ k and send them to Bob. For each i such
that bi = 0, expect σ′[i, j] to be opened and verify that they constitute a permutation
of {1, . . . , ny}, else abort. For each i such that bi = 1, expect each χ′[i.j] to be opened
and verify that all but one of them are equal to 0, else abort.

Then, for each step of π:

1. If this is a step where Alice sends a message, then let b ∈ {0, 1} be the message prescribed
by the protocol at this point. Let Z be the set of inputs which would have prescribed
sending message 1 − b at this point in the protocol. Send b to Bob, and and for each
i ≤ k and j ∈ Z, open the commitments of σ[i, j] and χ[i, σi(j)] (= χj). (Half of these
commitments will already be opened).

2. If this is a step where Bob sends a message, then expect a next message b ∈ {0, 1} for the
π protocol simulation. Let Z be the set of inputs for Bob which would have prescribed
that Bob send message 1− b at this point in the protocol. from party 2. For each i ≤ k
and j ∈ Z, expect σ′[i, j] to be opened (if not already). If any σ′[i, j] 6∈ {1, . . . , ny}, or
if σ′[i, j] = σ′[i, j′] for any j 6= j′, then abort. Expect χ′[i, σ′[i, j]] to be opened to 0 (if
not already), else abort.

When π terminates, terminate with the same output.

Figure 3: UC-secure compilation of passive-secure protocol π in the Fcom-hybrid world

21

