
Session-state Reveal is stronger than Ephemeral Key Reveal:

Breaking the NAXOS key exchange protocol

MANUSCRIPT

Cas J.F. Cremers

Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland

cas.cremers@inf.ethz.ch

September 18, 2008

Abstract

In the papers “Stronger Security of Authenticated Key Exchange” [LLM07, LLM06], a
new security model for key exchange protocols is proposed. The new model is suggested
to be at least as strong as previous models for key exchange protocols. In particular,
the model includes a new notion of an Ephemeral Key Reveal adversary query, which is
claimed in [LLM06, Oka07, Ust08] to be at least as strong as existing definitions of the
Session-state Reveal query. We show that for some protocols, Session-state Reveal is strictly
stronger than Ephemeral Key Reveal. In particular, we show that the NAXOS protocol
from [LLM07, LLM06] does not meet its security requirements if the Session-state Reveal
query is allowed in the security model.

1 Introduction

In the area of secure key agreement protocols many security models [BCPQ01,MU08,LLM07,
CBH05, CK01, BPR00] and protocols have been proposed. Many of the proposed protocols
have been shown to be correct in some particular security model, but have also shown to be
incorrect in others. In order to determine the exact properties that are required from such
protocols, a single unified security model would be desirable. However, given the very recent
works such as [MU08] on security models for key agreement protocols, it seems that a single
model is still not agreed upon.

In this paper we focus on a specific aspect of security models for key agreement protocols.
In particular, we focus on the ability of the adversary to learn the local state of an agent.
For example, when an agent chooses a random value, or computes the hash function of a
certain input, the constituents of the computation reside temporarily in the local memory of
the agent. It may be possible for the adversary to learn such information. This ability is
captured in security models for key agreement protocols by the Session-state Reveal query.

A drawback of the Session-state Reveal query in current security models such as the
Canetti-Krawczyk (CK) model [CK01], is that the query is underspecified. The security
model does not define what is exactly revealed in such a query for a given protocol. Effec-
tively, this decision is postponed to the proof of a particular protocol.

1



In [LLM06,LLM07] a security model is proposed which is said to be stronger than existing
AKE (Authenticated Key Exchange) security models. The model is based on the CK model,
and is referred to in [LLM07] as the Extended Canetti-Krawczyk (eCK) model. The eCK
model differs in a number of aspects from the CK model, where the main difference seems to
be that the adversary is allowed to reveal part of the local state of participants even during a
normal protocol session. A more subtle aspect in which the eCK model differs from the CK
model is that it replaces the Session-state Reveal query by a new Ephemeral Key Reveal query.
In this paper we focus on this aspect.

The Session-state Reveal query from the CK model leaves underspecified what exactly
is revealed. To address this, the eCK model (re)defines the notion of ephemeral key and
introduces a corresponding Ephemeral Key Reveal query that reveals this key. The ephemeral
key is defined to contain all secret session-specific information. The authors argue for the new
Ephemeral Key Reveal query that “by setting the ephemeral secret key equal to all session-
specific secret information, we seem to cover all definitions of Session-state Reveal queries which
exist in literature” [LLM06, p. 2]. Similar arguments can be found in [Ust08,Oka07]. Within
the resulting eCK model, the NAXOS protocol is proposed and proven correct in [LLM07].

In [BCNP08] it is argued that strictly speaking the eCK and CK models are incomparable.
Regarding the difference between Session-state Reveal and Ephemeral Key Reveal, it is remarked
that “The important point to note is that the ephemeral-key does not include session state
that has been computed using the long-term secret of the party. This is not the case in the
CK model where, in principle, the adversary is allowed access to all the inputs (including the
randomness, but excluding the long-term secret itself) and the results of all the computations
done by a party as part of a session” [BCNP08, Section 3.1]. However, the authors also
remark that “it is arguable whether the differences between the two models are meaningful
in reality” [BCNP08, Section 3.1].

In this paper we show that contrary to the claims in [LLM06, Ust08, Oka07], Ephemeral
Key Reveal is weaker than Session-state Reveal. We show this by providing two attacks on
the NAXOS protocol, which can be performed using Session-state Reveal, but cannot be
performed by using Ephemeral Key Reveal. The security model we use is nearly identical to
the eCK model: we only replace Ephemeral Key Reveal by Session-state Reveal. Furthermore,
our attacks are also valid in the CK model, which implies that there is a meaningful difference
between CK and eCK, as NAXOS was proven correct in the eCK model.

The assumption needed for our attacks is that when a participant in the NAXOS protocol
computes H2(x), where H2 is a particular hash function in the NAXOS protocol, then x is
in the local state just before the computation. As a result, performing a Session-state Reveal
query just before the computation of H2(x) reveals x.

We base our assumption on two generic observations and two observations specific to
NAXOS. First, our requirements on Session-state Reveal fit the definition1 of Session-state
Reveal given in the CK model [CK01, p. 457]. Second, given that the difference between
long-term private keys and local state seems to be inspired by TPM-based scenarios in which
only the long-term keys are protected, it seems reasonable to assume that intermediate com-
putations that do not involve the long-term keys are performed in local memory. Third, for
protocols such as NAXOS, it seems that such a value x needs to be stored in memory for a

1A subtlety of the CK model is that in general, a receive-send combination is considered atomic. However,
the CK model explicitly allows for modeling any computations as sub-protocols (or procedure calls). Modeling
H2 within NAXOS as a procedure call implies that the inputs to H2 are in the local state, which exactly
captures our requirements.

2



similar time duration as the ephemeral key. Fourth, in the case of NAXOS, if we assume H2

is computed entirely in a TPM, there is no reason to store the ephemeral key in unprotected
memory, in which case the local state effectively becomes empty.

We proceed as follows. In Section 2 we explain some notation, and present the NAXOS
protocol. Then, in Section 3 we show two attacks on this protocol that use Session-state
Reveal. We conclude in Section 4.

Acknowledgements The author would like to thank David Basin, Ran Canetti, Mark
Manulis, and Björn Tackmann for useful discussions.

2 The NAXOS key exchange protocol

A B

eskA
$← {0, 1}λ

X = gH1(eskA,skA)

eskB
$← {0, 1}λ

Y = gH1(eskB,skB)

KA ←
H2(Y skA , pk

H1(eskA,skA)
B , Y H1(eskA,skA),A,B)

KB ←
H2(pk

H1(eskB,skB)
A , XskB , XH1(eskB,skB),A,B)

Figure 1: The NAXOS protocol. At the end of a normal execution we have that KA = KB
(pkx = gskx).

The NAXOS protocol, as defined in [LLM06, LLM07], is shown in Figure 1. NAXOS
builds on earlier ideas from the KEA and KEA+ protocols [NIS98, LM06]. The purpose
of the NAXOS protocol is to establish a shared symmetric key between two parties. Both
parties have a long-term private key, e. g. ska, and initially know the public key of all other
participants, e. g. pkb. In Table 1 we give an overview of the notation used in the protocol as
well as the remainder of this paper. We follow the notation from [LLM07] where possible.

The protocol is designed to be secure in a very strong sense: the adversary is assumed to
have the capability of learning long-term private keys, and also has the capability of learning
short term data generated during a protocol session that does not include the private key.

The intuition behind the design of the protocol is that by combining the long-term private
key with the short term ephemeral key inside the hash function, the adversary would need
to have both of these elements to construct an attack. For example, the protocol should be
secure if the adversary either (a) learns the long-term key of a participant during a session,
or (b) learns the short-term data (except for the long-term key) of a participant during a
session. A typical scenario for (b) is that the participant stores the long-term key on a TPM,
and computes other operations in unprotected memory. For full details we refer the reader
to [LLM07,LLM06].

3



Table 1: Notation

A,B The initiator and responder roles of the protocol.
a, b Agents (participants) executing roles of the protocol.
G A mathematical group of known prime order q.
g A generator of the group G.
ska The long-term private key of the agent a, where ska ∈ Zq.
pka The long-term public key of the agent a, where pka = gska .
H1, H2 Hash functions, where H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ →

{0, 1}λ (for some constant λ).
eska, esk

′
a Two different ephemeral keys of the agent a, generated in

different sessions.
◦ Written in place of a (bigger) term that is not relevant for

the explanation at that point.
λ A constant.
x

$← S The variable x is drawn uniformly from the set S.
x← e The variable x is assigned the result of the expression e.
clean A notion from [LLM07]: reveal queries can only be per-

formed on clean sessions, see Definition 3 on the following
page.

At the end of a normal protocol execution, the session key is computed as

H2(gH1(eskB,skB)skA , gH1(eskA,skA)skB , gH1(eskA,skA)H1(eskB,skB),A,B). (1)

In a normal execution, we have the following equivalences based on the properties of the
modular exponentiation:

XskB = gH1(eskA,skA)skB = pk
H1(eskA,skA)
B (2)

Y skA = gH1(eskB,skB)skA = pk
H1(eskB,skB)
A (3)

Y H1(eskA,skA) = gH1(eskB,skB)H1(eskA,skA) = XH1(eskB,skB) (4)

3 Attacking NAXOS using Session-state Reveal

3.1 Security model eCK’

We use a slightly modified security model from the one defined in [LLM07]. The only change is
that we replace the Ephemeral Key Reveal query by the Session-state Reveal query throughout
the security definition. In particular, we require that whenever H2(x1, . . . , xn) is computed,
x1, . . . , xn are part of the local state just before the computation, and can therefore be revealed
by a Session-state Reveal query. An example of an execution model where this condition holds,
is a TPM setting in which H2(x1, . . . , xn) is computed in local memory, whereas all other
computations (such as H1(x) and gx) are performed inside the TPM.

Participants can perform roles of the protocol (such as initiator, A, or responder, B)
multiple times, with various other partners. A single role instance performed by a participant
is called a session.

4



Definition 1 (Session identifier). The session identifier of a session sid is defined as the
tuple (role, ID, ID∗, comm1, . . . , commn), where role is the role performed by the session
(here initiator or responder), ID is the name of the participant executing sid, ID∗ the name
of the intended communication partner, and comm1, . . . , commn the list of messages that
were sent and received.

In the security model, queries such as Session-state Reveal may not be performed on clean
sessions or their matching sessions as in [LLM07, p. 7-8]. This is meant to exclude the cases
in which an Session-state Reveal query trivially reveals the session key, such that no protocol
could satisfy the security definition.

Definition 2 (Matching sessions for two-party protocols). For a two-party protocol, sessions
sid and sid′ are said to match if and only if there exist role, role′, ID, ID′, comm1, . . . , commn

such that role 6= role′, the session identifier of sid is (role, ID, ID′, comm1, . . . , commn) and
the session identifier of sid′ is (role′, ID′, ID, comm1, . . . , commn).

In the eCK model, the adversary does not have access to a Session-state Reveal query, but
instead has Ephemeral Key Reveal. Below we redefine the notion of clean and the security
experiment from the eCK model [LLM07, p. 8-9], in which we replace Ephemeral Key Reveal
with Session-state Reveal, to define our security model eCK’.

Definition 3 (clean for eCK’). In an AKE experiment (e. g. as defined in definition 4 below),
let sid be a completed AKE session performed by a, supposedly with some party b. Then sid
is said to be clean if all of the following conditions hold:

1. a and b are not adversary-controlled (the adversary does not choose or reveal both
the long-term and ephemeral keys of the participant and performs on behalf of the
participant.)

2. The experiment does not include Reveal(sid), i. e. the session key of session sid is not
revealed.

3. The experiment does not include both Long-term Key Reveal(a) and Session-state Reveal(sid).

4. If no session exists that matches sid:

(a) The experiment does not include Long-term Key Reveal(b).

5. If a session sid∗ exists2 that matches sid:

(a) The experiment does not include Reveal(sid∗), i. e. the session key of session sid∗
is not revealed.

(b) The experiment does not include both Long-term Key Reveal(b) and Session-state
Reveal(sid∗).

Definition 4 (AKE security experiment for eCK’). In the eCK’ AKE security experiment,
the following steps are allowed:

2There may not be a unique matching session sid∗ for all executions of all protocols, but in the case of
NAXOS, where each sent message contains randomness from the sending session, the matching session is
unique if sid is a completed session

5



1. The adversary may perform Send(a, b, comm), Long-term Key Reveal(a), and Reveal(sid)
queries as in [LLM07].

2. The adversary may perform a Session-state Reveal(sid) query (replacing Ephemeral Key
Reveal(sid) in the definition from [LLM07]).

3. The adversary performs a Test(sid) query on a single clean session sid. A coin is flipped:
b

$← {0, 1}. If b = 0, the test query returns a random bit string. If b = 1, the query
returns the session key of sid. This query can be performed only once.

4. The adversary outputs a Guess(b′) bit b′, after which the experiment ends.

An adversary M wins the experiment if the Guess(b) bit b is equal to the bit b′ from the
Test(b′) query.

Definition 5 (eCK’ security). The advantage of the adversary M in the eCK’ AKE experi-
ment with AKE protocol Π is defined as

AdvAKEΠ (M) = Pr[M wins]− 1
2

.

We say that an AKE protocol is secure in the eCK’ model if matching sessions compute
the same session keys and no efficient adversary M has more than a negligible advantage in
winning the above experiment.

We show two attacks on NAXOS in the eCK’ model: One using test queries on sessions
of the initiator type A and one using the responder type B.

3.2 Attacking the initiator

In Figure 2, we show an attack for a test query on an initiator session of NAXOS. The attack
requires an active adversary that can reveal the local state of an agent.

The adversary can compute Ka on the basis of the revealed information (based on the
algebraic properties of the group exponentiation, which are required for the core of the pro-
tocol).

The attack proceeds as follows.

1. a starts an initiator instance, wanting to communicate with b.

2. a chooses her ephemeral key eska, and sends out Xa = gH1(eska,ska). The adversary
learns this message.

3. b also starts an initiator instance, wanting to communicate with a.

4. b chooses her ephemeral key eskb, and sends out Xb = gH1(eskb,skb). The adversary
learns this message.

5. The adversary sends the message Xb to a.

6. a computes the session key

Ka = H2(Xska
b , pk

H1(eska,ska)
b , X

H1(eska,ska)
b , a, b). (5)

6



Session 1
A: a

(talking to b)
test session

Session 2
A: b

(talking to a)
does not match 1

eska
$← {0, 1}λ eskb

$← {0, 1}λ

Xa = gH1(eska,ska)

Xb = gH1(eskb,skb)

Session-state Reveal (before H2)
Xskb

a , pk
H1(eskb,skb)
a , X

H1(eskb,skb)
a

Ka ←
H2(Xska

b , pk
H1(eska,ska)
b , X

H1(eska,ska)
b , a, b)

Kb ←
H2(Xskb

a , pk
H1(eskb,skb)
a , X

H1(eskb,skb)
a , b, a)

Figure 2: Attacking an initiator session. Note that Ka 6= Kb. The adversary can compute
Ka after compromising the local state of b.

7. The adversary sends the message Xa to b.

8. b computes the session key

Kb = H2(Xskb
a , pk

H1(eskb,skb)
a , X

H1(eskb,skb)
a , b, a). (6)

During the computation of Kb, the adversary uses Session-state Reveal to learn the input
to H2. In particular, the adversary learns Xskb

a , pkH1(eskb,skb)
a , and X

H1(eskb,skb)
a .

9. The adversary now knows

pk
H1(eskb,skb)
a = gskaH1(eskb,skb) = Xska

b , (7)

Xskb
a = gH1(eska,ska)skb = pk

H1(eska,ska)
b , (8)

X
H1(eskb,skb)
a = gH1(eska,ska)H1(eskb,skb) = X

H1(eska,ska)
b . (9)

The three terms on the right-hand side are the first three components of the session key
Ka from Formula 5.

10. The adversary combines the elements with the names a and b, and applies H2, resulting
in Ka.

The above sequence of actions forms an attack on the protocol, because the adversary can
learn the session key of the initiator a by revealing the local state of the second session.
Furthermore, the test session is clean according to definition 3 on page 5 because (1) neither
a nor b are adversary-controlled, (2) no Reveal queries are performed, (3) no long-term keys
are revealed, and (4) session 2 is not a partner to the test session 1. Therefore, the attack
violates security in the eCK’ model.

Some further observations regarding this attack:

7



• The sessions compute different session keys: Ka 6= Kb, because the order of the partic-
ipant names a, b is reversed.

• The adversary does not need to learn any ephemeral keys for this attack.

• Even in other existing interpretations of the partner function (or freshness) from lit-
erature (matching conversations, external session identifiers, explicit session identifiers,
etc.) the two sessions are not partners. Consequently, the NAXOS protocol is there-
fore also not secure in other models that allow Session-state Reveal, such as the CK
model [CK01].

3.3 Attacking the responder

Second, we show an attack for a test query on a responder session in Figure 3. It seems this
attack is more easily exploited than the previous one.

Session 1
B: a

(responding to b)
test session

Session 2
B: b

(responding to anybody)
does not match 1

Xb = gκ

eska
$← {0, 1}λ

Xa = gH1(eska,ska)

Ka ←
H2(pk

H1(eska,ska)
b , Xska

b , X
H1(eska,ska)
b , b, a)

eskb
$← {0, 1}λ

◦

Session-state Reveal (before H2)
Xskb

a

Kb ←
H2(◦, Xskb

a , ◦, ◦, ◦)

Figure 3: Attack on a responder session. We have Ka 6= Kb. The adversary can compute
(and even contribute to) Ka after revealing the local state of b.

The attack proceeds as follows.

1. The adversary chooses an arbitrary bit string κ.

8



2. The adversary computes gκ and sends the result to a responder instance of a, with
sender address b.

3. a receives the message and assigns Xb = gκ.

4. a chooses her ephemeral key eska, and sends out Xa = gH1(eska,ska). The adversary
learns this message.

5. a computes the session key

Ka = H2(pkH1(eska,ska)
b , Xska

b , X
H1(eska,ska)
b , b, a) (10)

which is equal to
H2(pkH1(eska,ska)

b , gκ ska , gκ H1(eska,ska), b, a). (11)

6. The adversary redirects Xa to a responder instance of b. The adversary can insert an
arbitrary participant name in the sender field of the message, which b takes to be the
origin of the message.

7. b computes his ephemeral secret, combines it with his long term key, and sends out the
corresponding message.

8. b computes his session key Kb (which differs from Ka). Before applying H2, b computes
the second component Xskb

a .

9. The adversary uses Session-state Reveal on the session of b directly before the application
of H2 to learn Xskb

a .

10. The adversary knows κ, Xa, and Xskb
a . Furthermore, as the public keys are public, the

adversary also knows pka. Hence the adversary also knows, or can compute:

Xskb
a = gH1(eska,ska)skb = pk

H1(eska,ska)
b , (12)

(pka)κ = gskaκ = Xska
b , (13)

(Xa)κ = gH1(eska,ska)κ = X
H1(eska,ska)
b . (14)

The three terms on the right-hand side are the first three components of the session key
Ka from Formula 10.

11. The adversary combines the elements and applies H2, resulting in Ka.

This sequence forms an attack on the protocol, because the adversary can use data revealed
from session 2 in order to compute the session key of the test session 1. The test session is
also clean according to definition 3 on page 5. In practical terms, this attack even allows the
adversary to determine a part of the session key of a.

For this attack there are also some observations to be made:

• The responder session of b is not a partner to the session of a in terms of matching
sessions. Also, in other partner existing interpretations from literature (external session
identifiers, explicit session identifiers, etc.) they would also not match.

• The adversary chooses κ, and can therefore influence the session key.

9



• In this attack, the adversary does not need to learn any long term private keys or
ephemeral keys.

• The attack is also valid in the CK model: the sessions are not partners for a number
of reasons, for example because their choice of agents differs. Session 1 has {a, b} and
session 2 has {b, z} where z is an arbitrary participant. Hence the adversary can choose
z 6= a.

4 Conclusion

In common definitions of AKE security the Session-state Reveal query is underspecified. In
many cases the definition is only made explicit in particular protocol proofs. This approach
turns the exact definition of Session-state Reveal into a parameter of the exact security pro-
vided by the protocol. As a result, stating that two protocols are “AKE secure” does not
mean they meet exactly the same property.

In [LLM07,LLM06] the Session-state Reveal query is replaced by the Ephemeral Key Reveal
query, which is claimed to be at least as strong as Session-state Reveal. Thus, the notion
of Session-state Reveal is reduced to Ephemeral Key Reveal. Reducing Session-state Reveal to
Ephemeral Key Reveal simplifies proofs significantly: one does not need to define what exactly
is part of the ephemeral key, but one only needs to prove that no information about the
ephemeral key is revealed [LLM07,Ust08,Oka07]. However, the validity of this reduction has
not been proven.

The validity of the reduction is informally argued in [LLM06], and similar arguments can
be found in other works that use the eCK model [Ust08,Oka07], e. g. in [Ust08, p. 333]: “In
general, by specifying that the session specific private information (the session state) is part
of the ephemeral private key, the Session-state Reveal and Ephemeral Key Reveal queries can
be made functionally equivalent”.

In this paper we have shown that the reduction is invalid, that is, a security model with
Ephemeral Key Reveal (eCK) is not as strong as a model with Session-state Reveal (eCK’). The
attacks presented here on the NAXOS protocol, which was proven correct for Ephemeral Key
Reveal in [LLM07], strictly depend on the use of the Session-state Reveal query.

The attacks presented here fall just outside the eCK security model, and they therefore do
not indicate a problem with the proofs in [LLM07]. Instead, what the attacks indicate is that
the eCK security model, and similarly the property that is proved correct, is not as strong as
suggested in e. g. [LLM07]. Furthermore, the attacks are also valid in the CK model, which
shows that contrary to the suggestion in [BCNP08], the difference between CK and eCK is
in fact meaningful in reality. In particular, we have shown that one can prove real protocols
secure in eCK which are not secure in CK, and are vulnerable to attacks where the local state
is revealed.

Note that the structure of our attacks on NAXOS can be translated to attacks on the
KEA, KEA+, and KEA+C protocols from [NIS98,LM06]. Therefore, it seems that also these
protocols cannot be considered to be CK-secure if the session state includes the inputs to the
final hash function.

The idea behind the NAXOS protocol (which is already found in KEA and KEA+) is
appealing: by strongly connecting the long- and short-term information, the adversary would
be required to know both elements to perform an attack. However, in order to use the
combination of these elements securely in the protocol, in particular for transmission, there are

10



further computations needed. The way in which the ephemeral key (and hence Ephemeral Key
Reveal) is defined and used in proofs, excludes the intermediate products of such subsequent
computations. This is the ultimate problem with the reduction from Session-state Reveal to
Ephemeral Key Reveal, as was already noted in [BCNP08]. Precisely this difference is exploited
by the attacks shown here.

The question remains whether it is possible to adapt NAXOS to satisfy a security model
similar to eCK that allows for Session-state Reveal queries.

References

[BCNP08] C. Boyd, Y. Cliff, J.G. Nieto, and K.G. Paterson. Efficient one-round key exchange
in the standard model. In ACISP, volume 5107 of Lecture Notes in Computer
Science, pages 69–83. Springer, 2008.

[BCPQ01] E. Bresson, O. Chevassut, D. Pointcheval, and J. Quisquater. Provably authenti-
cated group diffie-hellman key exchange. In CCS ’01: Proceedings of the 8th ACM
conference on Computer and Communications Security, pages 255–264, New York,
USA, 2001. ACM.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In EUROCRYPT, Lecture Notes in
Computer Science, pages 139–155. Springer, 2000.

[CBH05] K-K.R. Choo, C. Boyd, and Y. Hitchcock. Examining indistinguishability-based
proof models for key establishment proofs. In ASIACRYPT, volume 3788 of Lec-
ture Notes in Computer Science, pages 624–643. Springer, 2005.

[CK01] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In EUROCRYPT, volume 2045 of LNCS, pages 453–474.
Springer, 2001.

[LLM06] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of au-
thenticated key exchange. Cryptology ePrint Archive, Report 2006/073, 2006.
http://eprint.iacr.org/.

[LLM07] B.A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated
key exchange. In ProvSec, volume 4784 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2007.

[LM06] K. Lauter and A. Mityagin. Security analysis of kea authenticated key exchange
protocol. In PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages
378–394, 2006.

[MU08] A. Menezes and B. Ustaoglu. Comparing the pre- and post-specified peer models
for key agreement. In Proceedings of ACISP 2008, volume 5107 of Lecture Notes
in Computer Science, pages 53–68, 2008.

[NIS98] NIST. SKIPJACK and KEA algorithm specification, 1998. http://csrc.nist.
gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf.

11

http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf


[Oka07] T. Okamoto. Authenticated key exchange and key encapsulation in the standard
model. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages
474–484, 2007.

[Ust08] B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Des. Codes Cryptography, 46(3):329–342, 2008.

12


	Introduction
	The NAXOS key exchange protocol
	Attacking NAXOS using 
	Security model eCK'
	Attacking the initiator
	Attacking the responder

	Conclusion

