
 Michael Lifliand Page 1 28/04/2008

Shared Key Encryption by the State Machine
with Two-Dimensional Random Look-up Table

Michael Lifliand

Cisco Systems Israel, HaMelacha st, P.O.Box 8735, Netanya, 42504, Israel

mlifliand@gmail.com

Abstract. This paper describes a new approach to creation of fast encryption

methods with symmetric (shared) key. The result solution is intermediate one between
block and stream ciphers. The main advantages of both types of ciphers are realized,
while most of disadvantages are eliminated. The new approach combines encryption
with built-in calculation of the hash for the data integrity, pseudo-random generator,
and option for dual shared keys. These properties are pivotal for secure applications.
These new methods may be designed for different size of shared secret key. Both
software and hardware implementations of the new methods are fast and simple and
may be used in various security applications. Presented cryptanalysis proves basic
features and gives an option to design actual provable security methods.

Keywords: Shared key encryption, block cipher, stream cipher, chaining,
initialization vector, look-up table, pseudo-random generator, hash, data
integrity, message authentication code.

 Michael Lifliand Page 2 28/04/2008

1 Introduction

Security applications use different ciphers to solve a variety of
security problems. However, faster and more secure methods of shared
key encryption combined with authentication for use in cheap and simple
client devices are still needed.

Most known methods of shared key encryption may be classified as
either block or stream ciphers [1, 2]. Block ciphers are mostly considered
to be more secure and are used in network IPSec and other applications.
Block ciphers are based on dozens of shift and exclusive-OR (XOR)
conversions of 64-256 bit data units and their parameters are defined by
the shared secret. Stream ciphers are generally faster and cheaper to
implement. They mostly use XOR operations of the input data with the
pseudo-random sequence. The latter must be unique and be generated for
each encrypted packet of data. Pseudo-random generators of both the
sender and receiver are synchronized by the shared key and an
initialization vector. The latter is mostly located and sent as a clear text in
each packet of data after encryption.

Security in networking defines the message authentication code
(MAC) calculated for the encrypted payload (cipher text) and optionally
for an additional header of the packet. MAC is calculated in a separate
way. There is an important challenge [2, 7] in usage of encryption as a
basic part of the MAC calculations. This may be done by dependency of
the cipher state and the input data [7].

The main goal of this work is to combine generic features of block
and stream ciphers. The next issue is a strengthening encryption by
involving more elements of security protocols in the encryption
primitives. The basic targets are chaining and initialization vectors.

This work describes a new approach and new methods along with
their cryptanalysis. It is organized as follows. Section 2 describes the
basic encryption block and its properties. Sections 3-6 define and analyse
the simplest and enhanced schemes of encryption. Rest sections elaborate
and summarise the features of designed encryption methods.

2 Two-input basic encryption block with chaining

All the data is represented as sequence of data units of n bit. The
value n is defined as a parameter of the encryption method. Input data for
the encryption is usually called plain text [1] and is represented as data
units p[i] where 0≤ i≤ Np-1, and Np defines the length of the plain text.
Random initialization vector (IV) r[i] of Nv data units is to be prepended
as securely invisible by encrypting prior to the plain text. The input data
d[i] for the further encryption process is defined by

 Michael Lifliand Page 3 28/04/2008

d[i] = r[i], 0 ≤ i < Nv
d[i] = p[i - N v], Nv ≤ i < Np + Nv

(2.1)

Suggested encryption methods are defined as a stream-like
sequential processing of input data units d[i] by a state machine
(combinational function with a memory). This stateful object creates
chaining and randomness of the result codes (ciphertext). Combinatorial
conversion is to be implemented in a fast look-up table (LUT). Memory
consumption for the LUT decreases by means of decomposition of the
LUT into several sequentially connected basic encryption blocks. Each of
them is a two-input LUT function L with input data d[i] and chaining
ch[i] , and an output encrypted result code c[i] with the n bit width of each
data unit:

c[i] = L(ch[i], d[i]) (2.2)
The content of the LUT is defined by the shared secret code. The full
two-input LUT is of u2 entries, where

u = 2n (2.3)

Figure 1 shows the basic LUT-encryption block and the content of the
look-up table. The LUT may be represented as u partial look-up tables
with u entries per value of chaining ch[i] . Each partial LUT may be
calculated by the initialization procedure of permutations of values
[0,…,u - 1]. The pseudo-random values for permutations are to be
defined by the shared key. The length of pseudo-random sequence for
LUT generation is 22n.

Decryption at the level of a single basic encryption block is
fulfilled in a similar way by using the decryption look-up table (dLUT).

LUT ch[i]

d[i]

c[i]

Figure 1. Dual entry LUT-encryption block with chaining

LUT: c[i] = f (ch[i], d[i])

ch[i] d[i] c[i]

Size of data unit is n bits

0

0

i

i

i

2n - 1

2n - 1

2n - 1

0

0

0

1

1

1

2n - 1

2n - 1

2n - 1

x

y

z

z

x

y

y

x

z

Secret code

0

 Michael Lifliand Page 4 28/04/2008

The basic decryption block uses similar logic with ch[i] , c[i] as inputs and
d[i] as the output. The dLUT is calculated straightforward from the
encryption LUT.

Actually, each couple (ch[i], d[i]) matches the unique code c[i] ,
while each couple (ch[i], c[i]) matches the value d[i] in the same way.
This is a basic requirement for the valid decryption. Multiple couples
(ch[i], d[i]) with the same d[i] may match the same code c[i] .

Main properties of the basic encryption block are elaborated by
combinatorial analysis of the LUT.

Theorem 2.1. There is (u!)u different available combinations for

the encryption look-up table.
Proof. The unique decryption is available if and only if all the

values of c in the partial LUTs are different. Therefore, any permutation
of all the u values of data unit, i.e. [0,…,2n - 1], is a valid set for c in a
partial LUT. The number of possible permutations is (u!). Then, there are
u partial LUT, all independent one of another. Any valid values of sets of
the partial LUTs are admissible. Hence, the number of possible sets for
the whole LUT of u partial LUTs is (u!)u, which completes the proof.

Besides that, the LUT may be represented as a square matrix with

entries c were rows and columns are values of d and ch. There is a special
case of restricted subset with matrixes that have each of the values c only
once in any row and in any column. This is the well known case of Latin
Squares for the LUT that may be useful in specific applications.

The basic encryption block is an element of the methods described
below rather than a stand alone encryption primitive. Its strength against
brute force attacks is estimated as the number of possible encryptions, i.e.
valid LUTs, assigned in Theorem 2.1.

The size n of the data unit characterizes the strength of encryption
against brute forth attacks. On the other hand, it defines the size of LUT
that should be available for in the memory. Some trade-off should be
done here to get a brute force attack practically impossible and keep a
price of solution in available range. For the data units between 4 and 10
bit the size of the LUT is between 128B and 1.5MB, while the number of
combinations for the brute force attack is incredibly huge, between 2708
and 28,979,454, to match needs of different applications.

3 Deep chaining and scheme of encryption methods

 Basic encryption block is a core element for decomposition of the
combinatorial function of the encryption state machine. Several basic
encryption blocks are connected in the encryption scheme. A simplest

 Michael Lifliand Page 5 28/04/2008

scheme that provides invisible chaining ch and the IV may be represented
by the following equations:

ch[i] = L(ch[i - 1], d[i])
c[i] = L(ch[i - 3], ch[i])

(3.1)

The fixed values derived from the shared key are used for the
chaining with negative indices of the first input data units.

Figure 2 shows the scheme by (3.1). This scheme uses two

sequentially connected basic encryption blocks and represents a state
machine with 3 memory data units for 3 chaining values. Decryption is
done in the reverse way by the similar scheme using the decryption LUT
(dLUT).

4 Security of sequentially connected encryption blocks

The goal of attack against suggested methods is a disclosure of the

secret LUT by analysis of encrypted codes for a known encryption
scheme. Randomness of the init vector as a first encrypted data yields the
randomness of the encryption state machine, and then the result encrypted
codes. Regarding the (2.1), any plain texts are encrypted into different
codes. Variation of the random invisible IV generated within encryption
tool cause changes in the state of the encryption state machine.

LUT

LUT

LUT

d[i-3]

d[i-1]

d[i]

c[i-3]

c[i]

Figure 2. Encryption with two basic elements per data unit

Fixed first chaining

LUT

LUT

LUT

ch[i-4]

LUT

d[i-2]
c[i-2]

LUT

c[i-1]

ch[i-3]

ch[i-2]

ch[i-1]

ch[i]

ch[i-3]

ch[i-4]

ch[i-5]

 Michael Lifliand Page 6 28/04/2008

Considering the size of IV, the latter changes make impossible to
distinguish further changes defined by chosen plain text used for attack.
This approach makes impossible to apply the linear, differential, and
boomerang attacks [6] against the suggested methods.

Potential weakness of the simple scheme (3.1) may be found in
encryption of the long sequential data. Relatively small memory of 3 data
units of this state machine may cause repeated sequences in the output
encryption codes. Further schemes with a bigger internal state withstand
this weakness. Usage of the method for a fixed maximum size of
encrypted sequence is a reasonable restriction as well.

Cryptanalysis of the scheme (3.1) is important for estimation of
parameters of the LUT, IV. Attacks against suggested methods should use
a known and chosen plain text and specific features of the encryption
scheme. In general, sequential processing defines two basic types of
attacks: at the beginning and at the middle of the encrypted sequences.

4.1 Attack at the beginning of the encrypted sequence

Attack at the beginning of the encrypted sequence uses a fact that

the chaining for the first encryption blocks is constant over the multiple
encrypted sequences. Analysis of probability of a successful attack will
estimate the encryption parameters particularly the needed size of IV.

Lemma 4.1. If one entry of the basic encryption block, for example d, is
known, the second one, lets say ch, is invisible and P(ch) stands for the
probability of guess of the value ch, then the random hit of the third entry
c and the line of the LUT may be estimated as an independent probability

P(c) = P(ch) · 2-n (4.1)
Proof. The LUT is created by pseudo-random permutations and all the
values are expected with the same probability. Then the probability of the
random hit of an output value c of n bit is 2-n. The probability of the hit of
two independent events is the product of their probabilities, and (4.1)
follows.

It is worth emphasizing that for the certain value d[i] , all the 2n
values c[i] have equal probability 2-n if and only if for the Latin Square
LUTs. Other LUTs cause repeatability of some values. However, the
probability of the random guessing of c[i] for any distribution is 2-n.

Theorem 4.2. If the scheme (3.1) has an init vector as a random value of
Nv data units then the maximum probability of the guess the chaining
values and first lines of the LUT in attack at the beginning of encrypted
sequence, is for the first data unit of the plain text p[0] and it equals

 Michael Lifliand Page 7 28/04/2008

P1 = 2-n(2Nv+4) (4.2)
Proof. Known information is the plain text p and the encrypted codes c.
The IV and the fixed initial values of chaining are invisible. Therefore,
any way of attack may use only relation between known d[i] and c[i] for
some i ≥ Nv. Concerning to lemma 4.1 the probability of the hit of any
internal chaining in the scheme (3.1) is a product of the probabilities of
the previous chaining. So, the probability of successful hit is bigger for
smaller i. Therefore, the maximum probability may be achieved for the
first data unit of the plain text p[0] or d[i] for i = Nv. The probability of
the guess of each independent unknown chaining and the IV is 2-n. Then
the probability of discovering the first lines of the LUT by guessing all
the previous values of chaining and the IV is a product of probabilities for
all the following elements, and (4.2) follows:

P1 = 2-n(Nv+1) * 2-3n * 2-nNv (4.3)

Theorem (4.2) estimates the probability of successful guess in a

single test of encrypted method. The way of distinguishing the correct
invisible internal values from any other on-going random is an unknown
hypothetic means. Disregarding the latter existence and probability the
minimum number of tests may be estimated using (4.2) as following.

The random IV causes the independence of different tests.
Therefore, if P1 stays for probability of the hit of supposed values in a
single test, then probability PT of the hit even once in T tests equals

PT = 1 – (1 – P1)
T

The number of needed tests T for desired probability PT of the hit is
T = log(1 - PT) / log(1 - P1) (4.4)

Table 1 shows the number of combinations (tests) that should be
checked in order to succeed an attack with probability 0.1 and 0.9 and for
using a hypothetic detecting facility of the certain values within the state
machine (the real implementation should make this option impossible
even with significant probability!). Estimation below refers to different
sizes of data unit.

Table 1. Estimation of hypothetic attack at the beginning of
encrypted sequence with IV of 8 byte

Number of combinations to analyze for attack
with probability of success

n,
bit

Size of LUT
(encryption

and
decryption) probability 0.1 probability 0.9

4 256 B 2140 2145
6 8 KB 2148 2153
8 128 KB 2156 2161
10 2 MB 2164 2169

 Michael Lifliand Page 8 28/04/2008

Thus, the scheme (3.1) with all the intermediate chaining values invisible
and random init vector causes huge number of combinations for attack at
the beginning of encrypted sequence and makes this attack fruitless.

4.2 Attack at the middle of the encrypted sequence

Analysis of encrypted known and chosen plain text from any

middle point is a more efficient attack. Multiple fragments of the same
sequence may be used rather than a single fragment at the beginning.

As it is defined by the scheme (3.1) for each data unit the only
previous values are ch[i-1] and ch[i-3]. There are only 22n combinations
for the intermediate chaining values for any data unit. The goal of
attacker is to guess the ch[i] , ch[i-3], and certain lines of the LUT, and,
therefore, compromise this encryption. Concerning the lemma (4.1) the
probability of such a hit is

P1 = 2-3n (4.5)
This hit may define the first two lines of the LUT.

Though, the simple guess of internal chaining in the middle is not
viable because all internal values are not visible. There is no way to
consider some suspected values of chaining match to a single visible pair
(d[i], c[i]) . The estimation (4.5) defines a probability that certain invisible
values will be in a single test for any pair of an input and output (d, c).

The only way for success of such attack may be a collection of
multiple fragments with certain pairs (d, c) from encrypted data with
chosen plaintext. Further analysis of duplication cases in some neighbour
data units by hypothetical method (if any may be designed) may make
assumptions about intermediate chaining values and LUT.

For any middle fragment of f data units the probability of the hit of
intermediate chaining values may be estimated regarding the lemma (4.1)
and the scheme (3.1):

Pf = 2-n(3+2(f-1)) , 0<f<4,
Pf = 2-n(f+4) , f>3

(4.6)

Attack is more efficient for f>3 while all the intermediate chaining values
are in the set of the hit values. On the other hand bigger values of f define
lower probability of the hit. Let’s estimate condition and success
probability of attack for fragments of f=4 pairs (d, c).

From the (4.6) a single test for a fragment of f=4 pairs (d, c)
contains supposed values of internal chaining values with probability

Pf = 2-8n (4.7)

 Michael Lifliand Page 9 28/04/2008

The pseudo-random nature of encryption causes occasional result of
encrypted codes and desired set of pairs (d, c) for the fragment may be
received with probability Pout

Pout = 2-fn (4.8)
These events are independent and the probability Ph of the hit for a single
test case is a product of probabilities:

Ph = Pf * Pout (4.9)
For f=4 the it equals to

Ph = 2-12n (4.10)
Thus, the number of the needed fragments for the hit with a desired
probability for a hypothetic analysis may be estimated by (4.4). This
estimation defines a minimal condition for attack at the middle with a
chosen plain text. For example, the worst case is an illegal access to the
encryption tool with a possibility to encrypt desired packets. Then use
repeated fragment of 4 chosen data units. At than time it needed more
than 244 fragments in order to get desired set even once with a probability
of 0.1. Such amount of encrypted data is about a lifetime of the device or
any long-time shared secret. Besides that this estimation is done for a
hypothetical attack. Any real method of analysis should significantly
increase the number of needed tests.

The estimations above and possibilities of repeated values of
encrypted data show that this scheme theoretically may be vulnerable and
its strengthening is a challenge for the further development. This scheme
may be regarded as an intermediate research method or a solution for
certain specific application of encryption, for example, for multimedia
random unpredictable data with limited size of the encrypted data.

5 Internal memory and built-in pseudo-random generator

Addition of internal memory increases the number of states of the
encryption state machine. This is the major solution for the higher
security and prevention of cycles in the long encrypted sequences.
Additional internal memory is updated with processed data. So, it creates
a built-in pseudo-random generator [1]. Figure 3 shows three versions of
enhanced schemes with additional external memory.

 Michael Lifliand Page 10 28/04/2008

The enhanced scheme on the Figure 3c may be defined by the

following equations:
ch[i] = L(m[j], d[i]) ;
c[i] = L(ch[i-1], ch[i]) ;
m[j] = L(ch[i-3[, c[i]) ;
j = (j + 1) mod M;

(5.1)

- i defines the index of the input data element;
- j defines the index of the data unit m[j] of the internal memory;
- M defines the number of data units in the internal memory.

Initial value of internal memory may be a part of the generating sequence
for calculated LUT. Another option is to use it as a second shared secret
key for encryption. This gives a new option for dual secret cipher.

Described above methods of encryption use sequentially connected
LUTs. The strength of the whole encryption depends on the number of
possible values in these LUTs. Usage of several different LUT initialized
by different pseudo-random sequences increases the number of possible
combinations for all types of attacks in power of the number of LUTs.
The amount of needed memory increases linearly only in k times. Several
sets of internal memory may be used in the same way.

In generic case there is k LUTs and q memory sets (sequences).
Each time certain elements are chosen by indexes, for example, defined
by certain bits of on-going data unit of the memory sequences m[j] .

Figure 3. Three examples of encryptions with internal memory

LUT

d[i]

LUT
c[i]

ch[i-3]
LUT

ch[i-1]

a)

b)

c)

ch[i] = m[j]

m[j]

LUT

d[i]

LUT
m[j]

ch[i-3]
LUT

ch[i]
c[i]

m[j] ch[i-1]

LUT

d[i]

LUT
c[i]

ch[i-3]
LUT

ch[i]

m[j]

m[j]

ch[i-1]

 Michael Lifliand Page 11 28/04/2008

6 Analysis of enhanced schemes of encryption

 The methods of analysis of possible attacks against enhanced
schemes are similar to described above. The most important is the
strength against attack at the middle of encrypted sequence.

The probability of the hit of the certain internal state (m[j] , ch[i-1],
ch[i] , ch[i-3], and the new value m[j] for the analysed pair (d[i] , c[i]) is
2-5n. For the generic case of k LUTs the hit of the correct set of the three
randomly defined LUTs for (5.1) is estimated by probability k-3. Result
probability of the hit of the full internal state for the certain known pair
(d, c) is

P1 = (k-3) * (2-5n) (6.1)
 Probability of the hit for the fragment of f data units may be
estimated similar to the (4.6) concerning to additional invisible values of
a previous and a new memory states:

Pf = (k-3) * 2-n(5+4(f-1)) , 0<f<4,
Pf = (k-3) * 2-n(3f+4) , f>3

(6.2)

For the similar fragment of f=4 data units
Pf = (k-3) * 2-16n (6.3)

Following to (4.9) and estimations for the fragment f=4 and k=4 LUTs,
the value of probability of the hit in a single test may be calculated as

Ph = 2-(20n+6) (6.4)
Then, the number of the needed fragments for the hit with a desired
probability for a hypothetic analysis may be estimated by (4.4).

Table 2 shows the comparison of estimations for the basic scheme
by (3.1) with the enhanced one by (5.1). The number of combinations T
is defined for probabilities of success of attack for different sizes of data
unit n. These numbers refer to the hypothetic ideal method to distinguish
the certain line of the LUT.

Table 2. Estimation of hypothetic attack at the middle of encrypted
sequence: basic scheme (3.1) / enhanced scheme (5.1).

Number of combinations to analyze for attack

with probability of success:
n,
bit

Size of LUT
(encryption

and
decryption) probability 0.1 probability 0.9

4 256 B / 1 KB 244 / 270 249 / 275
6 8 / 32 KB 268 / 2110 273 / 2115
8 128 / 512 KB 292 / 2150 297 / 2155
10 2 / 8 MB 2116 / 2190 2121 / 2195

 Michael Lifliand Page 12 28/04/2008

7 Provable statement of security for the LUT encryption

 The main problem of most encryption methods is the threat to
discover a method of attack that compromises the shared keys and causes
the loss of security in a certain application. Heuristic complex algorithms
of encryption cause difficulties to prove that the method is reliable and
there are no flaws in the logic.

Analysis of generic types of attack as described above evaluates
parameters for encryption with a desired level of security. So, the LUT
encryption brings the option of provable state for security applications.

8 Features of the LUT encryption and modes of operation

 Described methods may be efficiently used without padding as it is
done in block ciphers. The last part of the plaintext that is less than the
data unit may be XOR-ed with encrypted fixed code that is a part of the
shared secret. The result bits are secure at the same level as encryption of
the known plain text.

Described methods implement calculating of the hash values for
check data integrity by recurring encryption of the data with continuous
chaining values. Additional header may be authenticated with minimum
additional operations.

Continuous encryption generates pseudo-random values that may
be used for the init vectors and various elements of security protocols.

Suggested approach may be used to create a classic stream cipher
based of the XOR between the plaintext and the result of a cyclical
encryption of the shared secure sequence. The IV is encrypted prior to the
secure sequence and the result is sent to the receiver. The latter provides
synchronization between sender and receiver and prevents all types of
known plain text attack.

Special mode of operation may be used for implementation length-
preserving encryption when the length of the encrypted codes is the same
as an input plain text without any addition of the initialization vector.
Equal plain texts are encrypted into the same ciphertext. This mode may
be implemented by two sequential encryptions with different shared
secret values of the chaining, while the second encryption does
processing in reverse direction (from the end to the beginning). Each of
the data unit of result ciphertext depends on the whole plain text.

Described methods use minimum simplest operations. Processing
of each data unit is as simple as 2-3 accesses to look-up tables and save
intermediate chaining in temporary memory. It may be efficiently
implemented in hardware and software for any processor.

 Michael Lifliand Page 13 28/04/2008

9 Conclusions

Described approach defines a new option for shared key
encryption. Suggested methods are intermediate between block and
stream ciphers and use conversion of input data by a state machine. Main
elements are as simple as two-entry look-up tables sequentially connected
by the certain scheme of encryption. The result features are speed of a
stream cipher and direct mixing of bits of several data units like a block
cipher. Built-in chaining with on-going pseudo-random generator
calculates the hash for the message authentication during encryption.

Suggested algorithms may be implemented as in software as in
hardware for different data unit sizes of 4-10 bits that provides different
levels of security and memory consumptions.

The work describes new methods of cryptanalysis and their
application to the encryption methods. Suggested analysis estimates the
probability of success for a worst case of hypothetic attack against
encryption methods. All together these results bring an opportunity of
design actual provable security methods.

References

1. A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of
applied cryptography. The CRC Press series on discrete
mathematics and its applications. CRC-Press, 1997.

2. A.Biryukov, "Block Ciphers and Stream Ciphers. The state of the
Art", (survey), Lecture Notes in Computer Science, to appear in
proceedings of the COSIC Summer course, 2003.

3. RFC 3686 (R. Housley), Using AES Counter Mode With IPsec
ESP, 2004.

4. RFC 4106 (J. Viega, D. McGrew), The Use of Galois/Counter
Mode (GCM) in IPsec Encapsulating Security Payload (ESP),
2005.

5. M. Dworkin, Recommendation for Block Cipher Modes of
Operation. Methods and Techniques. NIST Special Publication
800-38A 2001 Edition.

6. P. Gunod, Statistical Cryptanalysis of Block Cipher , These N3179,
Lausanne, EPFL 2005

7. D. Whiting, B. Schneier, S. Lucks, and F. Muller, Phelix: Fast
Encryption and Authentication in a Single Cryptographic Primitive.

