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Abstract. In this paper, we present a new distinguisher for HC-128
which is the best known so far. The distinguisher requires approximately
2106 keystream words with success probability 0.9772.
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1 Introduction

The eSTREAM |[2] Portfolio (revision 1 in September 2008) contains the stream
cipher HC-128 [6] in Profile 1 (SW). Apart from the analysis by the author (Wu)
himself to conjecture the security of this cipher, the only other observation is by
Dunkelman [3] in the eSTREAM discussion forum to show that the keystream
words of HC-128 leak information regarding secret states. Recently, generaliza-
tion of these results has been studied in [4]. In this paper, we identify a new
and improved distinguisher for HC-128. To the best of our knowledge, this is
currently the strongest distinguisher available.

Each keystream word of HC-128 is 32 bit long (the Oth bit is the least sig-
nificant bit and the 31st bit is the most significant bit). In [6], bitwise XOR, of
least significant bits of 10 (possibly) different keystream words (rotated by cer-
tain amounts) are considered to propose a distinguisher. In [4], the distinguisher
is extended for other bits too. The distinguishers presented in [6, 4] require approxi-
mately 2156 words of keystream with success probability of 0.9772. Our distinguisher
requires approximately 2196 keystream words with the same success probability. Thus
our attack takes less than the exhaustive search for distinguishing. For every block
of 512 many keystream words of HC-128, corresponding to either the P or the Q
array, we show that XOR of the least significant bits (LSBs) of four keystream
words (two taken from the initial sub-block of 256 keystream words and two
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taken from the latter sub-block of 256 keystream words) is biased towards 0.
The distinguisher can also be extended for bits other than the LSBs.

The complete study of the new distinguisher is presented in Section 3. Let
us start with the description of HC-128 in the following section.

2 Description of HC-128

This is adapted from [6, Section 2].

2.1 Notations and Data Structures

The following operations are used in HC-128:

+:2 4y means x +y mod 232, where 0 < z < 232 and 0 < y < 232,

H: 2 Hy means x — y mod 512.

@ : bit-wise exclusive OR.

|| : concatenation.

> : right shift operator. z >> n means = being right shifted n bits.

& : left shift operator. z < n means x being left shifted n bits.

>> : right rotation operator. z > n means ((z > n) ® (z < (32 — n)),
where 0 <n < 32,0 < z < 232

< : left rotation operator. x <€ n means ((z < n)® (z > (32 —n)), where
0<n<320<z<2%

Two tables P and ), each with 512 many 32-bit elements are used as internal
states of HC-128. A 128-bit key array KJ[0,...,3] and a 128-bit initialization
vector IV]0,...,3] are used, where each entry of the array is a 32-bit element.
Let s; denote the keystream word generated at the ¢-th step, t =0,1,2,....

The following six functions are used in HC-128:

filz)=(x>7) & (x> 18) ® (z > 3),
fa(x) = (2> 17) & (x > 19) @ (z > 10),
(z,y,2) = ((x>>10) @ (Z>>>23)) + (y > 8),
92(z,y,2) = ((z < 10) ® (2 <« 23)) + (y <« 8),
hi(z) = Q[zV] + Q[256+I(2)]
o(2) = Plz(] + P[256 + 2(?)],

where z(9) (least significant byte) ,2(),2() and 2 (most significant byte)
are the four bytes of a 32-bit word z = ||z ||V ||z©).

h

3)

2.2 Key and IV Setup

1. Let K|0,...,3] be the secret key and IV[0, ..., 3] be the initialization vector.
Let K[i +4] = K[i] and IV[i +4] = IV]i] for 0 <7 < 3.



2. The key and IV are expanded into an array WJ0,...,1279] as follows.

K[i], 0<i<T;
IV[i—8g, 8 < i < 15;
fo(Wli =2]) + Wi — 7]

+f1(W[i —15]) + W[i — 16] 4+ 4, 16 < i < 1279.

Wli] =

3. Update the tables P and @) with the array W as follows.

P[i] = WTi + 256], for 0 < i < 511
Q[i] = Wi + 768], for 0 < i < 511

4. Run the cipher 1024 steps and use the outputs to replace the table elements
as follows.
for ¢ = 0 to 511, do
Pli] = (P[z] + g1 (Pl B3], P[:B10], P[: &8 511])) @ hy (Pt B 12));
for + = 0 to 511, do
Qlil = (Qli] + 92(Qli B 3], Qi B 10}, Qli B 511))) & ha(Qli B 12]);

2.3 The Keystream Generation Algorithm

1 =0;
repeat until enough keystream bits are generated
{

J =t mod 512;

if (i mod 1024) < 512

Plj] = Plj] + g1(P[j B3], P[j B10], P[j B 511));
} si = hi(P[j B12]) & P[j];

else

QL] = Q] + 92(Q[i B 3], Q[j B 10, Q[j B 511]);
} si = h2(Q[1 B 12]) ® Q]
end-if
i=1+1;
t

end-repeat

3 Owur New Distinguisher

In this section we present our new distinguisher. Before getting into the technical
details, let us explain one more notation. For any n-bit integer I, [I]* denotes the
b-th least significant bit, 0 < b < n — 1. Thus [I]® denotes the LSB of I. Also in
the following discussion, we abuse the notation of s; described in Section 2.3. Here,



by s, we mean a keystream word generated in the ¢-th step in a block of 512 words
corresponding to either the P array (completely) or the @ array (completely). As
we will be concentrating on the relationship between four keystream words in a
block of 512, (to keep the notation simple) we do not use any index to identify
different blocks.

3.1 Least Significant Bit Based Distinguisher

Consider the term ha(Q[a]), for 0 < o < 511. Note that
h2(Qla]) = P[B©] + P[256 + 3],

where 8 = Q[a] and then we get

ha(Qla]) = (sﬁ@ ® h (P[B© B 12])) n (8256+ﬁ<2> @ hy(P[256 + 82 B 12})) :
(1)

As noted in [6], for the least significant bit, ‘+’ can be replaced by ‘@’ and hence,
[s500 B S5645]° = [ (P[3Y) B12]) @ hy (P[256 + 8P B 12]) @ ho(B)]°. (2)

Denoting u = 30,1 = 256 + 32, u = P[B®) B 12],v = P[256 + 3®) B12], we
have
[su ® 51]° = [h1 (1) © ha(v) @ ha(5))°.

Thus for u # v’ and | # 1, we get,
[su ® Sl]o = [sw @ Sl’}oa
if and only if

[P (1) @ ha (v) @ ha(8))° = [ha (1) & ha (V') & ha(5)]°,

where i/, v' and 3’ correspond to the indices u’ and I’ in the same manner as p,
v and (3 correspond to the indices u and [.

The function h; uses actually 16 bits only from the 32-bit input. The situation
is similar for ho. Thus, [h1(.) @ h1(.) @ ha(.)]° can be approximated (similar to
the idea of [6, Section 4]) as a random 48-bit-to-1-bit S-box. Thus, Pr([h1 (1) ®
hi(v) @ ha(B)]° = [hi (1) D hi (V) ® ha(8')]°) is equal to the collision probability
of a random 48-bit-to-1-bit S-box. According to [6, Theorem 1], this is equal to
2748 1 9—1 _ 97481 This immediately leads to the following result.

Lemma 1. Consider the consecutive P and @ arrays in the execution of HC-
128 and let sy, 0 <t < 511, be the keystream words generated corresponding to
the P array. For 0 < «a # o/ <511, we have

1 1
Pr ([Su S Sl]o = [Su/ D sl/]o) = 3 4 Tl

where u = Q[a]®, 1 = 256 + Q[a]®, v’ = Q[&/]® and I = 256 + Q[a']?).



We started concentrating on Q[a] by noting the expression of ha(Q[a]). This leads to
the relationship among the keystream words generated corresponding to the previous
P array. In a similar direction, one can start with P[a] by noting the expression
of hi(P[«]). This will lead to similar relationship among the keystream words
generated corresponding to the previous @) array.

Lemma 2. Consider the consecutive @ and P arrays in the execution of HC-
128 and let sy, 0 <t < 511, be the keystream words generated corresponding to
the Q array. For 0 < a # o/ <511, we have

1 1
Pr([su ® 51)° = [sw ® s]°) = 5 + 535,

where u = Pla)® 1 = 256 + P[a]®, v’ = P[a/]©) and I' = 256 + P[o/]?).

Given a, o, there is no way to observe the values of Q[a], Q] (or Pla], P[a/])
and hence we cannot identify the indices w,l, v/, l’.

We overcome this problem in the following manner. We know that any el-
ement Q[a] (or Pla]), 0 < a < 511 provides one pair of keystream words of
the form (s, s;). So there are (°}?) many quadruples of the form (u,l,/,1’) for
which Lemma 1 (or Lemma 2) holds. We refer to these quadruples as favourable
quadruples. The following result uses Lemma 1 and Lemma 2 to compute the ex-
pression of the probability for “any” quadruple (u,l,u’,1") where the pair (u, u')
corresponds to the initial half (0 < u # u' < 255) and the pair (,1’) corresponds
to the latter half (256 <1 # I’ < 511) of the array @ (or P). This is our main
result that will be used to find the new distinguisher.

Theorem 1. Let s;, 0 <t < 511, be the keystream words generated correspond-
ing to either P or @ array. For 0 <u # u' < 255, 256 <[ # 1’ <511,

1
+ o

1
Pr([su ® 1)’ = [sw ® 51]°) = 5 + 555

2
Proof. From the ranges of u,u’, 1,1, it is clear that there are (236) many quadru-

ples of the form (u,l,u’,l'). Let F be the event that an arbitrary quadruple
(u,u,1,1') is favourable and further let E be the event ([s, ® 5;]® = [su @ s]°).

We can choose any a, o’ for 0 < a # o’ < 511 to build one equation of the
form [s, @ 5;]° = [sy @ s1/]° with the following constraint. If at least one of
the equalities (Q[a]® = Q[/]?)) or (Q[a]® = Q[a’]®) holds, then we cannot
form the above combination of keystream bits to generate the equation. The
situation is similar for the case of P. However, the expected number of such
cases is very small (around 4 out of (512) ~ 217) if we consider that Q (or P)

2
contains 512 many 32-bit integers chosen uniformly at random from the set of

512
((2526))2 .
2
Further, from Lemma 1 and Lemma 2, Pr(E|F) = % + T% We can assume
that for a non-favourable quadruple, the event E occurs due to random associ-

ation only, i.e., Pr(E|FY) = %, where F© is the complement of the event F.

all 32-bit integers. Thus, we can approximate Pr(F) =



Thus, Pr(E) = Pr(F) - Pr(E|F) + Pr(F¢) - Pr(E|F°)
512 512
(2) (2)>;Q$%+ é2~ U

= (256)2 : (% + y%) + <1 - (226)2

2
Hence, Theorem 1 gives us a distinguisher. The number of keystream words
required to mount the above distinguisher is computed in Theorem 2 below.

(V)

Theorem 2. HC-128 can be distinguished from an ideal random word generator
by observing 2196 keystream words with a success probability of 0.9772.

Proof. According to Theorem 1, the event ([s, ® 5] = [s\ ® 5;/]°) based on
which the distinguisher is constructed occurs with a probability p(1 4 ¢), where
p= % and ¢ ~ 2% According to [1, Section 4.1], to get a success probability of
42 127
=2

0.9772, one would require oz many samples. In our case, each sample

consists of a set of 4 keystream words of the form (s, sy, i, 817). Since each
block of 512 = 22 many keystream words (corresponding to either the array P

. 2 _
or the array Q) gives (*3°)” ~ 2% many samples, one needs 2127+9730 = 2106

many keystream words to mount the above distinguisher. a

In terms of data complexity, we have a significant improvement over [6, 4], where
the number of keystream words required is around 256 for the same success proba-
bility. Note that the key size is 128 bits for HC-128. Thus our attack takes less than
the exhaustive search for distinguishing.

3.2 Distinguisher Based on Any Bit of the Keystream Words

So far we have concentrated on the LSBs and now we extend this to other
bits also. We have replaced the ‘+’ between the two terms, each of the form
s. ® hi(.), in Equation 1 to get Equation 2 relating the least significant bits.
Note that Equation 2 holds with probability 1. However, one may write similar
equations for the other bits using the following result from [5].

Proposition 1. Suppose X and Y are two n-bit integers. Let S = X +Y and
T=Xa&Y. Then Pr([SP =[T]") =3(1+ %), 0<b<n-—1.

Thus, Equation 1 immediately yields the following result.

Lemma 3. Consider the consecutive P and @ arrays in the execution of HC-
128 and let sy, 0 < t < 511, be the keystream words generated corresponding
to the P array. For 0 < a < 511, let 8 = Qla), u = B, I = 256 + B2,
p = P[B® B12] and v = P[256 + 3 B 12]. Further, for 0 < b < 31, let
Hy(v) = [hi(p) @ hi(v) @ ha(B)]b, where v = (u,v,B) is a 48-bit quantity.
Similarly, for 0 < o' < 511, let 5, w', I, ¢/, v/ and v be the corresponding
quantities. Then for 0 < a # o <511 and 0 < b < 31, we have

1 1
Pr([su @ s ® sw @ sv]” = Hy(y) & Hy(Y)) = 5 + 57



Proof. Applying Proposition 1 to Equation 1, we get
Pr([su® s’ = Hy(7)) = 5(1+ g5)-
Similarly, for the primed variables, we have Pr ([s, @ sp]° = Hy(7')) = 3(1 +
1
7 )-
Thus, Pr ([sy ® 51 @ sy ® sp]° = Hy(v) ® Hy(7"))
Pr([sq @ 5)° = Hy(7))-Pr ([sw @ sy’ = Hb('y’))—i—Pr ([su ® s1)° = Hy(y) @ 1).
Pr([sw ®@sv]’ = Hy(y) @ 1)
— 40 )40+ )+ (0 B0+ ) (- 0+ )

1
=31 g o

Since each Hp(.) is a random 48-bit-to-1-bit S-box, we can use its collision
probability (% + 2%) to have a relation amongst s,, s;, S, and s;; only.

Lemma 4. Consider the consecutive P and Q arrays in the execution of HC-
128 and let sy, 0 < t < 511, be the keystream words generated corresponding to
the P array. For 0 < a # o' <511 and 0 < b < 31, we have

1 1
Pr ([Su P Sl]b = [Su’ (&) Sl/]b) = 5 + W>

where u = Q[a]®, I = 256 + Q[a]®, v’ = Q'] and I = 256 + Q[a’]?).

Proof. We can write Pr ([su ® 5] =[50 @ sl/]b)
= Pr([su ® 81 @ sw ® sv]’ = Hy(v) @ Hy(v')) - Pr (Hy(y) = Hy(7'))

+Pr ([su ® 81 @ sw @ sv]” = Hy(7) © Hy(7') ® 1) - Pr(Hy(v) = Hy(v') @ 1)
=+ p) (5 + 20) + (5 = ) - (5 — 50) (using Lemma 3)
= 3+ s O

Similarly, one can start with P[a] and derive similar relationship among the
keystream words generated corresponding to the previous @) array.

The above result can be used to construct 32 many distinguishers, each based
on a particular bit position of the keystream words. These distinguishers are
characterized by Theorem 3 below, which is a generalized version of Theorems 1
and 2.

Theorem 3. Let s;, 0 <t < 511, be the keystream words generated correspond-
ing to either P or Q array. For 0 < wu #u' <255, 256 <1 #1 <511,

1 1
Pr ([su ® 51" = [sw © 50)") ® 5 + Zzr3p
for 0 < b < 31. Thus, if one concentrates on the b-th bit of each keystream word,
HC-128 can be distinguished from an ideal random word generator by observing
210644 Loy stream words with a success probability of 0.9772.

Proof. We present the proof for the keystream words corresponding to the P
array. The situation is similar for the keystream words corresponding to the @
array.



Suppose, samples of quadruples (u,l,u’,1") are randomly selected satisfying
0 <u+#u <255 256 <1 #1' <511. Let F be the event that u = Q[a]®,
I = 256 + Qa]®, v = Q[/]©® and I’ = 256 + Q[a/]® for some a # o
in [0,511]. Further, for 0 < b < 31, let Ej be the event that the equality
([su ® 1] = [sw ® s1/]®) holds for arbitrary u,u/,,I’ satisfying 0 < u # u/ <
255, 256 I # 1 < 511. As argued in the proof of Theorem 1, we have

<
512
Pr(F) = ((25";.))2 ~ 51z and according to Lemma 4, we have Pr(Ey|F) = §+ 2.
2

As before, we may assume that Pr(Ey|F¢) = L. Thus, Pr(E,) ~ 55 - (3 +
sot) + (L= k) 3 = 3 + e = p(1 + @), whete p= § and g, = gt
Similar to the analysis presented in the proof of Theorem 2, for a success
probability of 0.9772 for the distinguisher based on the b-th bits of the keystream
words, one would require % = 2127+4b 2127+4b+9-30 _
9106-+4b

many samples, i.e.,
many keystream words. a
Based on Theorem 3, we can find the following result.

Theorem 4. Let sy, 0 <t <511, be the keystream words generated correspond-
ing to either P or Q array. Then the expected number of 0’s in the bit pattern of
Su DS DSy DSy 18 16—1—%(2%—21%), where 0 < u # v’ < 255,256 <1 # 1’ <511.

Proof. Let 1 = s, ® 51 ® s ® sp. Let mp = 1, if [¢]® = 0; otherwise, let
myp = 0, 0 < b < 31. Hence, the total number of zeros in the bit pattern of ¥ is

31
given by M = Zmb. From Theorem 3, we have Prob(m, = 1) = % + 262%
b=0
31
Hence, E(m;) = 3 + 5525 and by linearity of expectation, E(M) = Z E(mp)
b=0
=16 + £ (550 — 5197)- 0

Our result is much sharper than [4, Theorem 4], where the expected number
of 0’s in the bit pattern of the XOR of 10 properly chosen different keystream

words was 16 + % L2779,

4 Conclusion

In this paper, we present the currently best known distinguisher for HC-128 that
requires 2'%6 keystream words for a success probability of 0.9772. Thus our attack
takes less than the exhaustive search complexity of 2128 for distinguishing. This
distinguisher involves LSBs of four properly chosen keystream words. Further,
it can be extended to any bit of the keystream words.
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