www.scichina.com earth.scichina.com

华北克拉通东南缘古元古代变质和岩浆事件的 锆石 SHRIMP U-Pb 年龄

郭素淑,李曙光*

中国科学院壳幔物质与环境重点实验室,中国科学技术大学地球和空间科学学院,合肥 230026

* 联系人, E-mail: <u>lsg@ustc.edu.cn</u>

收稿日期: 2008-10-23; 接受日期: 2009-05-18 国家自然科学基金重点项目(批准号: 40634023)资助

摘要 用锆石 SHRIMP U-Pb 法测定了徐宿地区中生代岩浆岩携带的深源石榴辉石角 闪岩包体的变质年龄为(1918±56) Ma, 蚌埠隆起区五河群大理岩层所夹的榴闪岩透镜体 变质年龄为(1857±19) Ma, 蚌埠隆起东端石门山变形花岗岩的岩浆结晶年龄为(2054± 22) Ma. 徐宿地区和蚌埠隆起都位于华北克拉通东南缘,因此这些年代学结果指出华北陆 块东南缘也存在一古元古代活动带,它的变质和岩浆事件发生时代与华北克拉通其他 3 个 古元古代活动带一致.考虑到郯庐断裂带中生代曾发生过大规模的左行走滑,将胶东地区 (胶-辽-吉古元古代活动带的南段)恢复到断裂带活动以前的位置,恰可与徐宿-蚌埠地区对 应,说明徐宿-蚌埠古元古代活动带很可能是胶-辽-吉古元古代活动带的西南延伸.

关键词 SHRIMP U-Pb 定年 华北克拉通 古元古代

华北克拉通古元古代变质、岩浆事件的发生地质 背景是华北地区前寒武纪演化研究的一项重要并存 在争议的关键课题. Zhao等^[1-3]认为华北克拉通古元 古代变质-岩浆事件是全球古-中Columbia超级大陆拼 合事件的记录之一, 统一的华北克拉通基底是 ~1.85 Ga时由东部和西部两个陆块沿"中部碰撞带"拼 合而成. Zhai和Liu^[4]、翟明国^[5]则认为华北克拉通广 泛出露的1.85 Ga麻粒岩-角闪岩相高级变质作用与古 元古-中元古代地幔柱驱动的地幔上涌事件有关, 它 导致的变质基底抬升和麻粒岩出露, 随后转换为 1.8~1.7 Ga的大陆裂解事件. 1.9~1.8 Ga高级变质事件 在华北克拉通的分布范围是造成这一认识分歧的主 要原因之一. 后者指出这一时期变质事件不仅局限 于华北克拉通中部(山西省及其相邻地区)^[6~8], 而是 在其周缘部位(如北部丰镇地区和东部胶-辽-吉地区) 也保留了大量该时间段的变质和岩浆事件记 录 ^[9,10].此外,华北克拉通西南缘也有~1.9 Ga变质事件 的记录,如陇山杂岩^[11].

本文报道了华北克拉通东南缘徐宿-蚌埠地区一 批精确的古元古代变质和岩浆事件的锆石 SHRIMP U-Pb 年龄,它进一步扩大了古元古代变质、岩浆事件 在华北克拉通的分布范围,这有助于更为全面地理 解华北克拉通早期形成与演化历史.

1 地质背景及样品

研究区地质简图及采样点位置如图 1 所示. 徐 宿地区位于华北陆块东南缘, 郯庐断裂带西侧. 区内 出露多个中生代闪长岩体, 岩体含大量深源基性

引用格式: Guo S S, Li S G SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China Craton. Sci China Ser D-Earth Sci, 2009, doi: 10.1007/s11430-009-0099-7

岩包体,前人曾就这些包体的类型和年龄开展过工作^[12],识别出石榴辉石岩和榴辉岩两个类型,但认为它们具有相同的锆石U-Pb年龄谱(即 2350~2550,210~260 和 125~136 Ma三个年龄峰),并忽略了石榴辉石岩给出的1.9~1.8 Ga年龄信息的意义,对此本文有不同认识(详见讨论 4.2).由于这些榴辉岩或石榴辉石岩包体较小,因而能分选出的锆石颗粒较少,我们有必要采集较大的包体,分选出足够多的锆石颗粒以获得较精确年龄.本文定年样品 05JG-6 包裹于宿州夹沟闪长玢岩中,为一较大块的新鲜石榴辉石角闪岩,并获得了 25 颗锆石颗粒.该石榴辉石角闪 岩具型高压麻粒岩相矿物组合,主要包括石榴石、斜长石、角闪石和单斜辉石,含少量榍石、金红石等副矿物.

据文献[12]修改

蚌埠隆起位于徐宿地区南侧,华北陆块南缘. 区内出露的华北克拉通基底岩系主要为五河群变质杂岩. 前人曾对五河杂岩中的石榴斜长辉石岩进行过 锆石LA-ICP-MS U-Pb定年,划分出3种不同CL结构 特征的锆石^[13].该工作虽然也获得了变质锆石边的 单点年龄,但在数据处理时却未将具岩浆成因特征 的锆石与具变质成因特征的锆石定年结果分别统计, 而是将所有 49 个测点一次求加权平均值,所获 得的(1833±8) Ma 代表的只能是一个混合年龄.因此, 五河杂岩尚缺乏精确的年龄数据.本文定年样品 04FY-3 为赋存于五河群变质大理岩中的角闪岩相退 变质榴闪岩透镜体,矿物相与 05JG-6 类似,主要矿 物为石榴石、角闪石、单斜辉石和斜长石等.

石门山位于蚌埠隆起东端. 定年样品 05SMS-1 采自石门山花岗岩采石场,样品为新鲜、块状、肉红 色花岗岩. 该岩体靠近郯庐断裂带,受其影响矿物颗 粒有拉长变形现象. 前人曾对蚌埠地区磨盘山钾长 花岗岩(即本文的石门山变形花岗岩)做过主量元素测 试^[14],本文作者对定年样品 05SMS-1 所做的主量元 素测试结果(表 1)基本与之一致,属于钙碱性花岗岩 类. 石门山花岗岩的白云母Ar-Ar平均坪年龄为 (1734±3) Ma^[14],尚没有岩浆侵位结晶年龄的报道.

2 分析方法

所需定年锆石的分选工作由河北省区域地质矿 产调查研究所廊坊实验室完成. 将重液和磁选法分 选提纯的锆石置于双目显微镜下手工挑选,将待测 的锆石颗粒与标样(TEM)一起置于环氧树脂样品台 中, 打磨抛光至露出锆石中心部位, 制成样靶. 详细 制靶流程见宋彪等[15]. 上机测试前先对锆石进行透 射光、反射光及阴极发光(CL)显微照相,选择没有裂 隙及包裹体的颗粒或视域进行SHRIMP分析. 锆石的 透、反射光和CL照相在北京离子探针中心和北京地 质科学院矿产资源研究所电子探针研究室完成, 锆 石U-Th-Pb分析在北京离子探针中心的SHRIMP II 型离子探针仪器上完成,测试样品前先用标准锆石 SL13(年龄 572 Ma, U含量 238 µg/g)标定样品的U, Th 和Pb含量.测试过程中每测定3个样品点,分析1次 标准锆石TEM(417 Ma)进行元素间的分馏校正. 测点 直径约 25 μm, 且测前先剥蚀 150 s. 每个样品点测定 统计量为 5 次扫描,每个样品测定 10~15 个点.分析 流程和标样校正参见文献[15~17],普通Pb校正采用 实测²⁰⁴Pb值,使用Stacey和Kramer^[18]的两阶段模式 进行扣除,数据处理采用Ludwig^[19]SOUID 1.0 和 Ludwig^[20] Isoplot程序,同位素比值和单个年龄

表1 石门山花岗岩主量元素测试结果(单位: wt%)

SiO ₂	Al_2O_3	TiO ₂	Fe ₂ O ₃	FeO	CaO	MgO	K_2O	Na ₂ O	MnO	P_2O_5	H_2O^+	H_2O^-	灼失量	总和
79.26	11.01	0.17	0.59	0.12	0.04	0.24	4.74	3.06	0.008	0.03	0.31	0.13	0.58	99.85

				- 24-						
测点	普通 Pb/%	U1	Th	Th/U	Pb [*]	²⁰⁷ Pb*/ ²³⁵ U	²⁰⁶ Pb*/ ²³⁸ U	$^{207}\text{Pb}^{*/206}\text{P}^{*}$	²⁰⁶ Pb [*] / ²³⁸ U	²⁰⁷ Pb*/ ²⁰⁶ Pb
051G 6		/µg•g•	/µg·g·		/µg•g•	(±%)	(±%)	(±%)	年酹/Ma	年酹/Ma
1G 6 1	0.40	50	2	0.04	20.0	6.62 ± 6.1	0.303 ± 5.0	0.1222 ± 2.5	2137 ± 110	1080 ± 45
IG-6-2	0.49	25	2 1	0.04	20.0	0.02 ± 0.4 6 30 + 8 9	0.393 ± 5.9 0.373 + 6.3	0.1222 ± 2.3 0.1225 ± 6.2	2137 ± 110 2044 ± 110	1989 ± 43 1992 + 110
IG 6 3	1.04	25	1	0.02	9.19 9.19	0.30 ± 8.9	0.373 ± 0.3	0.1223 ± 0.2 0.1153 ± 4.7	2044 ± 110 1511 ± 100	1992 ± 110 1884 ± 86
IG 6 4	0.00	30	-+	0.11	10.7	4.20 ± 8.8	0.204 ± 7.4	0.1133 ± 4.7 0.1100 ± 2.0	1311 ± 100 1884 ± 00	10.04 ± 0.01
JG-0-4	0.00	54	2	0.04	10.7	5.37 ± 0.7	0.339 ± 0.1	0.1190 ± 2.9 0.1220 ± 2.1	1004 ± 33	1941 ± 31 2000 ± 28
JG-0-5	0.12	J4 44	5	0.00	17.0	0.37 ± 6.1	0.370 ± 7.9	0.1230 ± 2.1 0.1150 ± 2.6	2037 ± 140 1020 ± 100	2000 ± 38 1804 ± 47
JG-0-0	0.00	22	1	0.03	0.74	5.30 ± 0.3	0.349 ± 0.0	0.1139 ± 2.0 0.1142 ± 2.3	1930 ± 100 1971 ± 09	1094 ± 47 1867 ± 50
JG-0-7	0.44	104	4	0.12	9.74	3.30 ± 0.9	0.337 ± 0.1	0.1142 ± 3.3	$10/1 \pm 90$	1007 ± 39
JG-0-8	0.09	104	4	0.04	21.9	4.80 ± 0.1	0.311 ± 5.8	0.1133 ± 1.8	$1/4/\pm 89$	1855 ± 35
JG-0-9	1.10	23	2	0.10	0.00	5.50 ± 8.1	0.337 ± 0.8	0.1197 ± 4.4	$18/2 \pm 110$	1951 ± 79
JG-6-10	0.65	31	2	0.06	9.86	5.60 ± 7.6	$0.3/3 \pm 6.2$	0.1090 ± 4.3	2041 ± 110	$1/83 \pm /8$
JG-6-15	0.11	117	42	0.37	29.9	4.57 ± 6.1	0.297 ± 5.8	0.1118 ± 2.0	$16/5 \pm 85$	1828 ± 37
JG-6-16	0.91	38	2	0.05	10.4	4.69 ± 7.4	0.313 ± 6.0	0.1085 ± 4.2	$1/5/\pm 93$	$1//4 \pm /8$
04FY-3	0.10	10.6	-	0.05	25.6	5.00 0.0	0.00/7 0.0	0.11.60 0.00	1000 45	1004 17
FY-3-1	0.19	126	/	0.05	35.6	5.23 ± 3.0	0.3267 ± 2.9	0.1160 ± 0.92	1822 ± 45	1896 ± 17
FY-3-2	0.10	251	11	0.04	74.5	5.49 ± 2.9	0.3452 ± 2.8	0.11539 ± 0.69	1912 ± 46	1886 ± 12
FY-3-3	0.05	284	14	0.05	75.5	4.68 ± 2.9	0.3095 ± 2.8	0.10963 ± 0.62	1738 ± 43	1793 ± 11
FY-3-4	0.04	482	72	0.15	125	4.70 ± 2.8	0.3017 ± 2.8	0.11291 ± 0.47	1700 ± 42	1847±9
FY-3-5	0.27	89	11	0.13	26.0	5.42 ± 3.2	0.3382 ± 2.9	0.1161 ± 1.4	1878 ± 47	1898 ± 24
FY-3-6	0.40	89	11	0.13	24.7	5.05 ± 3.5	0.3223 ± 3.1	0.1135 ± 1.7	1801 ± 48	1857 ± 31
FY-3-7	0.33	88	11	0.13	26.3	5.42 ± 3.8	0.347 ± 2.9	0.1132 ± 2.4	1921 ± 48	1852 ± 44
FY-3-8	0.16	80	7	0.09	24.3	5.58 ± 3.2	0.353 ± 2.9	0.1146 ± 1.2	1951 ± 49	1874 ± 23
FY-3-9	0.23	150	19	0.13	45.1	5.45 ± 3.0	0.3487 ± 2.8	0.1135 ± 0.89	1928 ± 47	1856 ± 16
FY-3-10	0.23	88	10	0.12	27.2	5.72 ± 3.3	0.360 ± 3.0	0.1152 ± 1.3	1982 ± 51	1883 ± 24
FY-3-11	0.09	236	8	0.03	70.7	5.44 ± 2.9	0.3488 ± 2.8	0.11312 ± 0.66	1929 ± 47	1850 ± 12
FY-3-12	0.21	128	22	0.18	38.5	5.49 ± 3.2	0.350 ± 3.0	0.1137 ± 1.3	1936 ± 50	1859 ± 23
FY-3-13	0.01	175	24	0.14	54.6	5.71 ± 2.9	0.362 ± 2.8	0.11443 ± 0.61	1991 ± 48	1871 ± 11
FY-3-14	0.14	73	9	0.12	22.9	5.69 ± 3.1	0.363 ± 2.9	0.1135 ± 1.2	1999 ± 50	1856 ± 21
FY-3-15	0.17	110	16	0.15	34.2	5.56 ± 3.0	0.363 ± 2.9	0.11111 ± 0.86	1997 ± 50	1818 ± 16
05SMS-1										
SMS-1-1	0.00	165	85	0.53	57.3	7.14 ± 2.9	0.4046 ± 2.5	0.1281 ± 1.4	2190 ± 47	2072 ± 13
SMS-1-2	0.00	77	55	0.74	26.9	7.05 ± 3.6	0.4052 ± 2.9	0.1262 ± 2.1	2193 ± 54	2045 ± 18
SMS-1-3	0.18	187	138	0.76	56.2	6.05 ± 2.9	0.3487 ± 2.5	0.1257 ± 1.6	1928 ± 41	2039 ± 14
SMS-1-4	0.30	113	75	0.69	39.3	7.13 ± 3.3	0.4052 ± 2.7	0.1277 ± 2.0	2193 ± 50	2066 ± 17
SMS-1-5	0.29	57	37	0.68	20.0	7.12 ± 4.2	0.4094 ± 3.2	0.1261 ± 2.7	2212 ± 59	2044 ± 24
SMS-1-6	0.30	259	196	0.78	79.4	6.18 ± 2.8	0.3560 ± 2.4	0.1260 ± 1.4	1963 ± 40	2043 ± 13
SMS-1-7	0.19	55	47	0.88	18.9	7.02 ± 4.0	0.3981 ± 3.0	0.1278 ± 2.5	2160 ± 56	2068 ± 22
SMS-1-8	0.17	254	178	0.73	81.8	6.65 ± 2.7	0.3750 ± 2.4	0.1286 ± 1.3	2053 ± 42	2079 ± 11
SMS-1-9	0.14	105	54	0.53	37.6	7.46 ± 3.4	0.4154 ± 2.7	0.1303 ± 2.0	2240 ± 52	2102 ± 17
SMS-1-10	0.72	180	130	0.75	58.4	6.51 ± 3.4	0.3754 ± 2.6	0.1258 ± 2.3	2055 ± 45	2040 ± 20
SMS-1-11	1.37	83	35	0.44	26.3	6.10 ± 5.2	0.3646 ± 3.0	0.1213 ± 4.3	2004 ± 51	1975 ± 38
SMS-1-12	0.11	187	120	0.66	63.6	7.00 ± 2.9	0.3949 ± 2.5	0.1286 ± 1.5	2146 ± 46	2079 ± 13
SMS-1-13	0.35	543	273	0.52	134.3	4.58 ± 2.6	0.2869 ± 2.3	0.1158 ± 1.2	1626 ± 33	1893 ± 11

表 2 锆石 SHRIMP U-Pb 年龄结果^{a)}

a) Pb^{*}为放射成因 Pb, 普通 Pb 校正采用实测 204 Pb 值, 误差为 1 σ

实测误差为 1σ. 加权平均年龄数据和上交点年龄数 据误差为 2σ.

3 分析结果

3.1 徐宿夹沟石榴辉石角闪岩包体(05JG-6)

锆石颗粒为无色透明浑圆状, 粒径 80~150 μm,

CL 阴极显微图像显示中等发光,内部结构均匀,无 核边结构及韵律环带,表明它们是变质成因锆石(图 2(a)).样品分析了 12 个点,分析结果见表 2.除 JG-6-15 具有较暗的 CL 阴极发光特征和相应较高的 比值(0.37)外,其他 11 个点的 Th/U 比值为 0.02~0.12, 均为典型变质锆石的比值.该组变质锆石的 ²⁰⁶Pb/²³⁸U年龄较²⁰⁷Pb/²⁰⁶Pb年龄分散,在谐和图上少 量数据向下偏离谐和线,表现有较轻微的 Pb 丢失(图 3(a)).如果古老锆石仅在近期遭受一次 Pb 丢失,可 以通过计算一致线与谐和线上交点年龄获得锆石结 晶时代,且它不会影响其²⁰⁷Pb/²⁰⁶Pb 年龄.全部数据 计算的上交点年龄为(1918±56) Ma.若剔除两个明显 偏离谐和线的点,JG-6-3 和 JG-6-10 (²⁰⁷Pb/²⁰⁶Pb 年龄 分别为(1884±86)和(1783±78) Ma),其余 10 个测点给 出的²⁰⁷Pb/²⁰⁶Pb 年龄的加权平均值为(1904±53) Ma, MSWD=2.4,与上交点年龄一致.此锆石年龄记录表 明徐宿地区下地壳古元古代曾发生过一次变质事件.

图 2 典型锆石 CL 图像

3.2 蚌埠五河群退变质榴闪岩透镜体(04FY-3)

锆石颗粒为无色透明的浑圆状或椭圆状, 粒径 100~200 μm, CL 阴极显微图像均匀、无韵律环带, 显 示为变质锆石的特点(图 2(b)), 大多数颗粒无明显核-边结构, 个别颗粒有具韵律环带的岩浆锆石核残留. 该样品分析了 15 个点, 分析结果见表 2. Th/U 比值为 0.03~0.18, 为典型的变质锆石比值. 该组变质锆石的 ²⁰⁶Pb/²³⁸U 年龄同样较²⁰⁷Pb/²⁰⁶Pb 年龄分散, 在谐和图 上所有数据点密集在谐和线附近并呈较好的的线性

排列(图 3(b)), 它给出精确的上交点年龄为(1857±19) Ma. 若剔除 3 个偏离谐和线较远的点, FY-3-3, FY-3-4 和 FY-3-15(²⁰⁷Pb/²⁰⁶Pb 年龄分别为(1793±11), (1847±9)和(1818±16) Ma), 剩余 12 个较谐和的测点 给出的 ²⁰⁷Pb/²⁰⁶Pb 年龄加权平均值为(1870±10) Ma, MSWD=0.94, 与上交点年龄在误差范围内一致. 此 定年结果说明五河群变质杂岩麻粒岩相变质作用发 生在古元古代.

3.3 蚌埠石门山变形花岗岩(05SMS-1)

锆石晶形基本完整, 短柱状(长:宽≈2:1), 粒径 100~200 um, 晶面较平直, 晶棱较锐利, 岩浆韵律环 带清晰(图 2(c)). 该样品分析了 15 个点, 分析结果见 表 2. Th/U比值为 0.44~1.00, 为典型的岩浆锆石比值. 该组变质锆石的²⁰⁶Pb/²³⁸U年龄同样较²⁰⁷Pb/²⁰⁶Pb年龄 分散,全部数据点在谐和线附近呈良好线性排列并 给出上交点年龄(2054±22) Ma(图 3(c)). 若剔除两个 偏离谐和线较远的点, SMS-1-9 和 SMS-1-13 (²⁰⁷Pb/²⁰⁶Pb年龄分别为(2102±17)和(1893±11) Ma), 剩余 13 个测点给出的 ²⁰⁷Pb/²⁰⁶Pb年龄加权平均值为 (2058±8) Ma, MSWD=1.7, 与上交点年龄一致. 定年 结果显示石门山变形花岗岩的形成时代为古元古代. 这个年龄与五台山滹沱群火山作用时间(2087±9) Ma⁶⁰和阜平湾子表壳岩中火山成因片麻岩的年龄 (2051±18) Ma^[21]一致,同时老于其白云母Ar-Ar法确 定的晚期冷却事件年龄(1734±3) Ma^[14]. 石门山花岗 岩未见有更晚时代的变质年龄记录,可能是该岩体 当时侵位较浅,因而后期遭受的变质改造程度较低, 并不足以引起锆石变质增生的结果.

4 讨论

4.1 徐宿-蚌埠地区古元古代岩浆-变质事件与胶-辽-吉古元古代活动带的关系

翟明国¹⁵¹指出华北克拉通古元古代活动带主要 分布在3个地区,即北部丰镇活动带、中部晋豫活动 带和东部胶-辽-吉活动带,但对于胶-辽-吉活动带向 西南部延伸向何处却一直未有结论.从地理位置上 分析,徐宿-蚌埠地区与遭郯庐断裂带错动前的胶东 地区对应,本文报道的 3 个年龄说明徐宿-蚌埠地区 曾在约 2.0 Ga发生过一期花岗岩浆作用,随后在 1.9~1.8 Ga经历了强烈的麻粒岩相变质作用,这与胶-辽-吉古元古代活动带的特征一致,因此徐宿-蚌埠地 区古元古代变质-岩浆活动带很可能是胶-辽-吉古元 古代活动带的西南延伸.本文的发现对解决胶-辽-吉 活动带的西南部空间展布具有重要的地质意义,提 示学者在今后的研究中应对此地区给以充分考虑.

4.2 徐宿-蚌埠地区中生代高镁岩浆岩中石榴辉石 岩和榴辉岩包体的年代学差异

Xu等^[12]在徐宿-蚌埠地区中生代高镁岩浆岩中 采集到石榴辉石岩和榴辉岩两类包体. 从榴辉岩包 体中选出的4颗锆石表现为具有2350~2550,210~260 和 125~136 Ma三个年龄峰为特征的年龄谱,并认为 它们与石榴辉石岩的年龄谱类似,认定它们是同一 类岩石. 需要指出的是, 该榴辉岩包体锆石没有给出 本文测定的 1870~1904 Ma的古元古代年龄, 而该文 提供的榴辉岩和石榴辉石岩锆石年龄比较图谱中却 清楚显示石榴辉石岩有明显的 1800 Ma年龄峰而榴 辉岩没有[12]. 实际上该文提供的石榴辉石岩锆石年 龄谱中除 1800 和 130 Ma两个显著的峰值外,其他年 龄峰并不显著.因此,已有的年代学数据并不支持徐 宿-蚌埠地区中生代高镁岩浆岩中石榴辉石岩和榴辉 岩包体是同一类岩石的结论. 该区石榴辉石岩包体 代表了仅经历了古元古代麻粒岩相变质的下地壳岩 石, 而榴辉岩包体可能是该区已拆沉的榴辉岩相加 厚下地壳的残留物.

致谢 中国科学技术大学刘贻灿教授参加了野外工作,北京离子探针中心王彦斌研究员、宋彪研究员和石 玉若博士在锆石 SHRIMP U-Pb 定年中给以协助,审稿人提出了宝贵的修改意见,在此一并表示感谢.

参考文献 _____

¹ Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and *P*-*T* path constrains and tectonic evolution. Precambrian Res, 2001, 107: 45–73[doi]

² Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1—1.8 Ga orogens: implication for a pre-Rodinia supercontinent. Earth-Sci Rev, 2002, 59: 125—162[doi]

- 3 Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozic evolution of the North China Craton: key issues revisited. Precambrian Res, 2005, 136: 177–202[doi]
- 4 Zhai M G, Liu W J. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Res, 2003, 122: 183-199[doi]
- 5 翟明国. 华北克拉通 2.1~1.7 Ga 地质事件群的分解和构造意义探讨. 岩石学报, 2004, 20(6): 1343-1354
- 6 Liu S W, Zhao G C, Wilde S A, et al. Th-U-Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Res, 2006, 148: 205–224[doi]
- 7 Wilde S A, 赵国春, 王凯怡, 等. 五台山滹沱群 SHRIMP 锆石 U-Pb 年龄:华北克拉通早元古代拼合新证据. 科学通报, 2003, 48(20):2180-2186
- 8 田伟,刘树文,刘超辉,等. 中条山涑水杂岩中 TTG 系列岩石的锆石 SHRIMP 年代学和地球化学及其地质意义. 自然科学进展, 2005, 15(12): 1476—1484
- 9 张华锋, 翟明国, 彭澎. 华北克拉通桑干地区高压麻粒岩的锆石 SHRIMP 年龄及其地质含义. 地学前缘, 2006, 13(3): 190-199
- 10 Luo Y, Sun M, Zhao G C, et al. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt. Preambrian Res, 2004, 134(3-4): 349-371 [doi]
- 11 何艳红, 孙勇, 陈亮, 等. 陇山杂岩的 LA-ICP-MS 锆石 U-Pb 年龄及其地质意义. 岩石学报, 2005, 21(1): 125-134
- 12 Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thinkening of the eastern North China craton: evidence From eclogite xenoliths and petrologic implications. Geology, 2006, 34(9): 721-724[doi]
- 13 许文良,杨德彬,裴福萍,等. 蚌埠隆起区五河杂岩的形成时代: 锆石 LA-ICP-MS U-Pb 定年证据. 中国地质, 2006, 33(1): 132 137
- 14 徐祥,侯明金,邱瑞龙,等.华北陆块东南缘蚌埠地区花岗岩与相关脉岩⁴⁰Ar-³⁹Ar 定年.中国地质, 2005, 32(4):588—595
- 15 宋彪,张玉海,万渝生,等. 锆石 SHRIMP 样品靶制作、年龄测定及有关现象讨论. 地质论评, 2002, 48(增刊): 26-30
- 16 Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the early Cambrian time-scale. J Geol Soc (London), 1992, 149(2): 171-184[doi]
- 17 Williams I S. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks III W C, Ridley W I, eds. Applications of Microanalytical Techniques to Understanding Mineralizing Process. Rev Econ Geol, 1998, 7: 1—35
- 18 Stacey J S, Kramer J D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett, 1975, 26(2): 207 —221[doi]
- 19 Ludwig K R. Squid 1.02: a user manual. Berkeley Geochron Center Spec Publ, 2001, 2: 19
- 20 Ludwig K R. Users Manual for Isoplot/Ex (rev. 2. 49): a geochronology toolkit for microsoft Excel. Berkeley Geochron Center Spec Publ, 2001, 1: 55
- 21 Guan H, Sun M, Wilde S A, et al. SHRIMP U-Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton. Precambrian Res, 2002, 113: 1—18[doi]