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Abstract. We revisit the notion of the anonymous signature, first for-
malized by Yang, Wong, Deng and Wang [7], and then further developed
by Fischlin [5] and Zhang and Imai [8]. We point out that the previous
formalism is inadequate in several aspects and present a new formalism.
We introduce the notion unpretendability to guarantee infeasibility for
someone other than the correct signer to pretend authorship of the mes-
sage and signature. Our definition retains applicability for all previous
applications of the anonymous signature, provides stronger security, and
is conceptually simpler. We give a generic construction from any ordi-
nary signature scheme and finally we present an example construction of
an efficient anonymous signature scheme. We show that the short signa-
ture scheme by Boneh and Boyen [3] can be naturally regarded as such
a secure anonymous signature scheme according to our formalism.
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1 Introduction

An anonymous signature is a signature scheme where the signature σ of a mes-
sage m does not reveal the identity of the signer. Yang et al. [7] discussed the
usefulness of anonymous signatures in many applications where anonymity is
needed, including key exchange protocols, auction systems, and annonymous
paper reviewing.

The notion of the anonymous signature was formalized much later than that
of the anonymous encryption. Bellare et al. [1] had already defined in Asiacrypt
2001 key-privacy, or anonymity of an encryption scheme, as indistinguishability
of ciphertexts encrypted by different public keys, that is, an eavesdropper cannot
obtain any information about the recipient (corresponding to the public key)
from the ciphertext. In a way, this delay is not too surprising. One obvious
problem for introducing the idea of anonymity to digital signatures is that a
signature is publically verifiable; if there are only a few candidate signers, the
adversary of anonymity can simply try verification of the message-signature pair
with respect to all candidate public keys to break anonymity. Therefore, as long
as the adversary obtains both the message and the signature, it seems that
anonymity is impossible.



Yang et al. solved the paradox by guaranteeing the anonymity only when the
adversary obtains the signature and not the message, or when there is some ran-
domness in the message not revealed to the adversary. While the idea of revealing
only the signature and not the message sounds strange at first, actually in many
applications it makes sense; for example, in the key transport example given by
Yang et al., Bob already knows what Alice’s message should be from previous
communication, so Alice may send only the anonymous signature without the
message, and this authenticates Alice while protecting Alice’s anonymity from
eavesdroppers. In the case of an auction, a bidder may append some random
string r to a message m, which is his bid, and sign it. After the auction ends,
only the winner may reveal the randomness r and thus his identity, and the other
participants remain anonymous.

This idea of hidden randomness in the message is used by Fischlin [5] to
propose a generic transformation for anonymous signatures out of ordinary sig-
natures, by applying the idea of randomness extractor to extract the hidden
randomness and use it for anonymizing the signature. Fischlin’s formulation of
anonymous signatures is slightly different, but essentially captures the same idea
as that of Yang et al. Also in [8], Zhang and Imai suggested the notion of ‘strong
anonymous signatures’, where they considered the case when there is not much
uncertainty in the message.

1.1 Limits of the previous formalism

We revisit the formal definition of anonymous signature and show that previous
formalisms of anonymous signature are not adequate in that, they fail to capture
the intuition fully, are not completely usable for suggested applications, and
actually are inconsistent with what happens for those applications. Also, we
claim that a slightly different formalism captures the intuition better, retains
the applicability, more consistently models the application scenarios, enables
simpler constructions, and gives better security guarantee.

As explained, in the current formalism, the signer anonymity is based on
hidden residual randomness of the message. As long as there is enough such
randomness, the signer maintains anonymity, but of course the signature can-
not be verified. Eventually the randomness in message is revealed explicitly or
implicitly, and whoever has the complete message-signature pair can verify the
signature.

In order to model this, Yang et al. and Fischlin formalize that each signer,
having public key pk , has certain message distribution M(pk). Then, two key
pairs (pk0, sk0), (pk1, sk1) are chosen and pk0 and pk1 are given to the adversary.
Also, a message m is chosen fromM(pk b) with respect to a random bit b ∈ {0, 1},
and the signature σ = Sig(sk b, m) is computed and given to the adversary. If
the adversary cannot guess the random bit b with probability not much greater
than 1/2, then the signature scheme is considered anonymous.

But this formalism is not satisfactory in several aspects. First, this is in fact
inconsistent to the suggested application of anonymous auction, or anonymous
paper review. In these cases, if m is the original intended message, then the



signer adds some random string r to form appended message m∥r, and releases
the message m, together with the signature σ of the appended message m∥r.
From the point of view of an eavesdropper, different original message m gives
different message distribution of the whole appended message m∥r; the message
distribution cannot be a function of only the public key pk , and in fact also
depends on the partially revealed portion (m) of the message.

Second, this definition does not formally give a guarantee of infeasibility
for someone other than the correct signer to come later and pretend that the
signature is his. We call this property unpretendability. For an ordinary signature
for which complete message-signature pair is released at once, this problem does
not arise; the pair is publically verifiable and the authorship can be attributed to
the signer. But for an anonymous signature, where only a part of the message-
signature pair is released initially, there is theoretical possibility that someone
other than the signer may come and claim the authorship of the message and
signature. For example, in the anonymous paper review example, the author A of
a paper paperA picks a random string r, computes σ ← Sig(skA, paperA∥r), and
releases (paperA, σ) initially, and only later reveals r when the paper is accepted.
Now, if the anonymous signature is not unpretendable, then another author, B,
may be able to compute r′ satisfying Vf(pkB , paperA∥r′, σ) = true and use such
an r′ to claim authorship of paperA.

Hence, we argue that this unpretendability should be an essential feature of
an anonymous signature; otherwise anonymous signature is in fact not applicable
for quite a few of originally proposed applications.

Note that we are not claiming that any of the actual schemes proposed in
previous papers fails to satisfy unpretendability. But, still this notion should be
formally defined and guaranteed for each anonymous scheme. In fact, later we
will give an example of an unforgeable signature scheme which provides complete
anonymity but is not at all unpretendable. This means that, unpretendability
does not follow directly from unforgeability and/or anonymity, and warrants
separate definition.

Third, we feel that the idea of a signature of an unknown message counter-
intuitive. Intuitively, a signature is a proof of authorship for a given document.
If we do not know the document in question, or if we are not sure whether the
document ends with ‘Therefore you should . . . ,’ or ‘Therefore you should not
. . . ,’ then the meaning of a signature for such uncertain document is at least
debatable.

1.2 Our formalism

Discarding hidden randomness in the message. For these reasons, we believe
that the previous formalism is inadequate, and we fix the definition as follows:
first, instead of relying on the hidden residual randomness of the message, we
use an explicitly given randomness. Second, we formalize not only the notion of
anonymity, but also give explicit formalization of unpretendability.

In traditional digital signatures, signature generation is considered as a ran-
domized algorithm in general, therefore this strategy of explicit randomness is



applicable no matter how much entropy (or lack thereof) the distribution of the
message has.

This enables us to discard the randomness extraction from the message alto-
gether, and use the provided randomness directly to anonymize the public key.
In fact, even when there is enough entropy in the message distribution, often
the randomness is not diffused in the whole message but well-separated from
the rest of the message and controllable by the signer. For example, in the bid-
ding example where the bidder appends some random string r to the message
m and then sign the appended message m∥r, certainly the distribution of this
appended message has enough entropy which can be extracted back, but we feel
this is artificial; the original message was m, and intuitively, the signer is not
really interested in protecting the integrity of r, which is not part of his message
m which he really wanted to sign. Hence, it is more natural to regard this r as a
separate parameter involved in the signature generation and which is part of the
signature, instead of artificially regarding this as a part of the message which
needs to be signed and protected.

Surfacing the verification token. Therefore, in our formalism, we split a digital
signature σ̃ into two parts, σ̃ = (σ, τ). We call τ a verification token, or a token
in short, which is chosen uniform randomly from a large space. Then σ, the rest
of σ̃, is now just called a signature. The signature σ is computed by the signature
generation algorithm which takes the signer’s secret key, the message m and the
token τ as inputs, and when m, σ, and τ are presented, then anyone can verify
the validity of the signature using the public key of the signer. But as long as τ
is hidden, the adversary cannot break the anonymity of the signer just from the
message m and the signature σ. Meanwhile, anyone to whom the token τ (along
with the identity of the signer) is revealed may verify the signature.

Note that our formalism is just a specialization of the traditional formalism
of digital signature, and not something incompatible; (σ, τ) together serves as a
signature which is publically verifiable, and unforgeable according to the usual
definition. We only enforce our signature to have this special format, and to have
anonymity and unpretendability in addition to the unforgeability.

In short, we surfaced the hidden randomness of the anonymous signature
explicit as the verification token, and moved it from the message to the signature
itself. Also we identified and formalized the unpretendability as another property
an anonymous signature should have.

Regarding randomness extraction. In Fischlin’s general transformation, he uses a
randomness extractor to extract randomness from the message, and anonymizes
the signature using this extracted randomness. In our formalism, this extracted
randomness serves the role of the verification token. We believe that it is better
to regard this randomness extraction as external to the anonymous signature,
because we feel that how the verification token is generated is not essential to
the function of the anonymous signature. Depending on the application, if it is
necessary one may use randomness extractor to generate the token. Or in many
other cases, one may rely on more straightforward methods. By separating the



randomness extraction out of the signature, we obtain a conceptually simpler
and more efficient formalism.

Enhanced notion of security. Not only separating the randomness extraction
from the anonymous signature results in a conceptually cleaner formalism, but
also it enables us to guarantee better notion of security. Because in previous for-
malisms the verification token was ‘diffused’ in the message itself, the adversary
of anonymity could not choose the challenge message by himself, and a random
challenge message had to be chosen out of some message distribution. But in our
formalism, there is no problem for the adversary to adaptively choose the chal-
lenge message by himself, and indeed we give this stronger notion of anonymity,
which all of our schemes meet.

Our contribution. Therefore, in this paper, we give a new formalism for an
anonymous signature following the outline given in the introduction. We re-
examine the suggested applications for anonymous signatures, and show that
our new formalism retains applicability. Also, we present some construction of
efficient anonymous signature schemes. We first give a generic construction out
of any ordinary unforgeable signature scheme. Also, we show that the short
signature scheme by Boneh and Boyen [3] can be naturally regarded as such a
secure anonymous signature scheme according to our formalism with essentially
no modification.

2 Related work

The notion of anonymous signature was first formalized by Yang et al. in [7], and
explored further by Fischlin in [5]. Our work revisits this notion, and provides an
alternative formalism which fixes some inadequacies of the previous formalism.

Zhang and Imai [8] proposed a very similar approach as ours. Their idea is
to define ‘strong anonymous signature’, which maintains anonymity even when
there is not much uncertainty in the message distribution. In fact, their definition
of strong anonymity is essentially identical to our anonymity. We remark that we
had obtained our results independently before we learned about their work. In
comparison with our formalism, they define their strong anonymity as a stronger
version of anonymity than the original definition, while we discard the previous
definition as inadequate and reformulate anonymity. Also, Zhang and Imai do not
discuss unpretendability, which we argue as central to the notion of anonymous
signatures.

Galbraith and Mao [6] introduced the notion of anonymity to undeniable and
confirmer signatures. Our definition of anonymity of an anonymous signature is
similar to theirs, and also the fact that the signer has to provide the verifica-
tion token later to let others verify the signature looks similar to the case of
undeniable signatures. But we stress that an anonymous signature is not an un-
deniable signature; anyone who obtained the token of the signature can in fact
let others verify the signature, without involvement of the signer. In general, an
anonymous signature is much simpler than an anonymous undeniable signature.



3 Definition

3.1 Notations and conventions

We denote by v ← A(x, y, z, . . .) the operation of running a randomized or
deterministic algorithm A(x, y, z, . . .) and storing the output to the variable v.
If X is a set, then v

R← X denotes the operation of choosing an element v of X
according to the uniform random distribution on X. Unless stated otherwise, all
algorithms are probabilistic.

3.2 Anonymous signature

We define an anonymous signature Σ as a quadruple of polynomial-time algo-
rithms Σ = (Par, Gen, Sig, Vf), where the parameter generation algorithm Par()
outputs a common parameter P ← Par(1k) using security parameter k, the
key generation algorithm Gen() outputs a key pair (pk , sk) ← Gen(P ) given
the common parameter P as input, signature generation algorithm Sig() out-
puts a signature σ ← Sig(sk , m, τ) with respect to the secret key sk , a message
m ∈ {0, 1}∗ and a verification token τ

R← T (k) (T (k) is the space of verification
tokens for the security parameter k), and the deterministic, signature verification
algorithm Vf(pk , m, σ, τ) outputs true or false.

The common parameter P contains the security parameter k itself, and ad-
ditionally contain other public information common to all users of the system,
for example description of cryptographic groups used in the signature scheme.

For consistency, we require the following:

Vf(pk , m,Sig(sk , m, τ), τ) = true,

for P ← Par(1k), (pk , sk)← Gen(P ), τ
R← T (k), and for any m ∈ {0, 1}∗.

3.3 Unforgeability

We say that Σ = (Par, Gen, Sig, Vf) is unforgeable, if for any polynomial-time
adversary A, the advantage Advuf-cma

Σ,A (k) which is defined as

Advuf-cma
Σ,A (k) def= Pr

[
Expruf-cma

Σ,A (k) = true
]

is negligible in the following experiment:

Experiment Expruf-cma
Σ,A (k)

P ← Par(1k)
(pk , sk)← Gen(P )
(m∗, σ∗, τ∗)← ASig(sk ,·,·)(pk)
return Vf(pk , m∗, σ∗, τ∗)



where the adversary A has access to the signing oracle Sig(sk , ·, ·) with respect
to the secret key sk . We also require that A is not allowed to query the signing
oracle with (m∗, τ) for any τ .

Similarly, we say that Σ is strongly unforgeable, if for any polynomial-time
adversary A, the advantage Advsuf-cma

Σ,A (k) which is defined as

Advsuf-cma
Σ,A (k) def= Pr

[
Exprsuf-cma

Σ,A (k) = true
]

is negligible in the following experiment:

Experiment Exprsuf-cma
Σ,A (k)

P ← Par(1k)
(pk , sk)← Gen(P )
(m∗, σ∗, τ∗)← ASig(sk ,·,·)(pk)
return Vf(pk , m∗, σ∗, τ∗)

The experiment looks identical to the above, but the difference is that, for
this, we require A not to have received σ∗ as an answer to any query of form
(m∗, τ∗) to the signing oracle.

Remark 1. In our definition of unforgeability and other properties, we allow the
adversary to have a signing oracle of form Sig(sk , ·, ·), i.e., we allow the adversary
to choose the verification token, too. Since the token is not a part of the message
and is selected internally by the signer, disallowing this would be also reasonable.
Note that there is no extra cost in achieving the stronger definition.

3.4 Anonymity

Consider an adversary which is a pair of polynomial-time algorithmsA = (A1,A2).
Let st be the state information which A1 passes to A2. We say that Σ =
(Par, Gen, Sig, Vf) is anonymous, if for any such A, the advantage Advanon

Σ,A(k)
defined as

Advanon
Σ,A(k) def=

∣∣Pr[Expranon-1
Σ,A (k) = 1]−Pr[Expranon-0

Σ,A (k) = 1]
∣∣

is negligible, where experiments Expranon-b
Σ,A (b = 0, 1) are defined as follows:

Experiment Expranon-b
Σ,A (k)

P ← Par(1k)
(pk0, sk0)← Gen(P ); (pk1, sk1)← Gen(P )
(m∗, st)← ASig(sk0,·,·),Sig(sk1,·,·)

1 (pk0, pk1)
τ∗

R← T (k)
σ∗ ← Sig(sk b, m

∗, τ∗)
b′ ← ASig(sk0,·,·),Sig(sk1,·,·)

2 (σ∗, st)
return b′

We call Σ anonymous with respect to full key exposure, when the advantage
of any adversary is still negligible even if the adversary also gets the secret keys
sk0, sk1 as additional input. We denote by Advanon-fke

Σ,A (k) the advantage of an
adversary in the anonymity experiment with full key exposure.



3.5 Unpretendability

We say that Σ = (Par, Gen, Sig, Vf) is unpretendable, if for any adversary A =
(A1,A2), the advantage Advup

Σ,A(k) defined as

Advup
Σ,A(k) def= Pr

[
Exprup

Σ,A(k) = true
]

is negligible in the following experiment:

Experiment Exprup
Σ,A(k)

P ← Par(1k)
(pk , sk)← Gen(P ); (pk∗, sk∗)← Gen(P )
(m∗, st)← ASig(sk∗,·,·)

1 (pk∗, pk , sk)
τ∗

R← T (k)
σ∗ ← Sig(sk∗, m∗, τ∗)
τ ← ASig(sk∗,·,·)

2 (σ∗, τ∗, st)
return Vf(pk , m∗, σ∗, τ)

Intuitively, the adversary’s key pair is (pk , sk), and he is trying to claim the
authorship of (m∗, σ∗), which is signed by the target secret key sk∗ with the
verification token τ∗. The adversary tries to produce an appropriate τ satis-
fying Vf(pk , m∗, σ∗, τ) = true, and the definition guarantees that the success
probability for this attempt is negligible.

Like the case of anonymity, we say that Σ is unpretendable with respect
to full key exposure, when the advantage of any adversary is still negligible
even if the adversary also gets the target secret key sk∗ as additional input. We
denote by Advup-fke

Σ,A (k), the advantage of an adversary in the unpretendability
experiment with full key exposure.

3.6 Security of an anonymous signature

Suppose that Σ = (Par, Gen, Sig, Vf) is an anonymous signature scheme. We say
that Σ is a secure anonymous signature, if Σ is unforgeable, anonymous, and
unpretendable.

We emphasize that the unpretendability is a crucial property that an anony-
mous signature should have. Already we showed that if an anonymous signature
is not unpretendable, then it cannot be used for some of the suggested ap-
plications like anonymous paper review. Here, let us show an example of an
anonymous signature which is unforgeable, anonymous, but not unpretendable.

Suppose Σ = (Par, Gen, Sig, Vf) is an ordinary unforgeable signature scheme.
We then construct an anonymous signature scheme Σ′ = (Par′, Gen′, Sig′, Vf ′)
as follows: Par′(1k) is the same as Par(1k), Gen′(P ) is the same as Gen(P ).
Sig′(sk , m, τ) is defined as

Sig′(sk , m, τ) def= Sig(sk , m)⊕ τ



where the verification token τ is chosen to be of the same bit-length as the
signature Sig(sk , m). Finally, Vf ′(sk , m, σ, τ) is defined as

Vf ′(pk , m, σ, τ) def= Vf(pk , m, σ ⊕ τ).

It is clear that the anonymous signature Σ′ is both unforgeable and anony-
mous; because the signature σ = Sig(sk , m) is masked with random bitstring τ in
Sig′(sk , m, τ), essentially the adversary has no information about the signature.
Only when later τ is revealed, the signature σ is revealed and signature can be
verified. Thus, this is equivalent to defering the signing to the last minute when
the token τ has to be revealed. Hence the scheme is unforgeable, and unless τ is
revealed, the signer anonymity is guaranteed.

But, it is trivial to break unpretendability of this scheme; if (m∗, σ∗ =
Sig(sk∗, m∗) ⊕ τ∗) is given, then the adversary may compute Sig(sk , m∗) us-
ing his own secret key sk , and compute τ as

τ
def= Sig(sk , m∗)⊕ σ∗.

Then,

Vf ′(pk , m∗, σ∗, τ) = Vf(pk , m∗, σ∗ ⊕ τ) = Vf(pk , m∗, Sig(sk , m∗)) = true.

Also, while we present this example in our formalism, it is also possible to
modify this example to fit the previous formalism.

4 Applications

We note that our new formalism still allows an anonymous signature scheme to be
applicable for all areas suggested for original formalism. For anonymous auction
and anonymous paper review, if m is the message to be signed, then the signer
can choose a verification token τ

R← T privately, compute σ ← Sig(sk , m, τ), and
release (m, σ). As long as τ is not revealed, the anonymity is preserved. Only
when necessary, the signer can reveal τ and claim the authorship of (m, σ). In
fact, our formalism guarantees that this authorship can be claimed without false
pretension from other person, because of the unpretendability of the anonymous
signature scheme.

For some other applications, the signer does not in fact reveal the verification
token explicitly, because the other party already knows it according to some outer
protocol. Consider the example of authenticated key transport protocol given by
Yang et al. [7], which was originally proposed by Boyd and Park [4].

A→ B : PKEB(IDA, k, count),
A← B : Enck(count , rB),
A→ B : SigA(IDB , h(count , k, rB)).



In this protocol, an mobile client A wants to transport the symmetric key k to
a server B, securely and while protecting the anonymity of A. In our formalism
of anonymous signatures, we may modify the last line as

A→ B : Sig(skA, IDB∥count∥rB , k).

Here A does not have to reveal the verification token τ = k later to B, because
A already sent k to B on the first line. Note that here we are not to present
a provably secure key transport scheme but to demonstrate the applicability of
our formalism.

5 Secure anonymous signature schemes

In this section, we exhibit a few anonymous signature schemes. First, we show
how to construct an anonymous signature scheme generically from any ordinary
unforgeable signature scheme. Then, we show that the short signature scheme
of Boneh and Boyen [3] can be naturally considered as a secure anonymous
signature according to our formalism, with essentially no modification.

5.1 Generic construction

Here we present a generic construction of an anonymous signature scheme using
an ordinary signature scheme, a one-way hash function, and a pseudorandom
generator secure with respect to the hash function. For the signature scheme, it
is required that it is unforgeable, and the public key size and the signature size
are constant for all users (for any security parameter k).

Let Σ = (Par, Gen, Sig, Vf) be a signature scheme. When k is the security
parameter, let lp(k) and ls(k) be the bit length of a public key pk and the
bit length of a signature, respectively. We need a collision-resistant function
H : {0, 1}l0(k) → {0, 1}l1(k), and a pseudorandom generator G : {0, 1}l0(k) →
{0, 1}lp(k)+ls(k), where l0(k), l1(k), lp(k), and ls(k) are some polynomial functions
of k. We construct an anonymous signature Σ′ = (Par′, Gen′, Sig′, Vf ′) using
these as follows:

function Par′(1k)
P ← Par(1k)
P ′ ← P∥G∥H
return P ′

function Gen′(P ′)
Parse P ′ as P∥G∥H
(pk , sk)← Gen(P )
pk ′ ← pk∥G∥H
sk ′ ← sk∥pk∥G∥H
return (pk ′, sk ′)

function Sig′(sk ′, m, τ)
Parse sk ′ as sk∥pk∥G∥H
return ((pk∥Sig(sk , m∥H(τ)))⊕G(τ)) ∥H(τ)

function Vf ′(pk ′, m, σ, τ)
Parse pk ′ as pk∥G∥H
Parse σ as σ1∥σ2

if σ2 ̸= H(τ) then
return false

Parse σ1 ⊕G(τ) as σ3∥σ4

return (σ3 = pk) ∧Vf(pk , m∥σ2, σ4)



The properties we require of H and G are as follows. First, for the function
H, we want it to be collision resistant: for any polynomial-time adversary A, the
advantage Advcr

H,A(k) defined as

Advcr
H,A(k) def= Pr[Exprcr

H,A(k) = true]

is negligible in the following experiment:

Experiment Exprcr
H,A(k)

(τ, τ ′)← A(1k)
if τ ̸∈ {0, 1}l0(k) or τ ′ ̸∈ {0, 1}l0(k) then

return false
return τ ′ ̸= τ ∧H(τ ′) = H(τ)

Note that we do not call H a hash function, because we do not require H to
compress; the domain of H does not have to be larger than the codomain.

For the pseudorandom generator G, we want G(τ) to be pseudorandom even
when H(τ) is exposed. More precisely, for any polynomial-time adversary A, the
advantage Advprg

G,H,A(k) defined as

Advprg
G,H,A(k) def=

∣∣∣Pr[Exprprg-1
G,H,A(k) = 1]−Pr[Exprprg-0

G,H,A(k) = 1]
∣∣∣

is negligible, where experiments Exprprg-b
G,H,A (b = 0, 1) are defined as follows:

Experiment Exprprg-b
G,H,A(k)

τ
R← {0, 1}l0(k)

R0
R← {0, 1}lp(k)+ls(k)

R1 ← G(τ)
b′ ← A(1k, Rb, H(τ))
return b′

When G satisfies the above, we call G to be a pseudorandom generator with
respect to H.

It is not difficult to instantiate the pair G and H satisfying the above. Indeed,
it can be trivially instantiated in the random oracle model, and in the standard
model, we may construct one from a one-way permutation: given a one-way
permutation π : {0, 1}l0(k) → {0, 1}l0(k) and its hard-core bit b : {0, 1}l0(k) →
{0, 1}, we can use the standard Blum-Micali construction [2] based on hard-core
bits:

G(τ) def= b(πL(τ))∥b(πL−1(τ))∥ · · · ∥b(π2(τ))∥b(π(τ)),

where L = lp(k) + ls(k). H can then simply be defined as H(τ) def= πL+1(τ). It
is well known that G(τ)∥H(τ) itself is computationally indistinguishable from a
uniformly random bitstring, so G is a pseudorandom generator with respect to
H, and because H is a one-way permutation, it is trivially collision resistant.

Using stronger assumptions, we may instantiate G and H more efficiently.
For example, one can use decisional Diffie-Hellman assumption or its hashed



variants to construct G and H: let G be a cyclic group of prime order, and let g
be a random generator of G and h a random element of G. If the decisional Diffie-
Hellman assumption holds, then (g, h, gr, hr) and (g, h, gr, k) for a uniformly and
independently chosen k

R← G are indistinguishable. Then G(r) def= hr, H(r) def= gr

satisfies the required properties.

Remark 2. The above construction is aimed at preserving not only unforgeability
but also strong unforgeability. If we are interested only in preserving unforgeabil-
ity, then we may simplify the construction a little: Sig′(sk ′, m, τ) can be defined
as

Sig′(sk ′, m, τ) def= ((pk∥Sig(sk , m))⊕G(τ)) ∥H(τ)

Remark 3. Our generic construction is similar to the construction given by
Zhang and Imai in Section 4.2 of their paper [8]. We note that care is needed for
that construction: in our notation, they defined Sig′(sk ′, m, τ) to be Sig(sk , m∥τ)⊕
G(τ). In their construction, it is not sufficient for G to be a pseudorandom
generator. This is because Sig(sk , m∥τ) and G(τ) are correlated by the hidden
variable τ . In order to prove anonymity of this construction, G has to look
pseudorandom even when Sig(sk , m∥τ) is exposed: for example, suppose we are
given an unforgeable signature Sig(). Using this, we construct Sig(sk , m∥τ) def=
Sig(sk , m∥τ) ⊕G(τ), i.e., in order to sign a message with length larger than or
equal to l0(k), sign the message and xor it with the output of the pseudorandom
generator for the last l0(k) bits of the message. In that case, the construction of
Zhang and Imai gives Sig′(sk ′, m, τ) = Sig(sk , m∥τ) ⊕ G(τ) = Sig(sk , m∥τ). If
Sig leaks information about pk corresponding to sk , then so does Sig′.

Note that in contrast to our construction, they allow G to be different between
different users, so this example is not directly applicable. But still G has to be
a pseudorandom generator satisfying the stronger property.

5.2 Security of the generic construction

Theorem 1. Given an ordinary signature scheme Σ, consider the scheme Σ′

defined in the previous subsection. If Σ is unforgeable, then Σ′ is a secure un-
forgeable anonymous signature. Moreover, Σ′ is both anonymous and unpretend-
able with respect to full key exposure. Also, if Σ is strongly unforgeable, then Σ′

is also a secure strongly unforgeable anonymous signature.

Proof. We only give proof for the case when the underlying signature scheme Σ
is strongly unforgeable, because the other case can be proved similarly.

First, let us prove the strong unforgeability of Σ′. Suppose that A is an
adversary attacking strong unforgeability of Σ′. Then using A, we construct
an adversary B which attacks strong unforgeability of Σ, and an adversary C
attacking collision resistance of H, and together satisfying

Advsuf-cma
Σ′,A (k) ≤ Advsuf-cma

Σ,B (k) + Advcr
H,C(k).

The adversary B is given a public key pk of Σ, and the corresponding signing
oracle Sig(sk , ·). B computes pk ′ ← pk∥G∥H, and gives it to A. B keeps a list



L which is initialized to an empty set. And, B answers the signing query of A
as follows: for signing query of (m, τ), B appends τ to the list L, and calls its
own signing oracle with query m∥H(τ). When it obtains its answer σ, B returns
σ′ = ((pk∥σ)⊕G(τ))∥H(τ). Note that the simulation is perfectly done according
to the description of Σ′. Suppose that A halts with output (m∗, σ∗, τ∗). Then
B first checks if L contains any τ with τ ̸= τ∗ and H(τ) = H(τ∗). In that case,
B halts with some arbitrary output. If L does not contain any such element,
then B parses σ∗ as σ1∥σ2, parses σ1 ⊕ G(τ∗) as σ3∥σ4, and halts with output
(m∗∥σ2, σ4).

Now, the description of C is almost identical to that of B: C provides the same
simulation for A as B, up to the step where A halts with output (m∗, σ∗, τ∗).
C also checks if L contains any τ with τ ̸= τ∗ and H(τ) = H(τ∗), and in that
case, halts with output (τ, τ∗). Otherwise, L halts with some arbitrary output.

We show that, whenever the output (m∗, σ∗, τ∗) of A is a successful forgery
for Σ′, then either B finds an element τ ∈ L such that τ ̸= τ∗ and H(τ) =
H(τ∗), or (m∗∥σ2, σ4) is a successful forgery for Σ. Suppose that (m∗, σ∗, τ∗)
is a successful forgery for Σ′, and also that no τ ∈ L satisfies τ ̸= τ∗ and
H(τ) = H(τ∗). From the definition of Vf ′, since Vf ′(sk ′, m∗, σ∗, τ∗) = true, it
is necessary that also Vf(sk , m∗∥σ2, σ4) = true holds. Therefore, in this case
the only way that (m∗∥σ2, σ4) is not a successful forgery of Σ is that B has
called its signing oracle with message m∗∥σ2 and obtained σ4 as the reply. The
implies that A has made a signing query (m∗, τ), and H(τ) = σ2. But since
Vf ′(sk ′, m∗, σ∗, τ∗) = true, also σ2 = H(τ∗). From the assumption, it follows
that τ = τ∗, and in that case the signing query (m∗, τ) = (m∗, τ∗) of A must
have answered as ((pk∥σ4)⊕G(τ∗))∥H(τ∗) = σ∗, which means that (m∗, σ∗, τ∗)
is not new, so invalid, but this is contradiction.

Therefore, whenever A successfully forges for Σ′, as long as L does not con-
tain τ with τ ̸= τ∗ and H(τ) = H(τ∗), B also forges successfully for Σ. But the
probability that L contains such an element in the simulation of B is precisely
the success probability of C, because C provides the identical simulation for A
as B. This proves the claimed inequality.

Next, we show that Σ′ satisfies anonymity with respect to full key exposure.
Suppose that A = (A1,A2) is an adversary attacking anonymity of Σ′. Using A,
we construct B attacking pseudorandomness of G with respect to H, satisfying

Advanon-fke
Σ′,A (k) = 2Advprg

G,H,B(k).

Consider experiment Exprprg-b
G,H,B with respect to this adversary B. A random

τ
R← {0, 1}l0(k) is chosen, R0 and R1 are defined as R0

R← {0, 1}lp(k)+ls(k), R1 ←
G(τ), and (1k, ρ1, ρ2) = (1k, Rb, H(τ)) is given to B.
B flips a coin b′

R← {0, 1}, and provides the following simulation for A. Us-
ing the security parameter k, B generates the common parameter P , and two
key pairs (pk ′0, sk

′
0), (pk ′1, sk

′
1), and runs A1(pk ′0, pk

′
1, sk

′
0, sk

′
1), which halts with

output (m∗, st). Then B computes σ′∗ as follows:

σ′∗ ← ((pk b′∥Sig(sk b′ , m
∗∥ρ2))⊕ ρ1)∥ρ2.



B runs A2(σ′∗, st), which halts with output b′′. If b′′ = b′, then B outputs 1, and
otherwise B outputs 0 and halts.

Note that when b = 1, B provides to A a perfect simulation of anonymity
experiment with full key exposure, with respect to b′. On the other hand, when
b = 0, ρ1 is an independent uniform random bitstring so σ′∗ does not give any
information about the bit b′. Therefore, when b = 1, the probability that B
outputs 1 is equal to

1
2

(
Pr

[
Expranon-fke-1

Σ′,A (k) = 1
]

+ Pr
[
Expranon-fke-0

Σ′,A (k) = 0
])

.

And when b = 0, the output b′′ of A should be independent from b′, hence the
probability that B outputs 1 is equal to

1
2

(Pr[b′′ = 1 | b′ = 1] + Pr[b′′ = 0 | b′ = 0])

=
1
2

(Pr[b′′ = 1] + Pr[b′′ = 0]) =
1
2
.

Then,

Advprg
G,H,B(k) =

∣∣∣Pr[Exprprg-1
G,H,B(k) = 1]−Pr[Exprprg-0

G,H,B(k) = 1]
∣∣∣

=
∣∣∣∣12 (

Pr
[
Expranon-fke-1

Σ′,A (k) = 1
]

+ Pr
[
Expranon-fke-0

Σ′,A (k) = 0
])
− 1

2

∣∣∣∣
=

1
2

∣∣∣Pr
[
Expranon-fke-1

Σ′,A (k) = 1
]
−Pr

[
Expranon-fke-0

Σ′,A (k) = 1
]∣∣∣

=
1
2
Advanon-fke

Σ′,A (k).

Finally, let us show that Σ′ satisfies unpretendability with respect to full key
exposure. Suppose that A = (A1,A2) is an adversary attacking unpretendability
of Σ′. Using A, we construct an adversary B attacking collision resistance of H.
B is given the security parameter k, and using this, generates common param-
eters and two key pairs (pk ′, sk ′), (pk ′∗, sk ′∗), and runs A1(pk ′∗, sk ′∗, pk ′, sk ′)
and obtains an output (m∗, st). B then randomly picks τ∗

R← {0, 1}l0(k), com-
putes σ′∗ ← Sig′(sk ′∗, m∗, τ∗), and runs A2(σ′∗, τ∗, st) and obtains an output
τ . Then B halts with output (τ, τ∗). This simulation of the full-key exposure
unpretendability experiment for A by B is perfect.

In order to analyze the advantage of B, let us define the following function:

PCΣ(k) def= Pr[pk = pk∗ |P ← Par(1k); (pk , sk)← Gen(P ); (pk∗, sk∗)← Gen(P )].

PCΣ(k) measures the probability of public-key collision, which has to be
negligible in any sane signature scheme. Indeed, if PCΣ(k) is not negligible, then
an adversary may generate his own key pair (pk ′, sk ′), and compute a signature
σ ← Sig(sk ′, m) which has non-negligible probability of passing verification with
respect to pk, when pk = pk ′.



We show that

Advup-fke
Σ′,A (k) ≤ Advcr

H,B(k) + PCΣ(k).

We claim that, in the above simulation, whenever A succeeds breaking un-
pretendability of Σ′, that is, Vf ′(pk ′, m∗, σ′∗, τ) = true, then either pk = pk∗,
or B also succeeds breaking collision resistance of H. Indeed, from the definition
of Σ′, σ′∗ = (pk∗∥Sig(sk∗, m∗∥H(τ∗)))⊕G(τ∗)∥H(τ∗) holds, and in order that
Vf ′(pk ′, m∗, σ′∗, τ) = true, it is necessary that H(τ) = H(τ∗). Now, if τ ̸= τ∗,
then the output (τ, τ∗) of B is a valid collision pair. On the other hand, if τ = τ∗,
then in order that Vf ′(pk ′, m∗, σ′∗, τ) = true, it is necessary that pk = pk∗. ⊓⊔

5.3 Boneh-Boyen short signature

Here we give a brief description of the Boneh-Boyen signature scheme for com-
pleteness.

Parameter generation A bilinear group (G1, G2) with a pairing e : G1 ×
G2 → GT , where |G1| = |G2| = |GT | = p for some prime p, is chosen. The
message space is Zp, which gives no essential problem since the domain can
be extended by using a target collision resistant hash function.

Key generation Key generation algorithm chooses random generators g1 and
g2 of G1 and G2, respectively, and chooses x, y

R← Z∗p, computes u ← gx
2 ∈

G2, v ← gy
2 ∈ G2, z ← e(g1, g2) ∈ GT . Then, pk def= (g1, g2, u, v, z), and

sk def= (g1, x, y).
Signing For a secret key (g1, x, y) and a message m ∈ Zp, the signing algorithm

chooses τ
R← Zp \ {−x+m

y }, and computes σ ← g
1/(x+m+yτ)
1 ∈ G1. Then the

signature is the pair (σ, τ).
Verification For a public key (g1, g2, u, v, z), a message m, and a signature

(σ, τ), the verification can be done by checking whether e(σ, u · gm
2 · vτ ) = z.

5.4 Security of Boneh-Boyen as an anonymous signature

The Boneh-Boyen short signature can be naturally considered as an anonymous
signature, by regarding τ in (σ = g

1/(x+m+yτ)
1 , τ) as the verification token. To

be precise, because τ should not be equal to −(x + m)/y modulo p, we need to
make slight modifications both to the signature scheme and to the formalism
itself; for example, instead of choosing τ uniformly from Zp \ {−(x + m)/y}, τ
may be chosen uniformly from Zp, and instead the signing algorithm may be
allowed to fail in the negligible possiblity that τ = −(x + m)/y.

Then, the Boneh-Boyen short signature scheme becomes a secure anony-
mous signature scheme. In fact, it satisfies the strongest security properties; it
is strongly unforgeable, anonymous with full key exposure, and unpretendable
with full key exposure.



Strong unforgeability Because our definition of strong unforgeability for
anonymous signatures is identical to the ordinary definition of strong unforge-
ability, the proof of Boneh and Boyen for the strong unforgeability of the short
signature scheme is directly applicable. Their proof is based on the SDH assump-
tion on bilinear groups (G1, G2).

Anonymity with full key exposure For a message m ∈ Zp chosen by the
adversary, consider the distribution of the signature σ, where σ = g

1/(x+m+yτ)
1 ,

for uniformly chosen token τ
R← Zp, when the secret key (g1, x, y) is given to

the adversary. Then, even conditioned on g1, x, m, and y, still 1/(x + m + yτ)
has uniform distribution on Z∗p ∪ {⊥}, and σ has uniform distribution on (G1 \
{1}) ∪ {⊥}. Because this is true for any secret key (g1, x, y), we conclude that
the Boneh-Boyen short signature scheme is anonymous with full key exposure.

Unpretendability with full key exposure We will prove unpretendability
of Boneh-Boyen signature with full key exposure, under the discrete logarithm
assumption on the group G1.

Suppose that A is an unpretendability adversary. Using A, we may construct
a discrete logarithm solver D which, given (g, h = gα) for a generator g of G1

and α
R← Z∗p, finds the discrete logarithm α = logg(h) as follows.

The solver D gives simulation of the unpretendability experiment for the
adversary A. D chooses β

R← Z∗p, defines g1 ← hβ , g∗1 ← gβ , and chooses g2, g∗2
as random generators of G2. D then chooses x, y, x∗, y∗

R← Z∗p, defines u← gx
2 ,

u∗ ← (g∗2)x∗ , v ← gy
2 , v∗ ← (g∗2)y∗ , z ← e(g1, g2), and z∗ ← e(g∗1 , g∗2). Then

pk def= (g1, g2, u, v, z), sk def= (g1, x, y), pk∗ def= (g∗1 , g∗2 , u∗, v∗, z∗), sk∗ def= (g∗1 , x∗, y∗),
and (pk , sk) and (pk∗, sk∗) are given to A. Note that these key pairs are chosen
with the identical distribution as in the original experiment. Also, we give the
secret keys sk , sk∗ to the adversary because here we are considering the full key
exposure.

The adversary A will output the target message m∗ ∈ Zp. Then the solver
D chooses τ∗

R← Zp, computes σ∗ ← (g∗1)1/(x∗+m∗+y∗τ∗), and returns (σ∗, τ∗) to
A. After more computation, A will output τ . Using the output τ , D outputs the
following:

α′ ← x + m∗ + yτ

x∗ + m∗ + y∗τ∗
.

Let us prove that α′ = α whenever the output τ of A is a successful unpre-
tendability attack. Suppose that is the case. This means that (m∗, σ∗, τ) passes
the verification with respect to the public key pk . This is equivalent to the
condition that (σ∗)x+m∗+yτ = g1. But also from the definition of σ∗, we have
(σ∗)x∗+m∗+y∗τ∗ = g∗1 . Since g1 = hβ and g∗1 = gβ by the definition, it follows
that

h = gα = g
x+m∗+yτ

x∗+m∗+y∗τ∗ .



This proves that D outputs the correct discrete logarithm logg(h) whenever A
succeeds the unpretendability attack.

6 Conclusion

We re-examined the formal definition of an anonymous signature first proposed
by Yang et al. [7], and showed that the formalism is inadequate in a few aspects.
We fixed the formalism by relying on an explicitly given randomness instead of
hidden residual randomness in the message, and moved it from the message to the
signature itself. We also identified a crucial property of an anonymous signature
which we call unpretendability. We realized our definition, by providing a generic
construction out of any ordinary signature scheme. Finally, we examined the
short signature of Boneh and Boyen [3], and showed that it can be naturally
regarded as an anonymous signature, which is provably secure in the standard
model.
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