Automorphic Signatures in Bilinear Groups

Georg Fuchsbauer

Ecole normale supérieure, LIENS - CNRS - INRIA, Paris, France
http://www.di.ens.fr/ fuchsbau

Abstract. We call signature schemes in bilinear groups automorphic if they have the following
properties: the verification keys lie in the message space, messages and signatures consist of
group elements only, and verification is done by evaluating a set of pairing-product equations.
These signatures make a perfect counterpart to the powerful proof system by Groth and Sahai
(Eurocrypt 2008). We give practical instantiations under appropriate assumptions and an ex-
tension yielding blind signatures. To illustrate their usefulness in combination with Groth-Sahai
proofs, we efficiently instantiate a series of recent primitives ensuring user anonymity.

1 Introduction

One of the main goals of modern cryptography is anonymity. Group signatures [Cv91] let members who
were enrolled by a group manager sign on behalf of a group while not revealing their identity; using
an anonymous credential [Cha85], a user can prove that she holds a credential, and at the same time
remain anonymous; blind signatures [Cha83] were introduced for electronic cash to prevent linking of
a coin to its spender; and there are numerous other primitives addressing users’ privacy concerns.

Security of such primitives is typically analyzed by defining a security model, which is then proven
to be satisfiable in theory under general assumptions. Let us consider the example of dynamic group
signatures by Bellare et al. [BSZ05]. To show feasibility of their model, they give the following generic
construction:

Assume the existence of a signature scheme, an encryption scheme and general zero-knowledge
proofs. The group manager publishes a signature verification key and uses the corresponding signing
key to issue certificates on the group members’ personal verification keys. The latter produce a group
signature on a message by first signing it with their personal signing key; the group signature is then an
encryption of the user’s certificate, her verification key, and the signature on the message, completed
by a zero-knowledge proof that the signatures in the plaintext are valid. The fact that a signature is
a ciphertext and a proof leaking no information guarantees user anonymity.

For a long time the silver bullet to efficiently implement such primitives was to rely on the random-
oracle heuristic [BR93]. Due to a series of criticisms starting with [GKO03|, more and more practical
schemes are proposed in the standard model. Groups with a bilinear map (“pairing”) turned out to
be a particularly attractive tool to achieve efficiency. Many instantiations use ad hoc constructions,
since the generic ones—in particular zero-knowledge proofs—are by far too inefficient.

The Groth-Sahai proof system. Recently, Groth and Sahai [GS08] proposed efficient zero-
knowledge proofs for a large class of statements over bilinear groups, which already found use in
many implementations [Gro07,GL07,BCKL08,BCC*09]. They proceed by constructing witness indis-
tinguishable (WI) proofs of satisfiability of various types of equations. Basically, given a witness one
makes commitments to its values and then constructs proofs asserting that the committed values
satisfy the equations. As already observed by [Gro06], the most interesting type, which also found
most applications, is the following: pairing-product equations (PPE) whose variables are elements of

the bilinear group. An equation consists of products of pairings applied to the variables and constants
from the group. Since the employed commitments to the witnesses are extractable, the resulting proofs
actually even constitute proofs of knowledge.

To efficiently instantiate the BSZ-model, Groth [Gro07] instantiates encryption and the proofs of
plaintext validity with this WI proof system (to achieve anonymity against adversaries with opening
oracles, he actually has to add some extra encryption; cf. Sect. 6.1). Extractability of the commit-
ments used in the proofs serves two purposes: first, it lets the opener extract the user’s verification
key and thus trace the signer; second, unforgeability of group signatures can be directly reduced to
unforgeability of the underlying signatures.

For the Groth-Sahai methodology to be applicable, Groth gives certification and signing schemes
such that certificates, signature verification keys and signatures (i.e., the components that need to be
hidden) are group elements whose validity is verified by evaluating PPEs.

Signatures and the Groth-Sahai Proof System. The first instantiations to use Groth-Sahai-
like proofs were the group signatures by Boyen and Waters [BW06,BW07] (although they developed
their purpose-built proofs independently). They require a weakly secure! signature scheme whose
components and messages can be encrypted (committed to) and proven to be valid. To sign messages
from the group, they modify the weak Boneh-Boyen signatures [BB04], which consist of a group
element, on a scalar message: instead of giving the scalar directly, they give it as an exponentiation
of two different group generators. Security of their construction holds under the hidden strong Diffie-
Hellman assumption (HSDH) a variant of the strong Diffie-Hellman assumption (SDH) [BB04].

Belenkiy et al. [BCKLO8| apply the Boneh-Boyen [BB04] transformation “from weak to strong
security” to the Boyen-Waters signature scheme. This way they obtain fully secure signatures, at
the price of introducing a rather strong assumption termed “triple Diffie-Hellman” (TDH). Their
signatures are group elements, yet the messages are scalars. To construct anonymous credentials, they
make commitments to a message and a signature on it and prove that their content is valid using
Groth-Sahai proofs. Since from these commitments only group elements can be extracted efficiently
(and one would have to compute discrete logarithms to recover the message), they need to define
f-extractability, meaning that only a function of the committed value can be extracted.

Let us reconsider Groth’s group signatures in [Gro07]. The certification of user verification keys
is based on different mechanisms than the signatures under these keys. Moreover, the certificate-
verification key is an element of the target group. As opposed to plain group signatures, in hierarchical
group signatures [TWO05] or anonymous proxy signatures [FP08], verification keys are not only certified
once, but must also serve to certify other keys—requiring thus keys to take the form of messages. If we
want to apply the Groth-Sahai methodology to “anonymize” such schemes and prove unforgeability
notions by reduction to security of the underlying signatures, everything has to be in the group.

We identify the all-purpose building block to efficiently instantiate more intricate primitives for
which anonymity is requisite as the following: a practical signature scheme secure against adaptive
chosen-message attacks that can sign its own verification keys; and which at the same time respects
the pairing-product paradigm; that is, keys, messages and signatures consist of group elements and the
signature verification relations are PPEs. We call such a scheme an automorphic signature, since it is
able to sign its own keys and verification preserves the structure of keys and messages, which makes it
perfectly suitable to be combined with Groth-Sahai proofs. We note that a scheme in Groth [Gro06],
based on the decision linear assumption [BBS04], satisfies all the above properties, but should rather
be regarded as a proof of concept due to its inefficiency (a signature consists of hundreds of thousands
of group elements).

We believe that working with group elements enables a modular approach of combining signatures
with Groth-Sahai proofs, and automorphic signatures are the tailor-made building block to do so.

1
We call a signature scheme weakly secure if an adversary getting signatures on random messages is unable to come up
with a new signed message.

As demonstrated in Sect. 6, together they yield straightforward efficient implementations of generic
constructions, by simply plugging in concrete schemes for generic ones.

Our Contribution

After formally defining automorphic signatures, we give two practical instantiations over bilinear
groups (Sect. 4). Recently, Fuchsbauer et al. [FPV09] introduced a variant of HSDH, termed double
hidden SDH (DHSDH). We observe that their assumption immediately yields weakly secure signatures
on messages consisting of group elements.

We make their scheme secure against chosen-message attacks by adding some randomness anal-
ogously to the transformation of [BB04]. Security of the resulting scheme requires an additional as-
sumption which can be considered quite mild though (cf. Assumption 3): it is a non-parametrized
non-interactive falsifiable assumption in the flavor of CDH, whose validity in the generic group model
[Sho97] is immediate. Our second instantiation improves on efficiency and is secure under yet another
variant of HSDH, termed DAHSDH (“asymmetrically hidden”, cf. Assumption 2), which we also prove
secure in the generic group model. Its signatures consist of 5 group elements.

In Sect. 5, we give extensions of our scheme: we show how to sign vectors of messages and in
particular we give blind automorphic signatures. In Sect. 6, we show exemplary applications of our
scheme: we construct CCA-secure group signatures, revisit the construction of non-interactive creden-
tials of [BCKLO0S]|, and then give our main application: The first efficient instantiation of anonymous
prozy signatures (APS), a generalization of group signatures, in the full model of [FP08] without
random oracles.

This primitive enables users (“original signers”) to delegate others to sign in their name; the latter
can either sign or re-delegate to other users. Anonymity ensures that from a proxy signature one cannot
tell who signed and who re-delegated; however one can be sure that the proxy signer was delegated by
the original signer. As for group signatures, an algorithm to revoke anonymity to deter from misuse is
also provided. Due to consecutiveness of delegation, this primitive models at the same time hierarchical
group signatures satisfying a security model generalizing the one of [BSZ05]. In Sect. 6.4, we define the
following additional security notions for APS in order to allow for a convergence towards delegatable
anonymous credentials [BCCT09] (see below):

— When signing rights are re-delegated, the previous delegators remain anonymous even to the
delegatee.

— We give a protocol for blind delegation: A user can be delegated without revealing her identity.

— Finally we show how to sign messages on behalf of several users simultaneously.

We then give an efficient instantiation of the extended model, which nicely illustrates the benefits
of automorphic signatures: combined with the Groth-Sahai proof system, they enable straightforward
practical realization of generic concepts. Note that it is precisely the lack of an efficient automorphic
signature that accounts for the necessity of a strong assumption for the first instantiation of APS
[FP09], as well as for its impracticality.

APS vs. DAC. Delegatable anonymous credentials (DAC) were recently defined by Belenkiy et
al. [BCC109]. Although they are incomparable to our extended model of APS, there are substantial
similarities between them: both provide mechanisms enabling users to prove possession of certain rights
while remaining anonymous; and both consider re-delegation of the received rights.

The core of DAC is a protocol allowing a user to obtain a proof of knowledge of a signature
on her secret key, without revealing the identity of neither the signer nor the user. This imposes
interactivity of the delegation process, while (non-blind) delegations for APS are non-interactive, even
when previous delegators remain anonymous. (We show how to achieve delegatee anonymity at the
expense of non-interactivity). Further differences are that DAC merely deal with authentication rather
than signatures, and they do not provide tracing mechanisms.

2 Preliminaries

2.1 Primitives

We start with reviewing some standard concepts from the literature.

Commitments. A non-interactive commitment scheme is composed of an algorithm Setupc,,,, out-
putting a commitment key ck, and an algorithm Com with arguments ck, a message M and random-
ness p. We require that (1) the scheme is perfectly binding, i.e., for a commitment c there exists only
one M s.t.: ¢ = Com(M, p) for some p; (2) the scheme is computationally hiding, in particular, there
exists SmSetupc,,, outputting keys that are computationally indistinguishable from those output by
Setupcom, and which generate perfectly hiding commitments.

Digital Signatures. A digital signature scheme consists of the following algorithms: Setupg;, outputs
public parameters pp. KeyGeng;, outputs a pair (vk, sk) of verification and signing key. Sign(sk, M)
outputs a signature o, which is verified by VerifySig(Vk, M, o). Signatures are existentially unforgeable
under chosen-message attack (EUF-CMA) [GMRSS] if no adversary, given vk and a signing oracle for
messages of its choice, can output a pair (M, o) s.t. M was never queried and Verify(vk, M, o) = 1.

Blind Signatures. Blind signatures [Cha83,PS00] extend digital signatures by an interactive protocol
Issue <= Obtain between the signer and a user allowing the latter to obtain a signature on a message
hidden from the signer. Okamoto [Oka06| defines the following security requisites: Blindness: An
adversary impersonating the signer interacting with Obtain twice for messages of its choice cannot
relate the resulting signatures to their issuings. Unforgeability: No adversary interacting ¢ — 1 times
with Issue can output ¢ different messages and valid signatures on them.

Bilinear Groups. A (symmetric) bilinear group is a tuple BG = (p,G,Gr,e,G) where G and Gr
are two cyclic groups? of prime order p, G is a generator of G, and e: G x G — G is a non-degenerate
bilinear map, i.e., VX, Y € G Va,b € Z : e(aX,bY) = ¢(X,Y)?%, and ¢(G, G) generates Gr.

The Decision Linear (DLIN) Assumption, introduced by Boneh et al. [BBS04], in a bilinear group
(p, G, Gr, e, G) states that given (aG, BG,raG, spG, tG) for random «, 3,1, s € Zy, it is hard to decide
whether ¢t =r + s or t is random.

Throughout the paper, we will assume two fixed generators G, H of G. We call a pair (4, B) € G?
a Diffie-Hellman pair (w.r.t. (G, H)), if there exists a € Z, such that A = aG and B = aH. Using the
bilinear map e, such pairs are efficiently decidable by checking e(A, H) = e(G, B). We let DH denote
the set of DH pairs and implicitly assume them to be w.r.t. G and H.

2.2 Groth-Sahai Proofs for Pairing-Product Equations

We will use Groth-Sahai witness-indistinguishable (WT) proofs of satisfiability of pairing-product equa-
tions [GS08]. A pairing-product equation (PPE) is an equation over variables)i,...,), € G of the

form
n

n n
[Tea) T[T T ey = tr (E)
i=1 i=1j=1
determined by A; € G, v;; € Z, and tr € Gp, for 1 <i,j5 < n.

We will use the DLIN-instantiation of the proof system, built as follows: Setupag(BG) takes a
bilinear group BG = (p,G,Gr,e,G) and outputs a perfectly-binding linear commitment key ck € G°.
Given an assignment); <+ X;, for X; € G, satisfying F, one first commits to the values X; by choosing
randomness p; and setting cy, := Comgg(ck, X;, p;) for all i. Running Provegs(ck, E, (X;, pi)i'_;)

2 Following [GS08], we denote G additively and Gt multiplicatively. We denote the neutral element of G by 0.

generates a proof® ¢ € G3*3 asserting that the values committed in cy, satisfy E, which is verified
by Verifyqg(ck, E, (cx,)i 1, ¢). An honestly computed proof on commitments to a satisfying vector is
always accepted by Verifyqg.

Security. Soundness. There exist algorithms ExSetupgg and Extractgg. The first outputs (ck, ek)
s.t. ck is indistinguishable from one output by Setupgg. Given the extraction key ek and commitments
cx s.t. Verifygg(ck, E, cx, ¢) = 1 for some ¢, algorithm Extractgg returns a vector X satisfying F.
Witness Indistinguishability (WI). There exists an algorithm SmSetupgg outputting ck™ that is
computationally indistinguishable from one output by Setupgg. A commitment Comgs(ck™, X, p) is
perfectly hiding, i.e., given ¢ then for any X there exists randomness p s.t. ¢ = Comgs(ck™, X, p).
Moreover, given values ((X1,p1),...,(Xn,pn)) and (X7, 0)),--., (X}, pl,)) such that for all i we have
Comgs(ck, X, pi) = Comgs(ck, X/, p), and (X1, ..., X,) and (X{,..., X)) both satisfy E, it holds that
Provegs(ck™, E, (X;, pi)!_,) and Provegs(ck®, E, (X, p;)"_,) generate the same distribution of proofs.

Examples. (1) Proof of Two Commitments Containing the Same Value. Let Eequal(X1, X2) denote
the equation e(X1,G)e(X2,G!) = 1. Given two commitments cy; = Comgg(ck, M, p) and cy =
Comgs(ck, N, o), Prove(ck, Ecqual; (M, p), (IV,0)) proves that cjr and ¢y commit to the same value.
(2) Proof of Commitments to a DH-Pair. Define Epy(X,Y) as e(X, H)e(Y,G™!) = 1. A proof
for Equation Epy yields a 3-element proof showing that the values in two commitments are in DH.

Zero-Knowledge Proofs. Groth and Sahai also define algorithms ZKProvegs and ZKVerifyog (and
further ones to simulate) to construct non-interactive zero-knowledge (NIZK) proofs for equations E
whose right-hand side t7 is of the form e(71,75) for given 71,75 € G (which is the case for all our
equations).

Randomizing Groth-Sahai Proofs. As observed by [FP09] and [BCC*09] and formalized by the
latter, Groth-Sahai WI proofs can be randomized: There exists an algorithm RdComgg that on input ck,
a commitment ¢ and fresh randomness p outputs a randomization of ¢ under p. A proof ¢ for an equa-
tion E and commitments (cy,...,¢,) can be adapted to the randomizations ¢; = RdComgs(ck, c;, p;)
by running RdProofggs(ck, E, (c;, pi)i_,) yielding ¢ such that Verifyqg(ck, E, (c))? 1, ¢') = 1. (Basi-
cally, if ¢; = Comgs(ck, X;, 0;) then ¢, = Comgs(ck, X;, 0; + p;) and ¢’ is distributed as proofs output
by Provegs(ck, E, (Xi, 0 + pi)i—,); see [FPV09, Sect. 5] for a concise overview.)

3 Assumptions

We first restate the assumption from [FPV09] and then introduce two new ones.
Assumption 1 (¢-DHSDH). Given (G, H,K,X =x2G) € G* and q — 1 tuples

(Ai = ﬁcl(K + ’UZ'G), Ci=c¢G, Di=cH, V;,=v,G, W; = UIH);];ll , for ¢, vy — Zp,

it is hard to output a new tuple (A*,C*, D*, V* W™*) that satisfies
e(A", X +C")=e(K+V*G) e(C*,H) = e(G,D") e(V*H)=e(G,W*) . (1)

Argument. As pointed out by its inventors, under the Knowledge-of-Exponent Assumption (KEA)
[Dam92,BP04], hardness of ¢-DHSDH follows from hardness of the following problem:
g-SDH-III: Given (G,K,X =2G, (A; = (K +v;G), ci,vi)f:_ll), produce a new tuple (A%, ¢*,v*)

x+c;

satisfying e(A*, X + ¢*G) = e(K +v*G, G).

3 For general PPEs, the proof is in G**3. If E is a linear equation (i.e., v;,; = 0 for all i, j), then the proof reduces to 3
group elements. Note that in this context the word proof can either denominate “proof of satisfiability” (or language-
membership)—which thus includes the commitments—or mean a proof that the content of some given commitments
satisfies a given equation. We adopt the latter diction.

(KEA asserts that given (G, H), from an adversary returning (¢*G,c¢*H) and (v*G,v*H) one can
extract ¢* and v*.) They then show that hardness of ¢-SDH-III is implied by hardness of ¢-SDH, a
well-established assumption by now.

We introduce a variant of DHSDH that enables a more efficient instantiation of automorphic
signatures. The elements C; = ¢;G are now doubled by D; = ¢;F, i.e., with respect to a different
generator. This makes it possible to include an additional element ¥ = xH in the instance (if it is
given together with ¢; H, we arrive at an easy problem; cf. Appendix A.1).

Assumption 2 (¢-DAHSDH). Given (G,F,H,K,X =xG,Y =xH) € G and q — 1 tuples

(Ai = (K +vG), C; =G, D; =cF, Vi=vG, W; = UiH)q_l y o Jor ciyvi — Zyp,

z+c; =1

it s hard to output a new tuple (A*,C*, D*, V* W*) that satisfies
e(A", X +C*)=e(K+V*,G) e(C*,F) =e(G,D") e(V*H)=¢e(G,W*) . (2)

Due to the fact that we give Y = zH, the KEA-reduction to SDH does not apply here (given G, H, X
we would have to solve CDH to compute Y for the reduction). Instead, we directly prove that the
assumption holds in the generic group model [Sho97] in Appendix A.2.

Assumption 3 (HDL). Let G,H,T be random generators of G, let r be random in Z,. Given
(G, H,T,rG,rH,rT) € G, it is hard to output (M*, N*, R*, S*) € G* with M* # 0 and

e(R*,T) = e(M* + rT,G) e(M*, H) = e(G, N*) e(R* H) =e(G,S*) (3)

Argument. We show that under KEA, Assumption 3 is equivalent to the discrete-logarithm (DL)
assumption, thus a fortiori it holds in the generic group model. Let (G,T") be a DL-instance, i.e., we
have to compute t := log, 7. Let H be the group element for KEA. Choose r « Z, and give the
adversary (G, H,T,rG,rH,rT). From a successful output, by KEA, we can extract m* :=logo M* =
logy N* and r* := 1‘3%0 R* =logy S*. From (3), we have r*t = m* + rt for m* # 0, which means we

—_— m
can compute t = ..

When proving unforgeability of our signatures, our reduction will actually be to a variant of HDL,
which we prove equivalent:

Claim 1. For any q, hardness of HDL implies hardness of the following problem.

¢-HDL: Given (G,H, T, (r;G,r;H, riT)g;ll), for random r; € Zy, output a tuple (M*, N*, R*, 5*) such
that M* # 0 and for some i, (3) holds with r replaced by r;.

Proof. Let A be an adversary against ¢-HDL, and let (G,H,T,R,S,U) be an HDL-instance. For
1 <i<q—1, choose a random 7} < Z, and set R; := R+ .G, S; :==S+rH,U; :=U+7r;T. Run A
on (G, H, T, (R;,S;, Ui)gz_ll) and suppose A outputs a ¢-HDL solution (M*, N*, R*, S*).

Let ¢ be such that e(R*,T) = e(M* + U;,G). Then e(R* — r|G,T) = e(M* + U;,G) e(—7,G,T) =
e(M*+U+rT,G)e(—rT,G) =e(M*+U,G). So (M*,N*, R* —r|G,S* —r;H) is a solution for the
given HDL instance. O

4 Automorphic Signatures

Definition 1. An automorphic signature over a bilinear group (p, G, Gr, e, G) is an EUF-CMA secure
stgnature whose verification keys are contained in the message space. Moreover, the messages and
signatures consist of elements of G and are verified by evaluating pairing-product equations over the
verification key, the message and the signature.

DHSDH immediately yields a weakly secure signature scheme if we consider X as the public key,
(V,W) as a message in DH and (A,C, D) as the signature.* We show how to transform this into
a CMA-secure signature scheme by assuming HDL: We introduce some additional randomness that
lets us map a query for a message chosen by the adversary to a given tuple (A;, C;, D;, V;, W;) from
a DHSDH instance. HDL then basically asserts that the adversary cannot produce a signed new
message ((A*, C*,D*, R*, S*), (M*, N*)) that maps back to a tuple from the instance (see the proof
of Theorem 2).

Definition 2 (Sigppy). Given a bilinear group, ParGenppy chooses parameters (G, H,K,T) « G*,
which define the message space as DH = {(aG,aH) |a € Zy}, KeyGenppy, chooses a secret key x «— Zy,
and sets the verification key X = xG. A message (M,N) € DH is signed by Signgpy(z, (M, N))
outputting (A = %_i_C(K +rT+ M), C :=cG,D :=cH, R :=rG, S := ’I”H) for random c¢,r € Zy.
Verifyppy accepts a signature on a message (M, N) € DH if it satisfies

e(A, X +C)=e(K+M,G)e(T,R) e(C,H)=e(G,D) e(R,H)=¢(G,S5) .

Theorem 1. Under g-DHSDH and HDL, Siggppy s existentially unforgeable against adversaries mak-
ing up to ¢ — 1 adaptive chosen-message queries.

(We omit the proof as the one of Theorem 2 works almost identically.) The fact that the verification
keys are not in the message space is the only reason the scheme is not automorphic. However, the
following hybrid scheme Sigyppy with parameters (G, H, L, K, T') satisfies it:

We define a two-level scheme, using two instances of Sigppy. The first signs pairs (mG, mH),
whereas the messages for the second are of the form (mG,mL) (i.e., it uses a different parameter
L instead of H.) The public keys of Sig,ppy are formed as (zG,zL) too and signing a message
(mG,mL) is defined as follows: choose v « Z,, and first make a Sigppy-signature on the one-time key
(V :=vG,W :=vH). Now use v to produce a signature on (mG, mL) w.r.t. parameters (G, L, K, T).
The actual signature is the concatenation of the first parameter-H signature, the pair (V, W) and the
parameter-L signature on the message under key (V, W).

Security of the construction follows from a simple hybrid argument: forgeries using a new one-time
key are reduced to forgeries for the 15%-level scheme, whereas forgeries recycling a key from a signing
query are reduced to security of the 2"d-level scheme. A signature consists of 12 group elements
satisfying 7 PPEs. If we assume DAHSDH instead of DHSDH, we get the following, more efficient
construction, whose signatures consist of 5 group elements.

Definition 3 (Sigy). Setup,. Given (p,G,Gr, e, G), choose additional generators F, H, K,T € G.
KeyGen,. Choose sk =z < Z, and set vk = (zG,zH).
Signy. A signature on a DH-pair (M, N), valid under public key (xG,xH), is defined as

(A = IiC(K—H“T—i—M), C:=cG,D:=cF, R:=rG, S:= rH) , for random c,r — 7,

Verify,. (A,C,D, R, S) is valid on a valid message (M, N) under a valid public key vk = (X,Y) iff
e(A, X+C)=e(K+M,G)e(T,R) e(C,F) =e(G,D) e(R,H)=¢(G,S) (4)
(Key (X,Y) and message (M, N) are valid if e(X,H) = e(G,Y) and e(M,H) = e(G, N), resp.)

Theorem 2. Assuming q-DAHSDH and HDL, Sig 4 is existentially unforgeable against adversaries
making up to ¢ — 1 adaptive chosen-message queries.

4 Note that this is not the case for the ¢-HSDH assumption stating that given G, H, zG and g—1 triples (ﬁG7 ¢iG,c; H)

for random ¢; € Zy, it is hard to produce a new triple (14_%6’7 ¢*G,c"H) with ¢* # ¢;. We cannot regard (cG,cH) as
the message, since the signer must know c in order to produce I}HG.

Proof. Consider an adversary that after receiving parameters (G, F, H, K,T) and public key (X,Y)
is allowed to ask for ¢ — 1 signatures (A;, C;, D;, R;, S;) on messages (M;, N;) € DH of its choice and
outputs (M, N) € DH that it did not query and a valid signature (A, C, D, R, S) on it.

We distinguish two kinds of forgers: An adversary is called of Type I if its output satisfies

V1<i<g—1:e(R—R;T)#eM;—M,G), (5)

otherwise it is called of Type II. We will use the first type to break ¢-DAHSDH and the second type
to break ¢-HDL, which is equivalent to HDL by Claim 1.

Type I Let (G,F,H,K,X,Y,(A;,Cs, D;, Vi, W;)!_]') be a ¢—DAHSDH challenge. It satisfies thus
e(4;, X +C;) =e(K +V;,G) e(Ci, F) = e(G, D) e(Vi, H) = e(G,W;) (6)

Let A be a forger of Type I. Choose t < Z, and give parameters (G, F, H, K, T :=tG) and the public
key (X,Y) to A. The i-th query for (M;, N;) € DH is answered as (A;, Ci, Dy, R; == 1(V; — M),
S; = (Wi — N;)). It satisfies (4) and is correctly distributed since v; is random in the DAHSDH
instance. If the adverseray produces a valid signature/message pair ((A,C, D, R, S), (M, N)), then

(A,C,D,V :=tR+ M,W =S + N)

is a solution for the DAHSDH instance, since it satisfies (1) and it is a new tuple: if for some 4,
we had V =V, then tR + M = tR; + M;, and thus e(R,T)e(M,G) = e(R;,T) e(M;,G), which
contradicts (5).

Type I1 Let (G,H,T,(R; = r,G,S; = r;H,U; = riT)g:_ll) be an instance of ¢-HDL. Let A be a
forger of Type II. Pick I, K <+ G and z « Z,, set X := 2G, Y := oH and give the adversary
parameters (G, F, H, K,T) and public key (X,Y"). Answer a signing query on (M;, N;) by checking
e(M;, H) = e(G, N;) and if so, pick ¢; < Zj,, and return (ﬁq(K-FUH-Mi), ¢G,cF R;, Si). Suppose
A returns ((A,C, D, R, S), (M, N)) satisfying (4) s.t. for some i: e(R— R;,T) = e(M; — M, G). This
can be written as e(R,T)e(M — M;,G) = e(R;,T), thus (M* :== M — M;, N* := N — N;,R,S) is
a solution to ¢-HDL, since M* # 0 by M # M,;. O

5 Extensions

5.1 Signatures on Bit-Strings

Sig, also serves to sign bit strings (as is the standard definition of signatures). Let Hash: {0,1}* — Z,
be a collision-resistant hash function. Define Sig} := (Setup,, KeyGen,, Sign’y, Verify}) with

— Sign’ (sk, m) := Sign (sk, (Hash(m)G, Hash(m)H))
— Verify}y (vk, (A,C, D, R, S),m) := Verify, (vk, (4, C, D, R, S), (Hash(m)G, Hash(m)H))

Security against chosen-message attack follows by a straightforward reduction to security of Sig, and
collision resistance of Hash.

5.2 Automorphic Signatures on Message Vectors

We give a general transform of a signature scheme whose message space contains its public-key space
to one signing message vectors of arbitrary length that leaves the structure of verification invariant.
The signer produces a one-time key pair (vk, sk), signs vk with her actual secret key and uses sk to
sign every component of the vector. (Actually, for each component, she signs another transient key,
which will sign the component and its index to prevent shuffling of messages. The vector’s length is
signed too, barring thus truncating.) Formally:

Let ck < Setupgg be the common reference string. The signer holds her secret key z corresponding to
public key (zG,xzH). The user holds a message (M, N) € DH on which he gets a blind signature.

1. Obtain The user chooses o, T, p1, p2, p3 « Zy, defines Z := o7 and sends the following:
(a) cpr:= Comgs(ck, M, p1), cn := Comgs(ck, N, p2), ¢ := Provegs(ck, Epw, (M, p1), (N, p2)).
(b) J1:=0(K+ M), Jy:= 2T, cz := Comgs(ck, Z, p3).
(c) v := Provegs(ck, Econsists (M, p1), (Z, p2)), With Econsist defined as e(J1,T) = e(K + M, Z).
(d

) Zero-knowledge proofs of knowledge of o and 7 s.t. ¢z commits to ¢T and 7J5.

2. Issue If all proofs are valid, choose c,r < Z, and send:

Il = m—l&-c(Jl +7’J2), IQ = CCTY7 Ig = CF, I4 = TG, I5 =rH.

The user sets A := éll,C =1,,D:=13,R:= %L;,S = %Ig,, checks whether (A, C, D, R, S) is valid
on (M, N) and outputs a Groth-Sahai proof of knowledge of (A, C, D, R, S) satisfying (4) for ck.

Fig. 1. Two-move blind-signature protocol.

Definition 4. Assume an efficiently computable injection Msg from {1,...,nmaz} to the message
space, where Npqy is the mazimum length of a message vector. Let Sig = (Setup, KeyGen, Sign, Verify)
be a signature scheme whose message space contains its public-key space. The vector transform of Sig
is defined as Sig’ = (Setup, KeyGen, Sign’, Verify') with

Signl, (M, ..., My,) with n < Nuype
— (vko, sko) < KeyGen; (vky, ski) < KeyGen; ... ; (vkp,sky) < KeyGen;

- 0= (Vk07 Signsk(VkO)a Signsko (Msg(n))7 (Vkiv Signsko (Vk’i)7 Signski (MSg(Z)), Signski (MZ))?zl) .
Verify’vk((Ml, ..., M), (vko, 00, po, (Vki,ai,pi,n)?:l)) := Verify , (vko, 00) A Verify,,. (Msg(n), po) A
Ny (Verifyvko(vki, ;) A Verify i (Msg(i), p;) A Verify . (M;, 7‘2))

It is easily seen that if Verify is a disjunction of paring-product equations, then so is Verify’. The
signatures of the transform of Sig, on a length-n vector are of size 12 + 17n group elements. This
is however the most general transform. If message vectors have some predefined structure (e.g., they
are signatures as defined in Sect. 5.4), so that mixing and truncating is unlikely to result in a valid
message, then one temporary key per message that signs all components suffices. The signature size
is then 7 + 5n G-elements. The following is proven in Appendix B.1.

Theorem 3. If Sig is secure against EUF-CMA, then so is Sig’.

5.3 Blind Automorphic Signatures

We construct blind signatures based on the scheme Sig, from Def. 3. Intuitively, a blind signature
is a Groth-Sahai proof of knowledge of a signature (which is precisely what we will use to achieve
anonymity in our applications in Sect. 6). By witness indistinguishability of the proof system, two
proofs of knowledge of different signatures on the same message (and under the same public key)
are indistinguishable. Thus, it remains to ensure that the signer does not learn the message from a
user that runs Obtain. The latter thus blinds the message by multiplying it by some randomness and
committing to it. The signer then produces a pre-signature from which, by removing the randomness,
the user obtains a signature of which he publishes commitments € to its components and a proof
of validity. The details of the protocol are given in Fig. 1 (cf. Remark 1). Blind signatures (c,) are
verified by checking Verifyqg(ck, Ever,,C,), with Eyer, being Equation (4). Note that the scheme
remains automorph, since commitments and proofs are group elements verified by checking PPEs.

Remark 1 (On the Proof of Knowledge.). The protocol in Fig. 1 requires a zero-knowledge proof of
knowledge of ¢ and 7 such that Z = ¢1 and Z = 7J5, where Z is only given as a commitment.
The proof is simply a proof of knowledge of logarithms satisfying linear equations: Let (u1,ug,us) be
the linear commitment key (cf. [GS08]), let ¢z = (D siui1, Y siti2, Z + Y siu;3). Then we prove
knowledge of (s1, $2, 83,0, 7) such that

CL =) 58Ul Co =) 8l c3 =0T+ siu;3 c3=7Jy+ > siU;i3
We can thus use interactive Schnorr-like proofs [Sch90] as exhibited in Appendix C.

Remark 2 (Signing Committed Values). The core building block for P-signatures [BCKLO08] is an inter-
active protocol allowing a user that published a commitment to obtain a signature on the committed
value. If we define Step la of our blind-signature protocol to precede the protocol we get exactly this.

Theorem 4. Under Assumptions 2 and 8 and DLIN, the scheme in Figure 1 is an unforgeable blind-
stgnature scheme.

See Appendix B.2 for a proof. If we use interactive concurrent-zero-knowledge proofs of knowledge
(cf. Appendix C), we get a 5-round protocol. The plain signature consists of 5 group elements (GE)
satisfying 2 linear and 1 general equation. Committing to the signature yields 5-3 GE and the Groth-
Sahai proofs consist of 2-3 + 9 GE. The size of a blind signature is thus 30 GE.

5.4 Signatures on Signatures

For applications requiring automorphic signatures on signatures,” we suggest the scheme Sigppy

(Def. 2) for the signatures to be signed, since its signatures fit the message space: a signature on
a message/signature pair (M, N, A,C, D, R, S) € G7 is a signature on the vector (cf. Sect. 5.2) of mes-
sages ((M, N),(C, D), (R, S)) € DH3. (Note that it is not necessary to sign A, as it is fully determined
by these elements.)

6 Applications

We present various applications of automorphic signatures and their extensions. However, we merely
sketch the application areas, as going into details would be beyond the scope of this paper.

6.1 Fully-Secure Group Signatures

In order to implement the model for group signatures by [BSZ05], Groth [Gro07] uses the following
ingredients to achieve CCA-anonymity: the tag-based encryption scheme® Ency, by Kiltz [Kil06] and
a strong one-time signature scheme’ Sig,,.

A user produces a signature key pair (vk, sk) and is enrolled by the issuer who gives her a certificate
cert on vk. Now to make a group signature on a message M, the user holding (cert, vk, sk) generates
a key pair (vkot, skot) for Sig,, and makes a signature sig on vk, under vk (we call (cert, vk, sig) a
certified signature). She produces a Groth-Sahai WI proof of knowledge 7 of (cert, vk, sig) s.t. cert is a

5 A potential application is electronic cash, where a coin is basically a signature by the bank. In order to prosecute
double-spending, one could have a user sign the coin when spending it.

6 A tag-based encryption scheme [MRY04] is a public-key encryption scheme whose encryption and decryption algorithms
take as additional argument a tag. A scheme is selective-tag weakly CCA-secure if an adversary outputting a tag t*
and two messages and getting an encryption of one of them under t* cannot decide which one was encrypted—even
when provided with an oracle decrypting any ciphertext for tags t # ¢*.

7 A signature scheme is strongly one-time, if no adversary granted a single weak chosen-message query can output a new
signed message nor a new signature on the queried message. Groth uses the weak Boneh-Boyen signature from [BB04].

10

valid certificate on vk and sig is a signature on vk, valid under vk. She produces an Encyy-ciphertext
C encrypting sig under tag vkyt and adds a Groth-Sahai NIZK proof ¢ that the encrypted value sig is
the same as in 7. Using skot, she finally makes a signature sig,, on (M, vko,m, C, () and outputs the
group signature o = (vkot, 7, C, , Sig.,)-

[FPV09] suggest to replace the certified-signature scheme based on the “¢-U Assumption” by
one based on the more natural DHSDH. Their substitute however uses Waters signatures [Wat05]
which entail a dramatic increase of the public-key size. This is avoided by instead using the two-level
construction Sigoppy given before Def. 3 (based on DHSDH as well), which actually is a certified-
signature scheme: certificates are signatures on user verification keys (zG,xH); messages are of the
form (mG,mL) and signatures use parameters (G, L, K,T'). The certificate-verification key is an ele-
ment of G (whereas in the construction of [Gro07] it consists of two elements of G and one of Gr).

6.2 P-Signatures and Anonymous Credentials

In order to realize non-interactive anonymous credentials, Belenkiy et al. [BCKLO0S8] introduce a new
primitive: A P-signature scheme extends a signature scheme and a commitment scheme by the following
functionalities: a protocol Issue < Obtain between a signer and a user allows the latter to obtain a
signature on a value the signer only knows a commitment to; the holder of a message and a signature
on it can produce a commitment to the message and a proof of knowledge of the signature; finally,
two commitments can be proven to be to the same value.

The commitments and proofs are instantiated by the Groth-Sahai methodology; the compatible
signature scheme is the one discussed in Sect. 1. Our scheme Sig,, combined with the modified
blind-signature protocol from Remark 2, lends itself to replace their scheme in order to overcome the
aforementioned shortcomings: it avoids the “TDH”-assumption, actual message/signature pairs can be
extracted from the proofs (rather than a function of them) and it provides an efficient Issue < Obtain-
protocol (the one in [BCKLO0S8]| resorts to generic secure multiparty computation).

6.3 Anonymous Delegation of Signing Rights

Anonymous Proxy Signatures. Anonymous proxy signatures (APS) generalize group signatures
in that everyone can become a group manager by delegating his signing rights to other users who
can then sign is his name while remaining anonymous. Moreover, received rights can be re-delegated
consecutively. We give a brief overview of the model defined by Fuchsbauer and Pointcheval [FP0S].

Algorithm Setup establishes the public parameters. Users generate key pairs using KeyGen and run
a protocol Reg with the issuer and their opener when joining the system. (This is essential to achieve
traceability; see below.) To delegate to Bob, Alice runs Delgt on Bob’s public key, which produces
a warrant that she gives to Bob. With this warrant, Bob can either sign, or re-delegate to Carol, in
which case Carol can again re-delegate or produce an anonymous proxy signature with PSign on behalf
of Alice, which is verifiable by Verify on Alice’s verification key.

Anonymity ensures that from a proxy signature one cannot tell who actually signed (or re-
delegated), thus Bob and Carol remain anonymous. To prevent misuse, Alice’s opener can revoke
the anonymity of the intermediate delegators and the proxy signer. Traceability asserts that every
valid signature can be opened to registered users and non-frameability guarantees that no adversary,
even when colluding with the issuer, openers and other users, can produce a signature that opens to
an honest user for a delegation or a signing she did not perform.

A Generic Construction. The generic construction by [FPO08] proving feasibility of the model is
as follows. Assume an EUF-CMA-secure signature scheme. The issuer and the users choose a key pair
each. When enrolling, a user U; obtains a signature cert; on her verification key vk; from the issuer. A
warrant warry_.e from user Uj to user Us is a signature on (vkj, vke) valid under vk;. Us re-delegates

11

to Us by sending warri_, and warrs_.3, a signature on (vkj, vks, vks) under vky. Additionally, in each
delegation step, the delegators’ certificates are also passed on. Given a warrant (warr_,o, warrs_3),
Us proxy-signs a message M on behalf of U; as follows: produce a signature sig on (vkj, vke, vks, M)
using sks. Define the plain proxy signature as (warrj_.o, vke, certe, warry_,3, vks, certs, sig). A general
plain proxy signature X = (warri_z9, ..., vkg, certy, sig) on message M is valid if:

— Vi : cert; is valid under the issuer’s verification key
— Vi : warrj_;41 is a signature on (vky, ..., vk;y1) valid under vk; (7)
— sigis a signature on (vky, ..., vk, M) valid under vky

Now to transform this into an anonymous proxy signature, the signer encrypts X under the public
key of U;’s opener and adds a zero-knowledge proof that the plaintext satisfies the above. Due to her
decryption key, the opener can retrieve the plain signature and thus trace delegators and the signer.

Concrete Instantiations. Restricting the model to CPA-anonymity, the building blocks can be
instantiated as follows: define encryption to be linear commitments (which can be “decrypted” due
to extractability) and use Groth-Sahai proofs to show that the verification relations are satisfied by
the committed values. For this however to work, the plain proxy signatures must fit the Groth-Sahai
framework, meaning in particular that the signature-verification keys and signatures must be group
elements satisfying paring-product equations.

Fuchsbauer and Pointcheval [FP09] follow this overall approach using basically Groth-Sahai proofs
in the subgroup-decision [BGNO5] instantiation, which confines their scheme to one general opener
(once the bilinear group is fixed there is only one key pair for encryption). The compatible EUF-
CMA-secure signature scheme they construct has several shortcomings: besides being based on an
unusual new assumption (not proven to hold in generic groups), it is far from being practical, since
a public key contains several commitments to each bit of the secret key. Moreover, it imposes a fixed
maximum number of re-delegations within one signature.

Replacing their scheme by Sig, (Sect. 4), which meets the necessary conditions, and using the
DLIN instantiation of Groth-Sahai, we circumvent all these shortcomings, getting an efficient scheme
based on reasonable assumptions. Moreover, we satisfy the model of [FP08] since we can assume several
openers each publishing her own commitment key (due to our DLIN-based proofs), we do not impose
a limit on the number of re-delegations, and below we show how to achieve CCA-anonymity.

CCA-Anonymous Proxy Signatures. The reason why Groth’s construction sketched in Sect. 6.1
yields CCA-anonymous group signatures (i.e., anonymity holds against adversaries provided with an
opening oracle) is the following: in the proof of anonymity, one substitutes the opener’s commitment
key by a perfectly hiding one, which results in perfectly random commitments and non-leaking proofs;
however—due to the encryption—one can still answer the adversary’s opening queries.

In order to achieve CCA-anonymity, we transform our APS scheme analogously. A proxy signer
holding W := (vky, (warr;, cert;, vk;)¥_,, ski) makes a signature as follows: first choose (Vvkot, skot) <
KeyGen,,, sign vke (instead of M) with sk yielding sig, make commitments € to the elements of W
and sig, and add a WI proof ¢; for each equation E; in (7)—as in the original scheme.

In addition, for 2 < 7 < k compute an Ency,-encryption C; of vk; under tag vk, and make a
NIZK proof (; for the plaintext of C; being the value committed in cyx,. Finally compute sig,; :=
Sign, (skot, (vkot, M, T, &, C,()) and output the signature (vke, €, ¢, C, C, sig,,). A signature is valid if
sig, is valid under vk, the proofs ¢; are valid for all j, and the proofs ¢; and the ciphertexts C; are
valid for all i.

6.4 Extending the Anonymous-Proxy-Signature Model

We give an instantiation of the extended model of APS discussed in Sect. 1, offering a different view
on delegatable anonymous credentials.

12

Blind Delegation. Using the variant of our blind-signature protocol discussed in Remark 2, we can
define blind delegation: Given a commitment of a verification key, a user can delegate her signing rights
to the holder of that key without learning her identity.

Delegator Anonymity. Due to modularity of Groth-Sahai proofs (for each equation its proof only
depends on the commitments to the variables appearing in it), the “anonymization” of a signature
need not be delayed until the proxy signing, rather can warrants be anonymized by the delegators
already. However, this necessitates a revision of the way warrants are constructed, since the present
scheme requires knowledge of the identities of all previous delegators to make a warrant. We follow
the general approach by [BCCT09], associating an identifier id to each original delegation. A warrant
from the user at level i to the next one is then a signature on (Hash(id||%), vk;+1) under vk;. The hash
value prevents combining of different warrants and reordering within the same warrant.

Consider the following situation (we simplify our exposition by omitting the certificates from the is-
suer): Oliver (the original delegator), owning vkp, delegates to Alice by giving her a signature warro_ 4
on her key vky4. Alice delegates to Bob sending him (warrp—, 4, warra—.g). Bob can now delegate to
Carol without revealing Alice’s identity: He makes commitments co_, 4, ¢4 and c4_.p to warro_ 4,
vk4 and warrs_. g, respectively. Moreover, he makes a trivial commitment cp := Comgs(ck, vkpg,0)
to his own key, and the following proofs: ¢o_. 4 for co_ 4 containing a valid warrant from vko to the
content of c4, and ¢4_.p for c4_.p containing a valid warrant from the content of c4 to that of cp.
He sends Carol warr := (c4, co—a, ®0—4, CB, CA—B, ¢A—p) and a warrant warrg_.c.

Now, Carol produces a signature on behalf of Oliver on M as follows (re-delegation works analo-
gously): make a signature sig on M under vkec; randomize the commitments and adapt the proofs in
warr, in particular, set ¢/ := RdComgs(ck, ¢, pg) for pp < Z,; make commitments to warrg_.c, vkc
and sig, and proofs of validity for warrg_,c and sig. Note that the first proof requires the randomness
of the related commitments—in particular c¢’y. Since ¢ was a trivial commitment, the randomness of
¢’z is pp, which was chosen by Carol.

Remark 3. (1) Note that delegator-anonymous delegation is compatible with blind delegation: instead
of simply sending warrg_.c, Bob runs the interactive blind-issuing protocol with Carol, upon which
she obtains warrg_.c and continues as above.

(2) Bob could even hide his own identity to Carol as follows: he additionally sends (hiding) com-
mitments to his own key and to warrg_,¢, a trivial commitment to Carol’s key and a proof of validity
of warrg_,c. Carol randomizes what Bob sent her, commits to a signature on the message and proves
validity. Unlike the above, unfortunately this is not compatible with blind delegation.

Multiple Original Delegators. If we allow delegation to take the form of a tree (whose leaves
represent original delegators) rather than a list, we can define proxy signatures on behalf of several
originators. For example, consider three original delegators O, P, @), the first of which delegates to A
who in turn re-delegates to B. B is also delegated by P and re-delegates the rights for both O and P
to C. Moreover @) delegates to C. Now C' can produce a signature on behalf of O, P and Q.

In general, we define a multi-originator signature recursively: A (plain) signature consists of a
signature on the message, the signer’s verification key and a list of objects “del” for the signer. A del
for a user U is either a warrant from an originator for U or a warrant from a user U’, the verification
key of U’ and a list of del’s for U’. A signature on behalf of a set of originators is valid if the signature
on the message is valid, all warrants are valid and it contains a warrant from each of the originators.
As for the single-originator case, a plain signature is anonymized by committing to its components
and adding proofs of validity.

For the above example, a signature on behalf of O, P and @ by C' then has the following form (let
YU, —u, denote ¢y, —u, || P, —u,, and let 1ps denote a commitment to sig and a proof of validity):

{1/1M, co, {{¢B=c,cB, {{ta—B,ca,Yo—a},¥P—_B}}, wQ—C}} :

13

Acknowledgments

The author is grateful to David Pointcheval for many invaluable discussions that led to the present
paper. This work was supported by EADS, the French ANR-07-SESU-008-01 PAMPA Project and
the European Commission through the IST Program under Contract ICT-2007-216646 ECRYPT II.

References

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan
Camenisch, editors, FEUROCRYPT 2004, volume 3027 of LNCS, pages 56—73. Springer, May 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41-55. Springer, August 2004.

[BCCt09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav
Shacham. Delegatable anonymous credentials. To appear in CRYPTO 2009; available at Cryptology
ePrint Archive, Report 2008/428, 2009.

[BCKLO08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and non-
interactive anonymous credentials. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
356—-374. Springer, March 2008.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe Kilian,
editor, TCC 2005, volume 3378 of LNCS, pages 325-341. Springer, February 2005.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
273-289. Springer, August 2004.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93, pages 62-73. ACM Press, November 1993.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic
groups. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 136—153. Springer,
February 2005.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In Serge Vaude-
nay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 427-444. Springer, May / June 2006.

[BWO07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures.
In Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages 1-15.
Springer, April 2007.

[Cha83] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199-203. Plenum Press, New York, USA, 1983.

[Cha85] David Chaum. Security without identification: Transaction systems to make big brother obsolete.
Commun. ACM, 28(10):1030-1044, 1985.

[Cv9l] David Chaum and Eugene van Heyst. Group signatures. In Donald W. Davies, editor, EURO-
CRYPT’91, volume 547 of LNCS, pages 257—265. Springer, April 1991.

[Dam92] Ivan Damgard. Towards practical public key systems secure against chosen ciphertext attacks. In
Joan Feigenbaum, editor, CRYPTQO’91, volume 576 of LNCS, pages 445-456. Springer, August 1992.

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures. In Rafail Ostrovsky,
Roberto De Prisco, and Ivan Visconti, editors, SCN, volume 5229 of LNCS, pages 201-217. Springer,
2008.

[FP09] Georg Fuchsbauer and David Pointcheval. Proofs on encrypted values in bilinear groups and an
application to anonymity of signatures. To appear in PAIRING 2009; available at Cryptology ePrint
Archive, Report 2008/528, 2009.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Anonymously transferable constant-size
e-tickets. Cryptology ePrint Archive, Report 2009/146, 2009. http://eprint.iacr.org.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In 44th
FOCS, pages 102-115. IEEE Computer Society Press, October 2003.

[GLO7] Jens Groth and Steve Lu. A non-interactive shuffle with pairing based verifiability. In Kaoru Kurosawa,
editor, ASTACRYPT 2007, volume 4833 of LNCS, pages 51-67. Springer, December 2007.

[GMRS88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281-308, April 1988.

14

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures.
In Xuejia Lai and Kefei Chen, editors, ASTACRYPT 2006, volume 4284 of LNCS, pages 444-459.
Springer, December 2006.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru Kurosawa, editor,
ASTACRYPT 2007, volume 4833 of LNCS, pages 164-180. Springer, December 2007.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, FEUROCRYPT 2008, volume 4965 of LNCS, pages 415-432. Springer, April 2008.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 581-600. Springer, March 2006.

[MRY04] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Definitions,
constructions, and applications. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 171—
190. Springer, February 2004.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 80-99. Springer, March 2006.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361-396, 2000.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239-252. Springer, August 1990.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 256—266. Springer, May 1997.

[TWO05] Marten Trolin and Douglas Wikstrom. Hierarchical group signatures. In Lufs Caires, Giuseppe F.
Italiano, Luis Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of
LNCS, pages 446-458. Springer, July 2005.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114-127. Springer, May 2005.

A The ¢-DAHSDH Assumption

A.1 A Note on DAHSDH

To make Sigppy (Def. 2) an automorphic scheme without the detour via a transient key, one could be
tempted to simply expand the public key by Y = (logs X)H and assume a variant of DHSDH where
Y is given as part of the instance.

However, this assumption is wrong, as it succumbs to the following attack: Given an instance, set
A* = —Ay, C* := =2X —Cy, D* :== =2Y — Dy, V* := Vi, W* := Wj. Then we have e(A*, X + C*) =
e(—A1,—C1) = e(K +V1,G) = e(K + V*,G). The attack comes from the fact that we can use X to
build C* since given Y, the “shadow” of X, we are able to construct the shadow of C*.

This is what makes it indispensable to use a different basis for the shadow of C, leading to a
generically secure assumption, as proven below.

A.2 Generic Security of the g¢-DAHSDH Assumption
We restate the assumption for convenience:
(¢-DAHSDH) Given (G,F,H,K,X=2G,Y=xH) and q — 1 tuples
(4; = ﬁq(K-i-vz‘G)a Ci = ¢iG, D = ¢F, Vi =vG, W; =v;H) ,

with ¢;,v; € Zj, for i = 1,...,¢ — 1, it is hard to output a new tuple (A*,C*, D*,V*, W*) that
satisfies

(A", X +C*) =e(K+V*,G) e(C*,F)=e(G,D") e(V*, H) =e(G,W*) . (1)

Theorem 5. The g-DAHSDH assumption holds in generic bilinear groups when q is a polynomial.

15

Proof. We assume that the reader is familiar with the methodology of proofs in the generic group
model and thus focus on our particular assumption. We work with the “discrete-log” representation of
all group elements w.r.t. basis G. A ¢-DAHSDH instance is thus represented by the following rational
fractions:

1, f, h, k, z, xh, {a; =22 o if, v, vih}Z) (2)

x+c;?

Considering the logarithms of the Gr-elements in (1) w.r.t. the basis e(G, G) yields
a'(z+c*)=k+v d'=c"f w* =v*h (3)

In a generic group, all the adversary can do is apply the group operation to the elements of its input.
We will show that the only linear combinations (a*, ¢*, d*, v*, w*) of elements in (2) satisfying (3) are
(a* = aj,c* = ¢, d* = ¢;f,v* = vj,w" = v;h) for some i; which means all the adversary can do is
return a quintuple from the instance. We make the following ansatz for a*:

a* =a+oarf +aph + apk + apr 4+ ayrh +) ag, ktvp DoeiCi+ Y agicif Y o ivi Y vih

e

Since for any ¢* the adversary forms, it has to produce c* f as well, we can limit the elements used for
¢* to those of which their product with f is also given: 1 and ¢; (for all 7). The same argument holds
for v* and elements for which we have their products with h. We set thus

=+ Veici V= e 4D Vi
which implicitly satisfies the last two equations of (3) since d* and w* can then be defined as
d* =5f + 3 veacif w* = ph+ perh + Y oy vih

We substitute a*, ¢*, v* by their ansétze in the first equation of (3), that is a*(z 4 ¢*) — v* = k. After
some rearranging we get

(ay=p) 1 + (apy) [+ () h + (@ + oy —pa) © + (an +ayy) zh + (4a)
Y (i) B+ 3 (aeiy + aved) ¢ + X (Qaiy + apved) aif + 3 (wi) vik + (4b)
(ap) f + (og) 2k + () 2% + (ay) 22k + 3 () viz + 3 (@) vizh + (4c)
> (aci+azyei) v + Y (aaq) cirf + 3 (anyed) cih + 30 (wves) cik + 3 (yveq) zcih + (4d)
)
)

Y2 (aciveg)cici + 200 (aivey) cicif + D20 (Qwiveg)vic; + 323 (qwivej) vicih + (de
(

(@) b + X (0 — i) v + 2 (aai) “ED 4SS (agirey) G = af
N—— N — N—— N——
=k ::)\v,i ::Axa,i :5>\ca,i,]’

Comparison of coefficients® of the two sides of the equation shows that all coefficients in lines (4a)—(4e)

must be 0, whereas for the last line we have a different situation: Adding x&k:czzi) and clgfcf’) reduces
to k + v; (but this is the only combination that reduces). We have thus
Azai = Acajii for all Xeaij =0 forall i # j (5)
and moreover
coefficient of k1 > Agai +Ap =1 coefficient of v;: Aggi + A =0 (6)

8 To do straightforward comparison of coefficients, we actually would have to multiply the equation by ;.1;11 (z+c)
first. For the sake of presentation, we keep the fractions and instead introduce new equations for the cases where a
linear combination leads to a fraction that cancels down.

16

We now solve the equations “all coefficients in Lines (4a) to (4e) equal 07, and Equations (5) and (6)
for (Oé, Of, Opy Oy Oy Oy, 7Y [y gy {aam Cciy Odyiy Quiy Qw,iy Veyis M’U,i}):

Line (4c) and the second term in Line (4d) immediately yield: af = ap = oz = oy = s = vy =
ag; = 0 for all i. Now o, = 0 implies o, = 0 by the last term in (4a), and a, = 0 implies a,; = 0 for
all 7 by the first term in in (4d). The first equations in (5) and (6) give

, =0
Qgi(l —7.;) =0 foralli g+ agy (o =0) dagi=1 (7)
which together imply that for some i: .; # 0. The second term in (4b) requires that for all i:
Qeiy + Qe (e =) avye; = 0, thus o = 0 since some 7, ; # 0. Combining this with a, = 0 and the

the fourth term in (4a), we get u, = 0. The first term in (4b) and the second equation in (7) implies
~ = 0, which yields u = 0 by the first term in in (4a). The only variables not shown to be 0 so far are
{aa,i7 Veyis Mv,i}'

We show that there exists exactly one index ¢* such that o, ;« # 0: if we had ¢ # j s.t. aq; # 0 and
aq,; 7# 0 then by the first equation in (7) we would have ~.; = 7.,; = 1. This however contradicts the
second equation in (5) which states aq ;7. ; = 0 for all ¢ # j. The same equation ensures that v; = 0 for

all j # ¢*. We have ~.;+ = 1 by (7) and by the last equation of (6): cvg i+t iY—fiv,i (=0 Qg i—f,i =0,

we have oy ; = piy,; for all 7.

We proved thus that there exists a ¢* such that a* = ’;iz =, ¢* = ¢ and v* = v+, which means the

only tuples (A*,C*, D*, V* W*) satisfying (1) and being generically constructable from a DAHSDH
instance are the tuples from that instance. O

B Security Proofs for Extensions of Sig,

B.1 Proof of Theorem 3

Let ¢ be the maximal number of the adversary’s signing queries, let n,,.x the maximum length of all

queried vectors and the output vector. Let M) := (Mfi), e Mﬁfz)) denote the adversary’s i-th signing
query, let ¢ denote the response, and let

(M* = (M},...,My), 0" =

n

(VkEk)a 067 (J;7 pZ> Tz*)?:*l))

be the adversary’s final output. Let vk be a challenge for Sig. We distinguish four types of forgers and
give the appropriate reduction:

1. Vi : vky # Vk(()i). Set vk to be the challenge verification key given to the adversary and answer
signing queries by choosing (vko, sko), querying vkg to the Sign-oracle and using skg to sign the
vector entries and indices. If ¢* is of Type 1, then (vky, o) is a forgery under vk.

2. Fi:vky = Vk(()i) and: 3j Vk : vk} # k,(j) or n* # n;. Choose i* + {1,...,q}. Produce (vK,sk') «
KeyGen(1¥) and give the adversary vk as challenge. Answer all queries as in the protocol, except

for the i*-th query: Set Vk(D= vk, choose keys (Vk(R Sk()) and query signatures on Vk() to
the Sign-oracle. Complete the signature. If o* is of Type 2 and we guessed correctly (i* = z) then
(vk;,o7) or (n*G, pg) is a forgery under vk.

3. 3i: vk = vk, n* = ny, and Vj 3k; : vk = vk,fj) and 3j : M} # M,g;?. We choose i* — {1,...,q}
and j* <« {1,...,nmax} and set vkrj(-i*)
is a forgery. '

4. Fi:vky = Vké), n* =n;, and Vj Ik; : vk; = Vk,g) and Vj : M = M,gl) Since M* is a new message
of equal length, there must be a j s.t. k: # 5. We set vk as for Type 3. On guessing correctly,
(JG,pj) is a forgery under vk.

:= vk. On guessing correctly (i* =4 and j* = j), (M, 7))

O

17

B.2 Proof of Theorem 4

The protocol is correct: The signer sends I = x%rc(
The user then sets A = 1[5 = x_li_c(K +IT+ M), R =
constitutes a valid signature.

Ji —I—’I"Jz) xic(K—l-M—l— ;T), I,=rG, Is=1H,

G, S = ZH, which together with C' and D

r
T

Blindness requires the following: If we are given two messages from the signer and run Obtain twice
for these messages (in arbitrary order) with it, and then give the two produced signature/message pairs,
then the signer cannot relate them to their issuings.

Replacing ck by a perfectly hiding key is computationally indistinguishable. Consider the signer’s
view after Step 1: (cas, cn, @, J1, J2,cz, 1,), where ¢ denotes a transcript of the ZK proof in Step 1d.
Let (M,N) € DH be arbitrarily fixed. Then there exist o,7 consistent with Ji, Jo and M. Define
Z := oT'. Now due to witness indistinguishability of Groth-Sahai commitments and proofs, cs, ¢y, cz
are perfectly random and the proofs ¢, leak no information other than the equations being satis-
fied. Moreover, (is zero-knowledge, thus in the WI setting, (M, N) remains information-theoretically
hidden. WI of the proof of knowledge of the signature the users publishes in the end ensures that the
signers learns nothing either.

Unforgeability means: After running the protocol ¢ — 1 times with an honest signer, no adversary
can output q different messages and valid signatures on them.

We reduce unforgeability to the security of the underlying signature scheme Sig, (Theorem 2):
We compute ck using ExSetup; thus from a successful adversary’s output, we can extract a signature
(A*,C*, D*, R*,S*) on a new message. To simulate the protocol, we do the following: in the first
step, we extract (M, N) from the commitments, and o and 7 from the proof of knowledge. We then
query our own oracle for a signature on (M, N). On receiving (A,C, D, R,S), we give the receiver

(cA,C,D, TR, TS). O

C An Interactive Instantiation of the Proof of Knowledge

In Sect. 5.3, we require the following proof of knowledge:
Let (u;j)ij=1.23 € G, let T,J € G. Given an instance (c1,co,c3) € G?, we prove knowledge of
(s1, 82, 83,0, 7) such that

c1 = Z SiUs, 1 Cco = Z SiU; 2 cg3 =0l + Z 83 c3=71J+ Z SiU;,3

Let ck be a perfectly binding commitment key.

The verifier sends a commitment to a random value k € Z, under ck.
— The prover chooses r1, 12,73, o, 3 + Z;, and sends

Ry = ZTiui,l Ry := Z’I“iui’g R3 :=aoT + Zrium Ry := ﬁJ + Zrium

— The verifier opens his commitment to &
— The prover answers

di:=7r1 —ks1 do :=19 — kso ds :=r3 — ks3 0:=a—ko e:=0—kr
— The verifier accepts the proof if
Z diui,l =R; —kca 0T + z diui73 = R3 — kcg

Z diui’g = Ry — keo el + Z diui73 = R4 — kes

18

The proof is zero-knowledge: Given an instance (¢, ¢z, ¢3), we simulate the prover. Run the protocol
by picking random values R;, and let the verifier open its commitment to k. Now rewind it to the
state after committing. Choose random values (di,ds,ds,0,€) € Zy, and send Ry = > dju;1 + ke,
Ry :=) diujo + ke, Ry := 0T +) dju; 3 + kes, Ry := €T +) dju; 3 + kez. Finish the protocol by
sending (dy, da,ds, 6, ¢€).

The proof proves knowledge: To extract knowledge from the prover, we simulate the verifier. We set
the commitment key ck to produce equivocable commitments and run the protocol with the prover.
After finishing, we rewind the prover to its state after sending the R;’s and now open the commitment

i —

. d;—d’
to a different value &’ whereafter the prover sends values (dy,d5, ds,¢',€"). Now we have s; = 77—t for

. _ 5 ! a
1§z§3,0=%,722,_€k.

Achieving concurrent zero-knowledge: 1If we use an extractable commitment (e.g., by using linear
commitments to the bits of k—or sufficiently small blocks of bits) in the first phase of the protocol
then we even get concurrent zero-knowledge: to simulate a proof we need not rewind the verifier, as
we can directly extract the challenge before producing the R;’s.

19

