
QTRU: A Lattice Attack Resistant Version of NTRU

PKCS Based on Quaternion Algebra

Ehsan Malekian1, Ali Zakerolhosseini1∗, Atefeh Mashatan2

1 Faculty of Electrical & Computer Engineering

Shahid Beheshti University, Tehran, Iran
2 Security and Cryptography Laboratory (LASEC) - EPFL

CH-1015, Lausanne, Switzerland

April 13, 2009

Abstract

We propose QTRU, a probabilistic and multi-dimensional public-key cryptosystem based on
the NTRU public-key cryptosystem using quaternion algebra. QTRU encrypts four data vectors
in each encryption session and the only other major difference between NTRU and QTRU is that
the underlying algebraic structure has been changed to a non-commutative algebraic structure.
As a result, QTRU inherits the strength of NTRU and its positive points. In addition, the
non-commutativity of the underlying structure of QTRU makes it much more resistant to some
lattice-based attacks.

After a brief description of NRTU, we begin by describing the algebraic structure used in
QTRU. Further, we present the details of the key generation, encryption and decryption algo-
rithms of QTRU and discuss the issues regarding key security, message security, and probability
of successful decryption. Last but not least, QTRU’s resistance against lattice-based attacks is
investigated.

Keywords: QTRU, NTRU, quaternion algebra, public-key cryptography, encryption

1 Introduction

NTRU is a probabilistic public-key cryptosystem that was first proposed by Jeffrey Hoffstein, Jill
Pipher and Joseph H. Silverman in the rump session of Crypto’ 96 and the first official paper was
published in 1998 [1]. Compared to more well-known systems such as RSA or ECC, the greatest
advantage of NTRU is that it is based on a class of basic arithmetic operations whose inherent
complexity is rather low, amounting to O(N2) in worst-case. Hence, NTRU is considered to be
computationally inexpensive. Computational efficiency along with low cost of implementation have

∗Corresponding author.

1

turned NTRU into a very suitable choice for a large number of applications such as embedded
systems, mobile phones, portable devices and resource constrained devices [2].

As a rough comparison, NTRU is hundreds of times faster than RSA and has a much faster key
generation algorithm. However, there is an obvious drawback in using NTRU in that sometimes
the decryption process fails to give the plaintext back. There have been some suggestions in the
literature to overcome this problem, check error & re-encrypt, for instance. 000 this needs a

reference

NTRU is classified as a lattice-based cryptosystem since it has taken its inherent security from
intractability of hard-problems in certain types of lattices, contrary to RSA and ECC. On the other
hand, NTRU is also classified as a probabilistic cryptosystem as each encryption involves a random
vector and, hence, messages do not have unique encryptions.

During the past ten years, NTRU has been meticulously analyzed by researchers and its main
core is still assumed to be safe. Most sophisticated attacks against NTRU are based on lattice
reduction techniques. Two famous lattice problems, Shortest Vector Problem (SVP) and Closest
Vector Problem (CVP), have shown to be among NP-hard problems. 000 this claim needs

reference However, the lattice problem arising in NTRU is classified as a Convolution Modular
Lattice (CML) and it is not determined yet whether or not the cyclic structure of CML is going
to help reducing the complexity of CVP or SVP. This issue has been considered in new versions
of NTRU [3, 4]. Yet, some open problems with regard to CML remain. 000 give reference to

these problems, or explain them, or better just delete this last sentence

In this paper, we present QTRU which is a cryptosystem based on NTRU while the underly-
ing algebra is quaternion algebra. As a result of non-commutativity of the underlying algebraic
structure, and bi-linearity of multiplication, many lattice reduction algorithms will not work. Con-
sequently, we can reduce the dimension of the vector space considerably and, yet, obtain the same
level of security.

In completely even circumstances, i.e., choosing the same parameters for both NTRU and
QTRU, QTRU works four times slower than NTRU and the data are encrypted simultaneously
as four vectors. Other than changing the underlying algebra, no other change as been made. In
particular, QTRU keeps the probabilistic properties of NTRU. Hence, QTRU inherits the main
advantages of NTRU.

Since four vectors of data are encrypted simultaneously in each system call, QTRU can be
considered as a multidimensional cryptosystem. As a result of high complexity of the lattice which
arises from QTRU, the dimension of the cryptosystem lattice can be reduced and will arguably
compensate the imposed speed reduction caused by encrypting the four vectors.

This paper is organized as follows: Section 2 summarizes the NTRU cryptography system. Then,
Section 3 includes a brief introduction to quaternion algebras. We dedicate Section 4 to introducing
the algebraic structure used in QTRU. Then, Sections 5 and 6 are devoted to the description of
QTRU and general analysis of the scheme. Last but not least, 7 discusses the security of QTRU
against lattice based attacks.

2

2 NTRU Cryptosystem

The basic operations in NTRU take place in the ring Z[x]/(xN − 1), which is known as the con-
volution ring, where N is a prime [5]. In the convolution ring, addition and multiplication have
complexity O(N) and O(N2), respectively. Hence, the selection of this ring as the algebraic struc-
ture of NTRU provides us the associated speed and efficiency.

Following the notation of [5] and [6], we define the following three rings: R .= Z[x]/(xN − 1),
Rp

.= (Z/Zp)[x]/(xN − 1), and Rq
.= (Z/Zq)[x]/(xN − 1).

An element f from any of the three rings R, Rp, and Rq, can be written as a polynomial or a
vector of coefficients: f =

∑N−1
i=0 fi.xi

.= [f0, f1, ..., fN−1]
Addition is the ordinary addition for polynomials, i.e., element-wise vector addition, but mul-

tiplication, denoted by ? is explicitly defined as:

f ? g = h

where:

hk =
k∑
i=0

fi.gk−i +
N−1∑
i=k+1

fi.gN+k−i =
∑

i+j
N
≡ k

fi.gi

Clearly, addition and multiplication in Rp or Rq are equivalent to performing the same opera-
tions in R and ultimately reducing the resulting coefficients mod p or mod q.

Let df , dg, dφ, and dm be constant integers less than N which are public parameters of the
cryptosystem and determine the distribution of the coefficients of the polynomials. Based on these
constants, we shall define the subsets Lf , Lm, Lφ , Lg ⊂ R based on the criteria presented in Table
(1).

Notation Definition Typical Value

for N=167,

p=3, q=128

Lf {f ∈ R|f has df coefficients equal to +1, (df − 1) equal to -1, the
rest 0}

df =61

Lg {g ∈ R|g has dg coefficients equal to +1, dg equal to -1, the rest 0} dg =20
Lφ {φ ∈ R|φ has dφ coefficients equal to +1, dφ equal to -1, the rest

0}
dφ =18

Lm { m ∈ R| coefficients of m are chosen modulo p, between −p/2 and
p/2}

-

Table 1: Definition of public parameters of NTRU

Having set the above parameters, the NTRU cryptosystem can now be described as follows:

Public Parameters The following parameters in NTRU are assumed fixed and public and
must be agreed upon by both sender and receiver:

3

• N is a prime number which determines the structure of the ring Z[x]/(xN − 1) and its value
has considerable effects on the system’s security and speed. (Generic values for N include
N = 107 for moderate security, N = 167 for high security, and N = 503 for very high security)

• p and q are two numbers which are relatively prime and q is much greater than p. (Typical
values: p = 3, and q = 64, 128, 256)

• df , dg, dφ, and dm are constant parameters as defined in Table (1). These constants have
great impact on the rate of decryption failure as well as the system security.

Key Generation To create an NTRU key, first two small polynomials g ∈ Lg and f ∈ Lf
are randomly generated. The polynomial f must be invertible in the rings Rp and Rq. When f is
randomly selected from the subset Lf , the probability for this polynomial to be invertible in Rp
and Rq will be very high, however, in rare event that f is not invertible, a new polynomial f can
be easily generated.

If q is a power of a prime s, that is q = sk, then one can count the number of irreducible
polynomials in Rq. Note that f is chosen in a way that it is never divided by (x − 1). Hence,
the probability that f is invertible over Rq is [5] about (1 − p−n)(N−1)/n, where n is the smallest
integer which satisfies pn = 1 mod N .

The inverse of f over Rp and Rq is computed using the extended Euclidian algorithm. We call
those two inverses f−1

p and f−1
q , respectively. Hence, we have f−1

p ? f ≡ 1 (mod p) and f−1
q ? f ≡

1 (mod q)).
While f , g, f−1

p , and f−1
q are kept private, the public-key h is computed in the following manner:

h = f−1
q ? g (mod q).

Encryption For encryption, the system initially selects a random polynomial φ ∈ Lφ, called
the blinding polynomial, and converts the input message to a polynomial m ∈ Lm. The ciphertext
is computed as follows:

e = p.h ? φ+m (mod q).

Note that p is a constant parameter and we can pre-compute the polynomial p.h. Hence, regardless
of the time required for generating the blinding polynomial and transforming the incoming message
into the polynomialm, encryption process demandsN2 multiplication andN addition mod q. With
the selection of q = 2l, the cost of coefficients’ reduction modq equals zero.

Decryption In order to decrypt, the received polynomial e is multiplied (convoluted) by the
private key f :

f ? e (mod q) = f ? (p.h ? φ+m) (mod q)

= p.f ? h ? φ+ f ? m (mod q)

4

= p.f ? f−1
q ? g ? φ+ f ? m (mod q)

= p.g ? φ+ f ? m (mod q).

Through suitable selection of system parameters, the coefficients of the polynomial p.g ? φ+ f ?m

will most probably lie in the interval (−q/2,+q/2] and there will be no need for reduction modq.
With this assumption, when we reduce the result of p.g ? φ+ f ?m by mod p, the term p.g ? φ will
vanish and f ? m (modp) will remain. In order to extract the message m, it is enough to multiply
f ? m (modp) by f−1

p and then adjust the resulting coefficients within the interval [−p/2,+p/2).
Given this description, the decryption process includes two convolution multiplications and hence
the decryption speed is less than half of the encryption speed.

Successful Decryption Consider f ∈ R as a polynomial with coefficient vector [f0, f1, ..., fN−1].
Then, width of f , denoted by |f |∞, is defined as follows:

|f |∞ = max(fi)
0≤i≤N−1

− min(fi)
0≤i≤N−1

.

Now, the probability of successful decryption is approximately determined with a few simplifying
assumptions:

(1) gi’s and fi’s are independent random variables,

(2) coefficients of f ? m =
∑

i+j
N
≡ k

fi.mi and g ? φ =
∑

i+j
N
≡ k

gi.φi have normal distribution around

zero, and

(3) Pr(mi = 1) = Pr(mi = −1) = Pr(mi = 0) = 1
3 .

Successful decryption depends on whether or not |p.g ? φ+ f ?m|∞ < q. Through a few simple
probabilistic calculations [6], the approximate bound for successful decryption probability can be
calculated as follows.

Pr(successful decryption) =
(

2Φ(
q − 1
2σ

)− 1
)N

,

where Φ denotes the distribution of the standard normal variable and σ ≈
√

36df .dg
N + 8df

6 .
The numerical results show that for typical values, e.g., N = 167, p = 3, q = 128, df = 61,

dg = 20, and dφ = 18, the probability of failure in decryption is about 10−5.

Lattice Attacks against NTRU The hard underlying problem of NTRU is to find short
vectors in Convolution Modular Lattices (CML) [7]. There have been many papers on lattice
attacks against NTRU [3, 4, 5, 7, 8, 9, 10].

5

Consider the public-key h as a vector h = [h0, h1, ..., hN−1]. Then, the standard NTRU lattice
with dimension 2N is generated by rows of the following matrix:

LNTRU =

[
λ.I h

0 q.I

]

=



λ 0 0 · · · 0 h0 h1 h2 · · · hN−1

0 λ 0 hN−1 h0 h3 · · · hN−2

0
. . . hN−2 hN−1 hN−3

...
...

...
...

. . .
...

0 · · · λ h1 h2 · · · h0

0 0 · · · 0 q 0 0 · · · 0
0 0 0 0 q

. . . 0
...

...
...

. . .
...

0 · · · 0 0 · · · q



.

We can assume that the parameter λ, known as the balancing constant, is equal to 1. Typically,
λ is selected in a way that makes the search for short vectors in CML more efficient. According to
[9], the best choice for λ is a value around ‖f‖ / ‖g‖. With regards to the public information about
f and g, we know that the following vector is in LNTRU with a relatively small norm:

v = (λf0, λf1, · · · , λfN−1, g0, g1, · · · gN−1).

An attacker tries to search for short vectors having norm around v, using formation of such a
lattice and lattice reduction algorithms. Consider f (k) as the symbol for cyclic shift in the vector f
with k shifts. The difference between CML and other lattice types is that if the vector v = (λf, g)
exists in the lattice, then the entire N shifted vectors will also have the same norm and will be in
the lattice LNTRU .

On the other hand, f and g in the vector coordinates possess N − 2.df and N − 2.dg zero
elements, respectively. A method has been presented in [7] based on which, this property (runs of
zeros in f and g) can be utilized for lattice dimension reduction. However, apparently even by the
use of all properties of CML and reliance upon several tricks introduced in [10], as well as using
the best variation of the lattice reduction algorithms, only NTRU-107 (N=107) is breakable. The
estimated bit-security for NTRU-167 version is nearly 57 bits, 83 bits for NTRU-251 and 180 bits
for NTRU-503 which appears to suffice for various applications in real world scenarios [3, 4, 9, 10].

6

3 A Brief Introduction to Quaternion Algebra

In this section, quaternion algebra is briefly introduced. Readers can refer to Conway’s book [11]
or [12, 13] for a more elaborate description. Real quaternion , denoted by H, can be regarded as a
vector space of dimension 4 over R. Quaternion algebra, discovered by Sir William Rowan Hamilton
in 1843, is the second normed division algebra in the sense of Cayley-Dickson construction method.
By algebra it means a vector space V over R (or generally over any field F) that is equipped with
a bilinear map. An algebra A is called division algebra provided that for every a,b ∈ A, a.b = 0
implies a = 0 or b = 0. In other words, division algebra does not have any zero divisors. Normed
division algebra is a division algebra equipped with a multiplicative norm function, denoted by ‖.‖.
A normed division algebra is not necessarily commutative or associative. Typically, the elements
of H are denoted by the expression α+ β.i+ γ.j + δ.k, where α, β, γ, δ ∈ R. That is,

H = {α+ β.i+ γ.j + δ.k|α, β, γ, δ ∈ R}.

A quaternion can be shown by ordinary vector notations q =< α, β, γ, δ > over R4 or by q =< α, β >

over C2 when there us no ambiguity. As a vector space, addition and scalar multiplication are
defined by ordinary element-wise vector addition and scalar multiplication, but multiplication of
two quaternions shall be done according to the following rules:

i2 = j2 = k2 = −1 and ij = −ji = k.

The set of real quaternions together with ordinary addition and multiplication defined as above,
forms a skew field [14]. For each quaternion q =< α, β, γ, δ >, the conjugate, denoted by q̄, is given
by q̄ = α− β.i− γ.j − δ.k, and the norm is defined by N(q) = q × q̄ = q̄ × q = α2 + β2 + γ2 + δ2.
The inverse of the quaternion q is defined by q−1 = q̄

N(q) , provided that it has a nonzero norm
(N(q) 6= 0). The set of all real quaternions with norm 1, forms a non-commutative multiplicative
group known as SU(2) that is isomorphic to multiplicative group of all 2×2 matrices of determinant
1 over C.

Quaternion algebra can be generalized by replacing the field of real numbers R by any arbitrary
field F (or ring R). Moreover, instead of defining i2 = j2 = k2 = −1 and ij = −ji = k, one
can define i, j and k as i2 = a, j2 = b, k2 = −ab and ij = −ji = k. This will achieve a general
non-commutative algebraic system.

Assume F is an arbitrary field and the characteristic of F is not 2. Then, the quaternion algebra
A can be defined over F as:

A .=
(
a, b

F

)
.={

α+ β.i+ γ.j + δ.k
∣∣α, β, γ, δ ∈ F, i2 = a, j2 = b, ij = −ji = k

}
.

Clearly, if we let a and b to be -1 and F to be the field of real numbers R, we obtain the
Hamiltonian quaternion, i.e., H =

(
−1,−1

R

)
. Based on the choice of a and b and the nature of the

7

field F, A =
(
a,b
F

)
, we get two different isomorphism types:

1. A =
(
a,b
F

)
is an Euclidean division ring (skew field) if and only if for q ∈

(
a,b
F

)
, N(q) = 0

results in q = 0. This property demands that according to the definition q−1 = q̄
N(q) , existence

of the inverse can be guaranteed for all non-zero elements and hence quaternion algebra possess
all conditions to be a skew field and normed division algebra.

2. A =
(
a,b
F

)
is isomorphic to M2(F), the ring of all 2 × 2 matrices with entries from F. Such

an algebra is called a split algebra. In an split algebra, there are some nonzero elements
q ∈ A which have no multiplicative inverses. Assuming F = GF (p) or F = GF (pn), algebra
A =

(
a,b
F

)
is absolutely a split algebra [12, 13].

4 Algebraic Structure of the Proposed Scheme

Consider the two rings Zp[x]/(xN − 1) and Zq[x]/(xN − 1) that are used in NTRU. We define two
quaternionic algebras A0 and A1 as follows:

A0 =
(

−1,−1
Zp[x]/(xN − 1)

)
,

A1 =
(

−1,−1
Zq[x]/(xN − 1)

)
.

For simplicity, p, q andN are assumed to be prime numbers. Since Zp[x]/(xN−1) and Zq[x]/(xN−1)
are finite rings with characteristics p and q, respectively, one can easily conclude that A0 and A1

algebras are split. In other words, A0 and A1 algebras possess all characteristics of quaternion
algebras, except that there are some nonzero elements whose norm is zero and naturally such
elements do not have a multiplicative inverse. Let’s elaborate more on algebras A0 and A1:

A0 =
(

−1,−1
Zp[x]/(xN − 1)

)
=

{
f0(x) + f1(x).i+ f2(x).j + f3(x).k

∣∣f0, f1, f2, f3 ∈ Zp[x]/(xN − 1), i2 = −1, j2 = −1, ij = −ji = k
}
.

A1 =
(

−1,−1
Zq[x]/(xN − 1)

)
=

{
g0(x) + g1(x).i+ g2(x).j + g3(x).k

∣∣g0, g1, g2, g3 ∈ Zq[x]/(xN − 1), i2 = −1, j2 = −1, ij = −ji = k
}
.

Assume that q0, q1 ∈ A0 (or A1), q0 = a(x) + b(x).i+ c(x).j + d(x).k and q1 = α(x) + β(x).i+
γ(x).j + δ(x).k, then the addition and multiplication of two quaternions, norm and multiplicative
inverse are defined in the following way:

• Addition:

q0 + q1 = (a(x) + α(x)) + (b(x)) + β(x).i+ (c(x) + γ(x)) .j + (d(x) + δ(x)) .k.

8

• Multiplication:

q0 × q1 = (a(x) ? α(x)− b(x) ? β(x)− d(x) ? δ(x)− c(x) ? γ(x))

+ (a(x) ? β(x) + b(x) ? α(x)− d(x) ? γ(x) + c(x) ? δ(x)) .i

+ (d(x) ? β(x) + c(x) ? α(x) + a(x) ? γ(x)− b(x) ? δ(x)) .j
+ (b(x) ? γ(x) + a(x) ? δ(x)− c(x) ? β(x) + d(x) ? α(x)) .k,

where ? denotes the convolution product.

• Conjugate:

∀q0 ∈ A0 (orA1)→ q̄0 = a(x)− b(x).i− c(x).j − d(x).k.

• Norm:

∀q0 ∈ A0 (orA1)→ N(q0) = q0 × q̄0 = a(x)2 + b(x)2 + c(x)2 + d(x)2.

• Multiplicative inverse:

N(q0) 6= 0→ q−1
0 = q̄0

N(q0) =
(
a(x)2 + b(x)2 + c(x)2 + d(x)2

)−1
.(a(x)− b(x).i− c(x).j − d(x).k)

N(q1) 6= 0→ q−1
1 = q̄1

N(q1) =
(
α(x)2 + β(x)2 + γ(x)2 + δ(x)2

)−1
.(α(x)− β(x).i− γ(x).j − δ(x).k).

Note that multiplication of two polynomials and inverse of a polynomial are taken over the un-
derlying ring. For instance, assume that we want to calculate the multiplicative inverse of q0 ∈(

−1,−1
Z3[x]/(x11−1)

)
with the following value:

q0 = (−1 + x+ x2 − x4 + x6 + x9 − x10) + (1− x+ x3 − x5 + x7 + x8 − x10).i
+(−1 + x2 + x3 − x4 + x5 + x6 − x7).j + (−1 + x2 + x3 − x4 + x6 + x8 − x9).k.

We first calculate the norm of q0 over Z3[x]/(x11 − 1) as follows:

N(q0) = (−1 + x+ x2 − x4 + x6 + x9 − x10)2 + (1− x+ x3 − x5 + x7 + x8 − x10)2

+(−1 + x2 + x3 − x4 + x5 + x6 − x7)2 + (−1 + x2 + x3 − x4 + x6 + x8 − x9)2

= (x− x2 − x4 + x5 + x6 + x7 − x8) (over Z3[x]/(x11 − 1)).

By definition, the inverse of q0 is computed as q̄0
N(q0) = N(q0)−1.q̄0, and

N(q0)−1 = −x+ x2 + x3 − x4 − x5 + x6 − x7 − x8 − x9 + x10(over Z3[x]/(x11 − 1))
q−1

0 = −1 + x− x2 + x4 + x5 − x6 − x7 − x8 − (1− x− x3 + x4 + x5 − x6 + x7 + x8 + x9 + x10).i
−(x2 − x3 − x4 − x6 + x7 − x8 + x9 − x10).j − (1 + x+ x3 + x4 − x5 + x6 − x7 − x8 − x9).k.
The following operations will be needed for calculation of inverse of an element in A1 =(
−1,−1

Zq [x]/(xN−1)

)
:

A Calculation of g(x)← a(x)2 + b(x)2 + c(x)2 +d(x)2 over the ring
(

−1,−1
Zq [x]/(xN−1)

)
(including 4.N2

multiplications and 3.N additions) with the worst-case complexity of O(N2).

9

B Calculation of g(x)−1 over the ring
(

−1,−1
Zq [x]/(xN−1)

)
with complexity of O(N2log(p2)).

C Calculation of g(x)−1.(a(x)− b(x).i− c(x).j − d(x).k) (including 4N2 multiplications) with the
worst-case complexity of O(N2).

One can easily prove that the rings
(

−1,−1
Zp[x]/(xN−1)

)
and

(
−1,−1

Zq [x]/(xN−1)

)
are isomorphic to the

ring of circulant matrices of dimension N ×N with entries from F = Zp and F = Zq, respectively.
Consider a vector v = [v0, v1, ..., vN−1] ∈ FN and define:

Circ(v) .=



v0 vN−1 vN−2 · · · · · · v2 v1

v1 v0 vN−1
. . . v3 v2

v2 v1 v0
. . .

...
...

v3 v2 v1
. . .

...
...

...
...

. vN−1 vN−2

vN−2 vN−3
...

. . . v0 vN−1

vN−1 vN−2 · · · · · · · · · v1 v0


.

If we represent each polynomial f(x) as a vector of coefficients f = [f0, f1, ..., fN−1], then the iso-
morphic representation for elements of A0 and A1 will be as follows:
A0

.=
(

−1,−1
Zp[x]/(xN−1)

)
={C0 +C1.i+C2.j +C3.k|C0, C1, C2, C3 ∈ Circulant Matrice of Dimension N

over Zp, i2 = −1, j2 = −1, ij = −ji = k}, and
A1

.=
(

−1,−1
Zq [x]/(xN−1)

)
={C0 +C1.i+C2.j +C3.k|C0, C1, C2, C3 ∈ Circulant Matrice of Dimension N

over Zq, i2 = −1, j2 = −1, ij = −ji = k}.

Therefore, each of the isomorphic representations of A0 and A1 can be utilized without any
ambiguity. Hence, we will use polynomial representation for the description of the proposed scheme
and matrix representation for lattice analysis.

In the matrix representations of A0 and A1, an element like Q .= C0 +C1.i+C2.j+C3.k can be
shown as the following quaternionic matrix in which Qi,j

.= C0(i,j)
+ C1(i,j)

.i+ C2(i,j)
.j + C3(i,j)

.k:

Q
.=



q0 qN−1 qN−2 · · · · · · q2 q1

q1 q0 qN−1
. . . q3 q2

q2 q1 q0
. . .

...
...

q3 q2 q1
. . .

...
...

...
...

. qN−1 qN−2

qN−2 qN−3
...

. . . q0 qN−1

qN−1 qN−2 · · · · · · · · · q1 q0


.

A lot of research has been performed on quaternionic matrices and it seems that they lack many
properties that matrices over an arbitrary field F possess. In particular, the determinant function

10

of quaternionic matrices is not well-defined in general. They also have different left and right
eigenvalues and eigenvectors. On the other hand, the existence of inverse for a quaternionic matrix
has been proved and can be calculated by a method similar to Gaussian elimination [16, 17].
Consequently, in lattice analysis, many of these relations will lose their applicability and this is
highly valuable with regards to the strength of our proposed scheme, QTRU, against lattice attacks.

5 Proposed Scheme: QTRU

Similar to NTRU, the security of the QTRU cryptosystem depends on three parameters (N, p, q)
and four subsets Lf , Lm, Lφ , Lg ⊂ A (A .=

(
−1,−1

Z[x]/(xN−1)

)
). Here, N , p and q are constant

parameters which play a role similar to the equivalent parameters in NTRU. The constants df , dg,
dφ , and dm and the subsets Lf , Lφ , Lg and Lm are defined exactly as in Table (1). Since encryption
and decryption are taken place in a multi-dimensional vector space, the following notations and
symbols are required:

~F = f0 + f1.i+ f2.j + f3.k ∈
(

−1,−1
Z[x]/(xN−1)

)
, and{

f0
∆= f0(x), f1

∆= f1(x), f2
∆= f2(x), f3

∆= f3(x)
}
∈ Z[x]/(xN − 1).

The symbol ◦ denotes the quaternionic multiplication and is defined as follows:

~F ◦ ~G = (f0 + f1.i+ f2.j + f3.k) ◦ (g0 + g1.i+ g2.j + g3.k)
= (f0 ? g0 − f1 ? g1 − f3 ? g3 − f2 ? g2)
+ (f0 ? g1 + f1 ? g0 − f3 ? g2 + f2 ? g3).i
+(f3 ? g1 + f2 ? g0 + f0 ? g2 − f1 ? g3).j
+(f1 ? g2 + f0 ? g3 − f2 ? g1 + f3 ? g0).k,

where ? denotes the convolution product. We denote the conjugate of a quaternion ~F by ~F ∗.
QTRU can now be described as follows:

Key Generation In order to generate a pair of public and private keys, two small quaternion
~F and ~G are randomly generated:

~F = f0 + f1.i + f2.j + f3.k, such that f0, f1, f2, f3 ∈ Lf ,
~G = g0 + g1.i + g2.j + g3.k, such that g0, g1, g2, g3 ∈ Lg.

The quaternion ~F must be invertible over A0 =
(

−1,−1
Zp[x]/(xN−1)

)
and A1 =

(
−1,−1

Zq [x]/(xN−1)

)
. As

mentioned in the previous section, the necessary and sufficient condition for ~F to be invertible
over A0 and A1 is that the polynomial

∥∥∥~F∥∥∥ = (f2
0 + f2

1 + f2
2 + f2

3) be invertible over the rings

Zp[x]/(xN − 1) and Zq[x]/(xN − 1). Given the fact that invertiblilty of quaternion ~F depends on
the four polynomials f0, f1, f2, f3, there is more freedom in selection of these polynomials. For
example, there is no necessity for selecting all the polynomials from Lf , as it is sufficient to have

11

f2
0 + f2

1 + f2
2 + f2

3

∣∣
x=1
6= 0 (mod p and q). If the generated quaternion is not invertible over A0

and A1, a new quaternion can easily be generated.
After generation of ~F and ~G, the inverses of ~F (denoted by ~Fp and ~Fq) will be computed in

the following way:

~Fp =
〈
(f2

0 + f2
1 + f2

2 + f2
3)−1 overZp[x]/(xN − 1)

〉
◦ ~F ∗ = µ0 + µ1.i+ µ2.j + µ3.k,

~Fq =
〈
(f2

0 + f2
1 + f2

2 + f2
3)−1 overZq[x]/(xN − 1)

〉
◦ ~F ∗ = η0 + η1.i+ η2.j + η3.k.

Now, the public-key, which is a quaternion, is calculated and then made public as follows:

~H = ~Fq ◦ ~G =
(η0 ? g0 − η1 ? g1 − η3 ? g3 − η2 ? g2)+
(η0 ? g1 + η1 ? g0 − η3 ? g2 + η2 ? g3).i+
(η3 ? g1 + η2 ? g0 + η0 ? g2 − η1 ? g3).j+
(η1 ? g2 + η0 ? g3 − η2 ? g1 + η3 ? g0).k.

The quaternions ~F , ~Fp and ~Fq will be kept secret in order to be used in the decryption phase.
One can estimate that the key generation of QTRU is 16 times slower than that of NTRU, when
the same parameters (N, p, q) are used in both cryptosystems. However, in QTRU, we can work
with a lower dimension, without reducing the system security.

We note that if coefficients of i, j, and k are all zero in the quaternions ~F and ~G, then the
QTRU cryptosystem will be completely analogous to NTRU. On the other hand, if the coefficients
of j and k are equal to zero, a cryptosystem similar to the one proposed in [6] will be acquired.

Encryption In the encryption process, the cryptosystem initially generates a random quater-
nion, called the blinding quaternion. Incoming data must be converted into a quaternion including
four small polynomials. Data conversion into polynomials is performed exactly similar to the NTRU
system. However, we have much more freedom for formation of a quaternion with four elements.
The incoming data can be generated from the same or four different sources but transformed into
one quaternion based on a simple conversion. After the conversion of the incoming message(s) into
one quaternion, the ciphertext will be computed and sent in the following way:
Data Quaternion:

~M = m0 +m1.i +m2.j +m3.k,

m0
∆= m0(x),m1

∆= m1(x),m2
∆= m2(x),m3

∆= m3(x) ∈ Lm.

Blinding Quaternion :

~Φ = φ0 + φ1.i + φ2.j + φ3.k,
φ0

∆= φ0(x), φ1
∆= φ1(x), φ2

∆= φ2(x), φ3
∆= φ3(x) ∈ Lφ.

Ciphertext:

12

~E = p. ~H ◦ ~Φ + ~M .

Encryption needs one quaternionic multiplication including 16 convolution multiplications with
O(N2) complexity, and 4 polynomial additions with O(N) complexity. In the encryption phase, a
total of four data vectors are encrypted at once.

Decryption In order to decrypt, the received quaternion ~E is multiplied by the private key
~F :

~F ◦ ~E = (~F ◦ (p. ~H ◦ ~Φ + ~M) mod q

= (~F ◦ p. ~H ◦ ~Φ + ~F ◦ ~M) mod q

= (p. ~F ◦ ~Fq ◦ ~G ◦ ~Φ + ~F ◦ ~M) mod q

= (p. ~G ◦ ~Φ + ~F ◦ ~M).

The coefficients of the four polynomials in the resulting quaternion must be reduced mod q into
the interval (−q/2,+q/2]. Upon suitable selection of the cryptosystem constant parameters, the
coefficients of the polynomial (p. ~G ◦ ~Φ + ~F ◦ ~M) will most probably be within (−q/2,+q/2] and
the last reduction mod q will not be required. With such an assumption, when the result of
(p. ~G ◦ ~Φ + ~F ◦ ~M) is reduced mod p, the term p. ~G ◦ ~Φ will be removed and the ~F ◦ ~M (modp) will
remain. In order to extract the original message ~M , it will suffice to multiply ~F ◦ ~M (modp) by ~Fp

and adjust the resulting coefficients within the interval [−p/2,+p/2]. Therefore, decryption includes
32 convolutions and naturally decryption speed becomes half the encryption speed, analogous to
the NTRU cryptosystem.

6 Analyzing QTRU

In this section, we analyze QTRU and discuss the probability of successful decryption, key security,
message security and the message expansion rate. Moreover, we suggest a set of parameters for the
QTRU cryptosystem.

Successful Decryption Probability of successful decryption in the QTRU is calculated in
the same way as NTRU and under the same assumptions considered in [5] and [6]. Moreover, for
successful decryption in QTRU, all quaternion coefficients of ~F ◦ ~E = (p. ~G ◦ ~Φ + ~F ◦ ~M) must lie
in the interval

[
−q+1

2 , +q−1
2

]
. Hence, we obtain

~A := ~F ◦ ~E = (p. ~G ◦ ~Φ + ~F ◦ ~M) = a0 + a1.i+ a2.j + a3.k,

where:

a0 = p.g0?φ0−p.g1?φ1−p.g3?φ3−p.g2?φ2+f0?m0−f1?m1−f3?m3−f2?m2
.= [a0,0, a0,1, ..., a0,N−1],

a1 = p.g0?φ1+p.g1?φ0−p.g3?φ2+p.g2?φ3+f0?m1+f1?m0−f3?m2+f2?m3
.= [a1,0, a1,1, ..., a1,N−1],

13

a2 = p.g3?φ1+p.g2?φ0+p.g0?φ2−p.g1?φ3+f3?m1+f2?m0+f0?m2−f1?m3
.= [a2,0, a2,1, ..., a2,N−1],

a3 = p.g1?φ2+p.g0?φ3−p.g2?φ1+p.g3?φ0+f1?m2+f0?m3−f2?m1+f3?m0
.= [a3,0, a3,1, ..., a3,N−1].

Before calculating the probability for successful decryption, one can easily estimate with a glance
at the above relations that if we consider all NTRU assumptions, the expected value for all co-
efficients of a0, a1, a2, a3 remain equal to zero and their variance quadruples. We know that
fi ? mj(i, j = 0, 1, 2, 3) and gi ? φj(i, j = 0, 1, 2, 3) are the products of two small polynomials and
that the coefficients of fi, gi, and φi are assumed to be independent random variables that randomly
take one of the values: -1, 0, and +1. Now, according to definition of the subsets Lf and Lg from
Table 1, we obtain:

fi = [fi,0, fi,1, ..., fi,N−1] i = 0, 1, 2, 3,

gi = [gi,0, gi,1, ..., gi,N−1] i = 0, 1, 2, 3,

φi = [φi,0, φi,1, ..., φi,N−1] i = 0, 1, 2, 3,

Pr(fi,j = 1) =
df
N
, Pr(fi,j = −1) =

df − 1
N

≈
df
N
, Pr(fi,j = 0) =

N − 2df
N

[0, 1] ,

Pr(gi,j = 1) = Pr(gi,j = −1) =
dg
N
, Pr(gi,j = 0) =

N − 2dg
N

,

Pr(φi,j = 1) = Pr(φi,j = −1) =
dφ
N
, Pr(φi,j = 0) =

N − 2dφ
N

,

Pr(mi,j = j) =
1
p
, i = 0, 1, 2, 3 j =

−p+ 1
2

...
+p− 1

2
.

Under the above assumptions, we get: E[fi,j] ≈ 0, E[gi,j] = 0, E[ri,j] = 0, and E[mi,j] = 0.
Therefore, we have:

E[ai,j] = 0 i = 0, 1, 2, 3 j = 0, ..., N − 1.

In order to calculate V ar[ai,j], analogous to NTRU, it is sufficient to write:

V ar[φi,k.gj,l] =
4dφ.dg
N2

i, j = 0, 1, 2, 3 k, l = 0, ..., N − 1,

V ar[fi,k.mj,l] =
df (p− 1).(p+ 1)

6.N
i, j = 0, 1, 2, 3 k, l = 0, ..., N − 1.

As a result,

V ar[a0,k] = V ar[
∑

i+j=k
(mod N)

(p.g0,i ? φ0,j−p.g1,i?φ1,j−p.g3,i?φ3,j−p.g2,i?φ2,j+f0,i?m0,j−f1,i?m1,j−f3,i?m3,j−f2,i?m2,j)].

Upon insertion of V ar[φi,kgj,l] and V ar[fi,kmj,l] values, we obtain:

V ar[a0,k] =
16p2dφdg

N
+

4df (p− 1)(p+ 1)
6

.

14

Similarly, we have:

V ar[a1,k] = V ar[a2,k] = V ar[a3,k] =
16p2dφdg

N
+

4df (p− 1)(p+ 1)
6

.

It is desirable to calculate the probability that ai,k lies within −q+1
2 ...+q−1

2 , which implies successful
decryption. With the assumption that ai,k’s have normal distribution with zero mean and the
variance calculated as above, we have:

Pr
(
|ai,k| ≤

q − 1
2

)
= Pr

(
−q − 1

2
≤ ai,k ≤

q − 1
2

)

= 2Φ
(
q − 1
2σ

)
− 1,

where Φ denotes the distribution of the standard normal variable and σ =
√

16p2dφdg
N + 4df (p−1)(p+1)

6 .
Regarding the assumption that ai,k’s are independent random variables, the probability for

successful decryption in QTRU can be calculated through the following two observations:

• The probability for each of the messages m0, m1, m2, or m3 to be correctly decrypted is:(
2Φ(

q − 1
2σ

)− 1
)N

.

• The probability for all the messages m0, m1, m2, and m3 to be correctly decrypted is:(
2Φ(

q − 1
2σ

)− 1
)4.N

.

It is apparent that in QTRU, the variance of the coefficients (p. ~G ◦ ~Φ + ~F ◦ ~M) increases by a
factor of 4 and hence the probability for decryption failure increases. In return, constant parameters
of the system, including dφ , dg, df , q, and N , can be chosen in such a way that the decryption
failure rate in the QTRU remains equal to that of NTRU. The rightmost column of Table (2) shows
the probability for successful decryption for some proposed values of dφ , dg, df , q, and N .

Brute Force Attack In QTRU, an attacker knows the constant and public parameters,
namely dφ , dg, df , q, and N , as well as the public-key ~H = ~Fq ◦ ~G = h0 + h1.i + h2.j + h3.k. If
the attacker can access one of the quaternions ~G ∈ Lg or ~F ∈ Lf , the private key will be easily
revealed. In order to find ~G or ~F , using a brute force attack, the attacker can try all possible values
and check to see if ~F ◦ ~H (~G ◦ ~H−1) turns into a quaternion with small coefficients or not. The
total state space for the two subsets Lf and Lg is calculated as follows:

|Lf | =

(
N

df

)4(
N − df + 1

df

)4

=
(N !)4

(df !)8(N − 2df)!4
,

15

Pr(Successful
Decryption)

Message
Expan-
sion

Message
Security

Key Secu-
rity

df dg df q p N Security
Level

0.9997119974 ≈4.4 7.8404×1031 1.8356×1060 5 12 15 127 3 107 Moderate
0.9999971752 ≈4.4 1.9527×1053 1.8356×1060 10 12 20 191 3 107
0.9999998808 ≈4.6 3.3811×1059 7.7751×1067 10 12 20 191 3 149 High
0.9999845041 ≈4.6 7.7751×1067 1.5965×1079 12 15 22 191 3 149
0.9999563737 ≈4.6 1.5965×1079 1.9861×1095 15 20 50 255 3 149
0.9994484943 ≈4.6 1.9864×1095 2.8775×1010820 25 35 255 3 149
0.9999808954 ≈4.7 1.8749×1093 7.111×1099 18 20 40 255 3 167
0.9999167707 ≈4.7 1.8749×1093 7.111×1099 18 20 50 255 3 167
0.9993964435 ≈4.7 9.60×10105 4.91×10111 22 24 40 255 3 167
0.9999974680 ≈4.8 2.34×10101 9.24×10108 18 20 40 255 3 211 Highest
0.9999782250 ≈4.8 1.38×10116 8.37×10122 22 24 30 255 3 211
0.9999995888 ≈5.1 1.13×10108 2.93×10116 18 20 40 255 3 257
0.9999923928 ≈5.1 1.29×10132 1.29×10132 24 24 30 255 3 257

Table 2: the probability of successful encryption in the QTRU, security level of the private key,
and message security according to some generic parameters dφ , dg, df , p, q, N .

|Lg| =

(
N

dg

)4(
N − dg + 1

dg

)4

=
(N !)4

(dg!)8(N − 2dg)!4
.

Since dg is generally considered to be smaller than df , evidently Lg is smaller than Lf and by
trying all possible values of ~G ∈ Lg in ~G ◦ ~H−1, the attacker can reveal the private key through
searching a space of order Lg and with resort to Meet-In-The-Middle attack through searching a
space of order

√
|Lg| = (N !)2

(dg !)4(N−2dg)!2
[18]. Similarly, in order to find the original message from the

corresponding ciphertext, the attacker must search in Lφ. On average, the search must be done
in a space of order

√
|Lφ| = (N !)2

(dφ!)4(N−2dφ)!2
. However, with the typical values for dφ , dg, and N ,

finding the private key or plaintext using brute force attack is computationally infeasible.
In Table (2), Key Security and Message Security columns respectively indicate the search space

for the private key (
√
|Lg|) and the search space for the message (

√
|Lg|) with regards to typical

values of dφ , dg, and N . Therefore, the QTRU cryptosystem seems to be completely secure against
brute force attack. Moreover, with regards to chosen plaintext-attack, all analyses and solutions
proposed for NTRU, work just as well for the QTRU.

Message Expansion Analogous to NTRU, the length of the encrypted message in QTRU is
more than the original message and that is part of the price one pays for gaining more speed in
both systems. The expansion ratio can be easily calculated through log |C|

log |P | = log q4N

log p4N
= log q

log p , where
C is the state space for the encrypted message and P is the state space for plaintext; for NTRU and
the QTRU, this ratio depends merely on p and q. Table (2) presents the message expansion rate for
some typical values of p and q. Message expansion rate for generic parameters in both NTRU and
QTRU fluctuates between 4 and 5. In recent years, NTRU has been thoroughly analyzed and its

16

resistance against lattice attacks has been sufficiently studied implying its main core to be secure,
see for example [7], [3], [10], [9], and [5].

7 Analyzing Lattice Attacks Against QTRU

Given the fact that quaternion algebra is a non-commutative algebraic structure, it is implies that
lattice-based attacks against QTRU are generally more difficult. This is because lattice theory
inherently relies on the commutativity in the commutative rings while quaternionic matrices or
lattices inherently possess certain complexities which do not seem to be solvable [21]. For the sake
of clarity, we divide the analysis of lattice-based attacks against QTRU into two parts: Partial
Lattice Attack and Full Lattice Attack.

Partial Lattice Attack Let each quaternion isomorphic representation on R4 be considered
as follows:

q
∆= q0 + q1i+ q2j + q3k ∼=


q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

 ,

x
∆= x0 + x1i+ x2j + x3k ∼=


x0 x1 x2 x3

−x1 x0 −x3 x2

−x2 x3 x0 −x1

−x3 −x2 x1 x0

 ,

x ◦ q =


x0 x1 x2 x3

−x1 x0 −x3 x2

−x2 x3 x0 −x1

−x3 −x2 x1 x0




q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

 ,
where ◦ denotes quaternionic multiplication.

The attacker knows the constant parameters of the system dφ , dg, df , p, q, and N , as well as
the public-key ~H = ~Fq ◦ ~G = h0 + h1.i+ h2.j + h3.k. Obviously, once the attacker manages to find
one of the quaternion ~F or ~G, the QTRU cryptosystem breaks. It is known that h0, h1, h2, and h3,
in the public-key ~H = h0 +h1i+h2j+h3k, are polynomials over Z[x]/(xN − 1). We also represent
those polynomials in their isomorphic representation as vectors over ZN as:

~H = h0 + h1i+ h2j + h3k
∆=
[
h0 h1 h2 h3

]
,

h0 = h0,0 + h0,1.x+ . . .+ h0,N−2.x
N−2 + h0,N−1.x

N−1 ∆=
[
h0,0 h0,1 h0,2 . . . h0,N−2 h0,N−1

]
∈ ZN ,

h1 = h1,0 + h1,1.x+ . . .+ h1,N−2.x
N−2 + h1,N−1.x

N−1 ∆=
[
h1,0 h1,1 h1,2 . . . h1,N−2 h1,N−1

]
∈ ZN ,

h2 = h2,0 + h2,1.x+ . . .+ h2,N−2.x
N−2 + h2,N−1.x

N−1 ∆=
[
h2,0 h2,1 h2,2 . . . h2,N−2 h2,N−1

]
∈ ZN ,

h3 = h3,0 + h3,1.x+ . . .+ h3,N−2.x
N−2 + h3,N−1.x

N−1 ∆=
[
h3,0 h3,1 h3,2 . . . h3,N−2 h3,N−1

]
∈ ZN .

17

As indicated in Section 4, Z[x]/(xN − 1) is isomorphic to the circulant matrices ring of order N
over Z. Hence, we also represent h0, h1, h2, and h3 polynomials in their isomorphic representation
for lattice analysis:

(hi)N×N
∆=



hi,0 hi,1 hi,2 · · · hi,N−1

hi,N−1 hi,0 hi,1 hi,N−2

hi,N−2 hi,N−1 hi,0 hi,N−3

...
. . .

...

hi,2 hi,3

hi,1 hi,2 · · · hi,0


i = 0, 1, 2, 3.

Under the above assumptions, a partial lattice attack can be described as follows. Let’s de-
notes the quaternion ~F and ~G as ~F

∆=
[
f0 f1 f2 f3

]
and ~G

∆=
[
g0 g1 g2 g3

]
, where

f0, f1, f2, f3 and g0, g1, g2, g3 ∈ Z[x]/(xN −1). Then, it is clear that the collection of pairs of vectors
[u0, u1, u2, u3, v0, v1, v2, v3] ∈ Z8N satisfying the congruence ~F ◦ ~H = ~G form a lattice in Z8N . This
lattice which has been denoted as LPartial is defined as follows:

LPartial = RowSpan



λ.I4N×4N

(h0)N×N (h1)N×N (h2)N×N (h3)N×N
(−h1)N×N (h0)N×N (−h3)N×N (h2)N×N
(−h2)N×N (h3)N×N (h0)N×N (−h1)N×N
(−h3)N×N (−h2)N×N (h1)N×N (h0)N×N

0 4N×4N q.I4N×4N


∈ Z4N×4N .

The lattice LPartial includes all vectors in the form of [u0, u1, u2, u3, v0, v1, v2, v3] ∈ Z8N , which
satisfy ~F ◦ ~H = ~G. However, the fundamental difference between the NTRU and QTRU lattice
is that all points spanned by this lattice merely encompass a partial subset of the total set of
vectors which satisfy ~F ◦ ~H = ~G. To see this, let [u0, u1, u2, u3, v0, v1, v2, v3] be a vector satisfying
~F ◦ ~H = ~G. Then, [−u1, u0,−u3, u2,−v1, v0,−v3, v2], too, will be an answer for (since ~F ◦ ~H =
~G→ i. ~F ◦ ~H = i. ~G) but LPartial will not necessarily include such answers. 000 this part is very

unclear, consider rewriting. the propositions are making it more difficult

If the attacker manages to find a short vector in this lattice using a lattice reduction algorithm,
s/he is capable of finding the private key because such a short vector will satisfy ~F ◦ ~H = ~G.
However, even with such an optimistic assumption, LPartial have dimensions which are four times
larger than those of NTRU lattice. Note that QTRU deals with (N = 107, p, q) just as NTRU
does with (N = 428, p, q). It can be asserted that with any selective (N, p, q), QTRU (that acts
approximately four times slower, compared to NTRU) has a security equal to that of NTRU with
(4N, p, q) dimensions. While NTRU with 4N dimensions is sixteen times slower than NTRU with

18

dimension of N . In more precise terms, QTRU with (N, p, q) dimensions, has a security equal to
NTRU with (4N, p, q) and QTRU with (N, p, q) is four times faster than NTRU with (4N, p, q).
The main point to emphasize is that with an advantage of smaller dimensions, QTRU can present
a higher security than NTRU. 000 I suggest that you add a paragraph like this in the

abstract or introduction to show the strength of QTRU early on

In practice, partial lattice attacks do not always succeed because generally LPartial, and even
its variants such as the lattice i. ~F ◦ ~H = i. ~G, j. ~F ◦ ~H = j. ~G, and k. ~F ◦ ~H = k. ~G, do not necessarily
include all answers of ~F ◦ ~H = ~G in a way that f0, f1, f2, f3, g0, g1, g2, g3 be short vectors (i.e.,
polynomials with very small coefficients). Therefore, we must find out what lattices include all
vectors satisfying the congruence ~F ◦ ~H = ~G.

Full Lattice Attack Before looking at the lattice containing all vectors satisfying the con-
gruence ~F ◦ ~H = ~G, we introduce the Quaternionic Lattice first. Suppose ~v1, ~v2, ..., ~vN are
quaternionic vectors in HN (H =

(
−1,−1

R

)
). Moreover, let

(
−1,−1

Z

)
be a quaternion with integer

elements (such quaternions often are called Lipschitz integers). Given non-commutativity of the
quaternion algebra, Left/Right Quaternionic Lattice (LQL/RQL) can be defined in the following
way:

LQL =
{
q1 ◦ ~v1 + q2 ◦ ~v2 + q3 ◦ ~v3 + · · ·+ qN ◦ ~vN |qi ∈

(
−1,−1

Z

)}
,

RQL =
{
~v1 ◦ q1 + ~v2 ◦ q2 + ~v3 ◦ q3 + · · ·+ ~vN ◦ qN |qi ∈

(
−1,−1

Z

)}
.

A General Quaternionic Lattice is a quaternionic combinations (versus linear combinations) of
vectors ~v1, ~v2, ..., ~vN from left or right by integer quaternion qi ∈

(
−1,−1
Z

)
. Now let’s look into the

Quaternionic Lattice of QTRU: As indicated in Section 4, the public-key ~H can be represented as
follows:

~H
.= H0 +H1.i+H2.j+H3.k, H0

∆= Circ(h0), H1
∆= Circ(h1), H2

∆= Circ(h2), H3
∆= Circ(h3).

In other words,

~H
∆=

h0,0 h0,1 h0,2 · · · h0,N−1

h0,N−1 h0,0 h0,1 h0,N−2

h0,N−2 h0,N−1 h0,0 h0,N−3

...
. . .

...

h0,2 h0,3

h0,1 h0,2 · · · h0,0


+



h1,0 h1,1 h1,2 · · · h1,N−1

h1,N−1 h1,0 h1,1 h1,N−2

h1,N−2 h1,N−1 h1,0 h1,N−3

...
. . .

...

h1,2 h1,3

h1,1 h1,2 · · · h1,0


.i+

19



h1,0 h1,1 h1,2 · · · h1,N−1

h2,N−1 h2,0 h2,1 h2,N−2

h2,N−2 h2,N−1 h2,0 h2,N−3

...
. . .

...

h2,2 h2,3

h2,1 h2,2 · · · h2,0


.j +



h1,0 h1,1 h1,2 · · · h1,N−1

h3,N−1 h3,0 h3,1 h3,N−2

h3,N−2 h3,N−1 h3,0 h3,N−3

...
. . .

...

h3,2 h3,3

h3,1 h3,2 · · · h3,0


.k,

~HN×N
∆=



h0,0 + h1,0i+ h2,0j + h3,0k · · · h0,N−1 + h1,N−1i+ h2,N−1j + h3,N−1k

h0,N−1 + h1,N−1i+ h2,N−1j + h3,N−1k h0,N−2 + h1,N−2i+ h2,N−2j + h3,N−2k

h0,N−2 + h1,N−2i+ h2,N−2j + h3,N−2k h0,N−3 + h1,N−3i+ h2,N−3j + h3,N−3k
...

. . .
...

h0,2 + h1,2i+ h2,2j + h3,2k

h0,1 + h1,1i+ h2,1j + h3,1k · · · h0,0 + h1,0i+ h2,0j + h3,0k


.

Given the above definitions, the attacker can form the following quaternionic lattice using the
public-key ~H:

QLQT RU =

[
IN×N ~HN×N

0N×N q.IN×N

]
.

Note that QLQT RU has dimension equal to 2N × 2N . Obviously, the quaternionic combinations of
the rows of this matrix are answers for the congruence ~F ◦ ~H = ~G. To be more precise, all of the left
quaternionic (vesus linear) combination of rows of QLQT RU satisfy ~F ◦ ~H = ~G. Now, let’s discuss
how the attacker can use a lattice reduction algorithm in searching for such short vectors (i.e., rows
of the matrix with low norm quaternionic coefficients). Here, we face many serious challenges and
open questions:

• As mentioned in section 4, quaternionic matrices (as matrices which have been defined over
a Skew Field) lack many properties of matrices MN×N (F) which are generally defined over a
field (or commutative ring). Therefore, many numerical and computational methods provided
for matrices MN×N (F) are not going to work with quaternionic matrices.

• Since determinant is not generally well-defined for quaternionic matrices, many basic con-
cepts of a lattice, such as unimodular matrices (e.g., matrices with det(U) = ±1 which have
lattice preserving properties), determinant of a lattice and fundamental parallelepiped vol-
ume lose their meanings. Moreover, such useful and effective propositions as Blichfeldt and
Minkowski theorem as well as Gaussian Heuristic lose their efficiency with quaternionic lat-
tices. Although research on quaternionic matrices and their determinant has been going on
for the past century [19], what we know about them today is that generally determinant, as a
multiplicative homomorphism, is not well-defined for quaternionic matrices [16, 17]. Accord-

20

ing to [20], determinant mapping for quaternionic matrices can be defined in the following
way. For quaternionic matrices, the determinant is defined in terms of the cosets modulo the
commutator subgroup of the nonzero elements. Elaborate researches on quaternionic lattice
are underway. Yet, in most of those researches, quaternionic lattices are analyzed in specific
conditions and on the basis of usage. Hence, according to the knowledge at hand, finding
short vectors in quaternionic lattices is facing some difficulties that do not seem to be solvable.
For instance, even a simple linear equation with a single quaternionic variable x in the form

of c =
n∑
j=1

aixbj where ai, bi, c, are quaternions, for n ≥ 3, is not solvable in general [21]. In

the case of confidence in existence of such an answer, one must find the answer by trial and
error.

• None of the lattice reduction algorithms, for example LLL (or its faster variants, e.g., BKZ)
have been provided for quaternionic lattice and hence they cannot be used to find short
vectors in QLQT RU with dimensions of 2N × 2N .

Hence, we argue that not only finding short vectors in quaternionic lattices is NP-Hard (as the
same problem is NP-Hard even in regular lattice [22]), but also lattice reduction algorithms do not
help in reducing the search space in a quaternionic lattice. Therefore, the only effective way to
attack the QTRU, is finding short vectors in a lattice with 8N × 8N dimensions by Partial Lattice
Attack method.

8 Conclusion

In this paper, QTRU, an NTRU-base cryptosystem, has been proposed. The underlying alge-
braic structure for QTRU is the quaternion algebra which is a non-commutative algebra. Given
the serious challenges ahead of quaternionic lattices, as well as the difficulties imposed by non-
commutative algebra in solving (linear or non-linear, single-variable or multi-variable) equations,
the proposed system proves more resistant against lattice attacks when compared to NTRU. Use of
a non-commutative algebraic structure, that has been proven to be highly resistant against lattice
attacks, accounts for the main strength of QTRU.

The general and necessary calculations regarding probability of successful decryption, message
and key security, and message expansion have been presented for QTRU and the results have been
compared to NTRU. Additionally, a group of generic parameters for QTRU have been introduced.
Although the proposed method seems to be some four times slower than NTRU in totally equal
conditions (i.e., selection of the same parameters for both NTRU and QTRU cryptosystems), QTRU
is more resistant to lattice-based attacks when compared to NTRU. Hence, one can catch up on
the speed by reducing the dimensions and still obtain the same level of security.

The following are other positive characteristics of QTRU:

• QTRU is totally compatible with NTRU and if coefficients of i, j, and k, are chosen to be equal
to zero in all calculations, QTRU simply converts to NTRU. Therefore, QTRU is downward

21

compatible to NTRU without any expense. This compatibility (just like the compatibility
between 3DES and DES) can account as a highly positive point for QTRU.

• The data are encrypted four by four (four blocks by four blocks). As a result, an encrypted
message may include four messages from a single source or four independent messages from
four different sources. This characteristic may be very useful in protocol design or such
applications as electronic voting, financial transactions and the like.

9 Further work

Over and above the discussion on cryptography, quaternionic lattice theory has valuable usages in
coding theory, space-time coding in particular, as well as quantum physics. Therefore, studying the
nature of quaternionic lattices is of interest in continuation of this line of research. Furthermore,
NTRU and QTRU are based on a common concept that does not depend on a certain underlying
algebraic structure. Hence, this concept can be used on different types of rings, modules, and
vector spaces, or different kinds of algebras (in the sense of Cayley-Dickson) in order to produce
new NTRU-like cryptosystems and explore their possible advantages.

10 Acknowledgement

Authors of this article wish to extend their cordial thanks to Professor Hussein Haji-Abulhassan,
Faculty of Mathematics at Shahid Beheshti University for his generous guidance in preparing this
paper.

References

[1] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A Ring-Based public-key Cryptosystem, in
Proceedings of the Third International Symposium on Algorithmic Number Theory: Springer-
Verlag, (1998).

[2] D. V. Bailey, D. Coffin, A. Elbirt, J. H. Silverman, and A. D. Woodbury, NTRU in Constrained
Devices, in Proceedings of the Third International Workshop on Cryptographic Hardware and
Embedded Systems: Springer-Verlag, (2001).

[3] A. May and J. H. Silverman, Dimension Reduction Methods for Convolution Modular Lattices,
in Revised Papers from the International Conference on Cryptography and Lattices: Springer-
Verlag, (2001).

[4] N. Howgrave-graham, J. Hoffstein, J. Pipher, and W. Whyte, On estimating the lattice security
of NTRU, NTRU Cryptosystems Technical Report, (2007).

22

[5] J. Pipher, Lectures on NTRU encryption algorithm and digital signature scheme, NTRU Cryp-
tosystems Inc., www.ntru.com, (2002).

[6] R. Kouzmenko, Generalizations of NTRU Cryptosystem, MsC Thesis, Polytechnique, Mon-
treal, Canada., (2006).

[7] A. May, Cryptanalysis of NTRU, Unpublished preprint, (1999).

[8] D. Coppersmith and A. Shamir, Lattice Attacks on NTRU, Advances in Cryptology, EURO-
CRYPT ’97, Lecture Notes in Computer Science, Springer-Verlag, vol. 1233, pp. 52-61, (1997).

[9] J. H. Silverman, Dimension-Reduced Lattices, Zero-Forced Lattices, and NTRU public-key
Cryptosystem, NTRU Cryptosystems Technical Report, Report #12 & #13, (1999).

[10] T. Meskanen, On NTRU Cryptosystem, PhD Dissertation, Department of Mathematics, Uni-
versity of Turku, Finland, (2005).

[11] J. H. Conway and D. A. Smith, On quaternion and Octonions: Their Geometry, Arithmetic,
and Symmetry, A K Peters, Ltd., 2003.

[12] J. C. Baez, The Octonions,Bulletin of the American Mathematical Society, pp. 45-205, (2006).

[13] Z. Y. Sham, Quaternion Algebras and Quadratic Forms, MsC Thesis in Pure Mathematics,
Waterloo, Ontario, Canada, (2008).

[14] T. Y. Lam, A First Course in Noncommutative Rings, vol. 131: Springer-Verlag, 1991.

[15] A. Menezes, P. V. Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography: CRC
Press, 1996.

[16] F. Zhang, quaternion and matrices of quaternion , Linear Algebra and its Applications, vol.
251, pp. 21-57, (1997).

[17] H. Aslaksen, Quaternionic determinants, The Mathematical Intelligencer, vol. 18, pp. 57-65,
(1996).

[18] N. Howgrave-graham, J. H. Silverman, and W. Whyte, A Meet-In-The-Middle Attack on an
NTRU Private Key, NTRU Cryptosystems Technical Report, (2002).

[19] J. M. Peirce, Determinants of quaternion , Bulletin American Mathematical Society, vol. 5,
pp. 335-337, (1899).

[20] W. A. Rutledge, quaternion and Hadamard Matrices, Proceeding of the American Mathemat-
ical Society, vol. 3, no. 4, pp. 625-630, (1952).

[21] D. Janovska and G. Opfer, Linear equations in quaternion , Numerical Mathematics and
Advanced Applications, Proceedings of ENUMATH, Springer, Berlin, Heidelberg, , (2005).

23

[22] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: a cryptographic perspective,
Boston, Massachusetts: Kluwer Academic Publishers, 2002.

24

