New Definitions and Designs for Anonymous Signatures

MIHIR BELLARE® SHANSHAN DUANT

Abstract

There is a fundamental tension in society between authignéind privacy, and finding balances
between them is an important line of research. In this papemwestigate a tool called anonymous
signatures [12, 21] that is useful in applications like secauctions. We provide a new formalization
and definition of this primitive that lends the primitive neogasily and naturally to applications. We
then provide numerous schemes meeting our definition. Tblades schemes without random oracles
and more efficient solutions in the random oracle model. @hemes are surprisingly cheap in both
bandwidth and computation.

Keywords: Signatures, anonymity, hash functions

1 Introduction

There is a fundamental tension in society between autlignéind privacy, and finding balances between
them is an important line of research. The approach we wi#stigate in this paper is anonymous signa-
tures.

What is an anonymous signature? At first hearing, such a 8ongds contradictory, if not impossible.
Indeed the natural and desired interpretation of the tertmaisthe signature not reveal the identity (public
key) of the signer. But signatures can be verified. So, calivays identify the signer’s public key amongst
a list of candidate ones by seeing under which key the sigmaerifies correctly?

This leads to a few questions. The first is, how can we meanliggfiefine and achieve anonymous
signatures in a way that circumvents the above dilemma? @&btensl is, why should we bother anyway,
meaning of what use do we expect anonymous signatures to lee®illNaddress these questions in what
follows.

1.1 Previous work

Anonymous signatures were first introduced by Yang, Wongydoend Wang (YWDW) [21]. They got
around the above-mentioned dilemma by requiring anonyorily when the underlying message is ran-
domly chosen from a large space and is unknown to the verifithich prevents verification.) They
envisaged a two-step usage process. In the signing stagsigther provides the prospective verifier with
a signature, but not the message. At this point, the sigid=istity remains unknown. In the later opening
stage, the signer provides the message (and its publics@ihat verification is possible. Fischlin [12] pro-
vides some elegant constructions of anonymous signathesrss, meeting the YWDW-definition, without
random oracles. His constructions are based on extradiér4.8].

We point to two drawbacks of the YWDW formulation of anonyraaignatures. The first is that it
does not lend itself well to the applications which appeandee motivated it. The second is lack of an
unambiguity requirement.

* Dept. of Computer Science & Engineering, University of @atiia at San Diego, 9500 Gilman Drive, La Jolla, California
92093, USA. E-Mail:mi hi r @s. ucsd. edu. URL: htt p: // ww«+ cse. ucsd. edu/ users/ m hir.

T Dept. of Computer Science & Engineering, University of @atiia at San Diego, 9500 Gilman Drive, La Jolla, California
92093, USA. E-Mail:shduan@s. ucsd. edu. URL: htt p: / / ww«+ cse. ucsd. edu/ user s/ shduan.

Class| Scheme | ASign | Aver | —o— | —k— | Assumption

RH | RH-BLS | 1exp | 1pr 160 320 CDH

DH | DH-Sch | lexp | 2exp| 160 240 DL

DH-GQ | 1exp | 2exp| 160 2048 Factoring

SP | SP-Sch| 1exp | 2exp| 80 160 DL

Figure 1: Summary of anonymous signatures. For each scheme, we skovothputational costs of signing and
verification, the size of an anonymous signatuayéhe size of the de-anonymizerand the assumption used to prove
security. By “RH” we mean randomized hash. By “DH” we mearedetinistic hash. By “SP”, we mean splitting. By
“exp” we mean an exponentiation. By “pr’ we mean a pairing.

The problem from the application perspective is that herssages are certainly not random, and may
need to be known in advance to potential verifiers. To ilatstrlet us consider secure auctions, which is
a canonical application in this area. Alice wishes to pladgdawith value bid 4. She wants to be able
to claim the bid as hers in case it wins, but otherwise wisbeginain anonymous. The natural solution
is to provide, at bidding time, her anonymous signaturé:dfy. When the results are announced, and if
Alice has won, she can provide the relevant opening infdonatThe difficulty is that, under the YWDW
formulation, anonymity in the first stage is only guarantéelice does not provide the message, which in
this case i9id 4. However, the auctioneer needs to know the bid in order terdghe the winner.

This problem is to some extent recognized in [21, 12]. Toedlvthey suggest that the message to be
signed be obtained by padding the bid with a random strindy e random string would be withheld in
the first phase. The difficulty is that while this may “worki,moves us outside the YWDW definitional
framework, which does not cover such usage and does not gi@ayuguarantees about it. (The explanation
for this is somewhat technical. The YWDW definition requitke message to be drawn at random from a
message space that is large and fixed beforehand. It is gnicleéhis context, how to define this message
space, given that the bid may have many possible values,idsdie simply objects chosen by users, rather
than ones on which there is some probability distributidrhgse difficulties may potentially be resolved by
using classes of distributions as per [12], but the alteéraatefinition of anonymous signatures that we will
suggest seems to be simpler and more natural.

One might think that these problems are specific to the aueplication, but in fact this application
is representative. The same issues arise with other apphsamentioned in [21] such as anonymous
paper review and anonymous key exchange. In summary, thievdnmonymity by message withholding”
approach of YWDW just does not seem to map well to application

The second weakness of the YWDW definition is that it fails équire what we callunambiguity.
Namely, given Alice’s signature, Bob may be able to produgmlalic key, different from Alice’s, under
which the signature verifies, thereby effectively claimthg signature as his own. This means that when
Alice’s bid wins the auction, Bob can open it, and claim thatvon the auction! (This does not contradict
unforgeability, because the public key Bob provides isedéht from Alice’s.) In fact, we can give specific
examples of schemes that meet the YWDW definition but are matibiguous, meaning are subject to the
above attack. Our definition, in contrast, explicitly demisumnambiguity, and all our schemes provide it.

1.2 Our notion

We dub our approach “anonymity by partial signature witdivad”. Instead of denying the verifier the
message, we give it the message and deny it part of the signegbpecifically, we ask that any signature
produced by the signing algorithm (on input a messaBebe a pair of objectéo,). In the signing stage,
the potential verifier is provided with the messdgeand the anonymous signaturelt is required that she

be unable, from these, to determine the identity (publid kdthe signer. In the opening stage, the signer
provides the de-anonymizer (and its public key). Now, the verifier has the full signatare is able to
verify.

The application to auctions is immediate and natural. Thesange is simply Alice’s bidid 4. Alice
computes her signatuie,) on this message, and provides the auctioneer with her bidratice anony-
mous portion of the signature. At this point, her anonymstguaranteed. Later, if she learns that she has
won the auction, she opens by providing the auctioneer Wwihde-anonymizet. Note that the auctioneer
is in possession of the full message (bid) from the very b@gg and so, unlike in the message-withholding
approach, has all the information necessary to determaeritiner of the auction.

We formalize three security properties. Unforgeabilitguiees that it be infeasible to forge Alice’s
signatures, even when the adversary can obtain Alice’syanouns signatures on messages of her choice
and adaptively open any of these she wishes. (This implaaglatd unforgeability of the full signature.)
The anonymity requirement follows [4] and is strong: theexdary cannot distinguish under which of two
target public keys an anonymous signature has been created,when it knows the message and both
underlying secret keys. Finally, unambiguity required tha adversary, given an anonymous signature
created by Alice, be unable to produce a public k&y, a messagé/; and a de-anonymizet; such that
pky is different from Alice’s public key and yeio,) is a valid signature of\/; underpk,, even when
the adversary can obtain Alice’s full signatures under asehanessage attack. Assumingvas Alice’s
anonymous signature on her winning bid, unambiguity press&ob from being able to open under an
alternative public key and thereby himself claim the wimgnbid. Recall that this property was lacking in
the YWDW definition of anonymous signatures, opening upiaostbased on them to such attacks.

In summary, we have brought a new viewpoint to anonymousasiiges, defining them based on partial
signature withholding rather than on message withholdiivg.contend that this change, although simple,
is powerful in two ways. The first, which we have already seethat we can now cover applications in
a natural way. The second, which we will see next, is that veeadte to produce natural and practical
schemes to meet the definition.

1.3 Schemes and results

Before describing our schemes, let us discuss designiariterginning with practical issues and then mov-
ing on to theoretical ones.

With regard to efficiency, we wish to minimize both compuiataand bandwidth. The motivation for
the first is obvious. Namely, public key cryptography is athg considered expensive in many settings, and
we do not wish anonymity to add a further computational bardBandwidth deserves more discussion.
For wireless devices such as PDAs, cell phones, RFID chigsansors, battery life is the main limitation.
But here, communicating even one bit of data uses significanbre power than executing one 32-bit
instruction [2]. Reducing the number of bits to communicsé®es power and is important to increase
battery life. Also, in many settings, communication is natable, and so the fewer the number of bits one
has to communicate, the better. For such reasons, we wasthsshn which both the anonymous signature
and the de-anonymizer are as short as possible.

How well can we hope to do? Any anonymous signature scherédsurse, a signature scheme. (The
anonymous signature and the de-anonymizer together tudgasé full signature.) So we cannot hope for
computation or bandwidth costs lower than those of stansigrthture schemes. The issue is to reduce the
overhead as much as possible. As we now explain, we do vety wel

All our constructions start with a base, standard signasaheme and transform it into an anonymous
one. We measure overhead with respect to the base schermehabandwidth overhead being defined as
the difference between the length of a full signature in thengmous scheme and a signature in the base
scheme. The computational overhead of our schemes is atomestash. The bandwidth overhead ranges
from 320 bits to (surprisingly) zero bits. In particular,rdschnorr [20] based scheme, SP-ScH, has an
80 bit anonymous signature and a 160 bit de-anonymizer anddra overhead, iboth computation and

bandwidth.

The primary theoretical issue is to have a proof of secuwg. provide proofs for all our schemes. We
first provide a general construction with a proof withoutdam oracles. We then provide numerous, more
efficient, constructions with random oracle model proofs.

Refer to Figure 1 for a summary of the characteristics of chemes. We now discuss the schemes in
more detail.

We first provide a simple, general transform of any signasaleeme into an anonymous signature
scheme. The transform uses as a tool any commitment schemthe@heoretical side, this immediately
yields constructions without random oracles. (Becauselsta signature schemes, as well as commitment
schemes, without random oracles, are well known.) We csintings with message-withholding anonymous
signatures, where the original work of [21] had no non-randwacle model solutions. The gap was filled
by Fischlin [12] using quite sophisticated techniques. una@ase (partial signature withholding anonymous
signatures) the result is more immediate. On the practidal sve can obtain fairly efficient schemes via
a random oracle model instantiation of the commitment sehespecifically, as a randomized hash. The
anonymous signature is the hash of a 160 bit random stringttieg with the base signature, and the de-
anonymizer is the base signature together with the randongstWe call this the RH construction. The
computational overhead is one hash, and the bandwidth eaeris 320 bits. Bandwidth is minimized by
choosing BLS [9] as the base signature scheme, and Figusplags the characteristics of the resulting
RH-BLS scheme.

We then show how to do better for a class of signature schdmaewe call high-entropy schemes. These
are schemes where the base signatures are already randoinizleis case, we drop the randomizer intro-
duced above, and set the anonymous signature to merelyshehthe base signature. (The de-anonymizer
is simply the base signature.) We provide a direct analgsigrdve security. (It doesn't follow from the
above-mentioned results). The computational overheaki®tH (deterministic hash) construction is one
hash, while the bandwidth overhead has been reduced to 160 What can we use as base schemes?
Schemes such as Schnorr [20], GQ [14] and Fiat-Shamir [133 Hee desired high entropy. More gener-
ally, high entropy is a property of base signature schemssgeadiefrom identification protocols via the Fiat
Shamir transform [13], so there are numerous other chog&ged, all quite efficient. (Note that the BLS
scheme doenot have high entropy and so is unsuitable for use as a base salmatae DH. And, indeed,
DH-BLS is insecure.) Figure 1 summarizes the charactesisti the DH-Sch and DH-GQ schemes.

However, we can do even better. In identification-basedasige schemes such as that of Schnorr [20],
the signature is a pailv,) whereo is the hash of the commitment (the name given to the first mgessa
from the prover) and the message, whiles the response of the prover when the verifier challenge We
observe that such signature schemes lend themselves wecthdio anonymization: we simply useas the
anonymous signature, amdas the de-anonymizer. We call this the splitting constanc{SP). The result is
a scheme that has zero overhead, in both computation anevishhdOf course, we need to show that this
works. We are able to do this by direct proof based on the géfmking lemma of [3]. Observing that the
verifier challenge need be only 80 bits long (there are ndndbéry attacks on the challenge) we obtain the
SP-Sch scheme whose characteristics are summarized ireHigu

Proving unforgeability of our commitment-based anonymsigaature scheme runs into a famous open
problem in cryptography called the selective de-commitrpeoblem [11]. The problem is, can an adversary
who, given a number of commitments can choose to open someeof, tobtain information about the
unopened ones? Intuitively not, but nobody has ever beentalprove this, and results in [11] indicate that
it is hard. Luckily, in our particular setting, we are abler&solve the problem and prove security of our
scheme.

As indicated above, we have shown that one can build an amnysignature scheme from a commit-
ment scheme. It is natural to ask whether the use of a commitsoheme is necessary. We show that it is.
Namely, we show in Section 8 that any anonymous signaturensettan be converted into a commitment
scheme. (At the theoretical level there is nothing intémgstere since all of these primitives are equivalent
to one-way functions [15, 16]. However, our transformai®direct and efficient.)

1.4 Discussion and related work

One might question the motivation for anonymous signatoyesiggesting that they are not really necessary
for any of the applications we have discussed. For exampleadctions, why not proceed as follows.
Alice generates a new public and private key pair for theiancsigns her bid with the newly generated
private key, and attaches the public key, together with ifpeagure, to the bid. Since the key pair is only
used once, no one can tie Alice to her bid. If she wins the ancthe can reveal the private key used
to sign the message, proving that she is the authentic bid&lerilar solutions can be thought up for the
other applications such as secure paper review. Howevsrsdiution is, in fact, implicitly defining an
anonymous signature scheme! Furthermore, this schemssigfiiicient than ours. This kind of observation
only strengthens the motivation for defining our versionmdrmymous signatures because it shows that the
notion captures intuitive solutions and is thus a naturatraltion in this domain.

A natural question is, how do anonymous signatures (regssdif how they are formulated) differ from
group [10, 4] and ring [19, 8] signatures, which also havedbal of providing anonymity? In group
signatures, there is a group of users all of which have the sarblic key, and the signature merely conceals
which member of the group is the signer. In a ring signatuaeheuser has its own keys, but computes
a signature as a function of the keys of other members of apgrem that the signature does not reveal
which member of the group is the signer. In both cases, sigesit once obtained, can immediately be
verified. With anonymous signatures, there is no group. YEuser has its own key, and computes its
signature independently of keys of any other users. Howdversignature cannot be verified without the
de-anonymization information. The notions are indeedeqlifferent, and have different applications. Also,
anonymous signatures, as we have seen, can be implementbdnmove easily and efficiently than group
or ring signatures, which is an advantage.

2 Preliminaries

NOTATION AND CONVENTIONS. We denote by, ||-- - ||a, the concatenation afy, ..., a,. We denote
the empty string by. Unless otherwise indicated, an algorithm may be randainiifeA is a randomized
algorithm theny <—s A(z1,...) denotes the operation of runningywith fresh coins on inputs;, ... and

letting y denote the output. I§ is a (finite) set thers «<—s S denotes the operation of pickirguniformly

at random fromS. If X = x1||z2||...||zn, thenzy||zz]| ... ||z, < X denotes the operation of parsing

into its constituents. Similarly, iX = (z1,z2,...,x,) is ann-tuple, then(xy, zo, ..., x,) < X denotes
the operation of parsing into its elements.

CoDE-BASED GAMES. We will use code-based games [7] in definitions and prootswae recall some
background here. A game has hfitialize procedure, procedures to respond to adversary oracleegueri
and aFinalize procedure. A gamé&' is executed with an adversaryas follows. FirstInitialize executes
and its outputs are the inputs#b Then,A executes, its oracle queries being answered by the cormdsp
procedures of7. When A terminates, its output becomes the input toFieaalize procedure. The output
of the latter is called the output of the game, and wedétdenote the event that this game output takes
valuetrue. Variables not explicitly initialized or assigned are angd to have value , except for booleans
which are assumed initialized ftalse. GamesG;, G; areidentical until badif their code differs only in
statements that follow the setting of the boolean fagdto true. The following is the Fundamental Lemmas
of game-playing:

Lemma 2.1 [7] Let G;, G be identical untilbadgames, andi an adversary. LeBD; (resp.BD;) denote
the event that the execution 6f; (resp.G;) with A setsbad Then

Pr[G{ ABD;] =Pr[G# ABD;| andPr [G{'] — Pr[G{'] < Pr[BD;].

Initialize Initialize Initialize

(pk, sk) s AKG() b+s{0,1}

i (—0; E(—@ (pko,sko) s AKG() Finalize(pko,pkl,Mo,Ml,o, IQQ,I{l)

Returnpk (pk1, sk1) s AKG() do < AVF(pko, Mo, (9, 0))
Return((pko, sko), (pk1, sky)) 4 < AVF(pk1, Mi, (0, k1))

Open(j) Return(do =1ANdy =1 /\pkl }é pko)

If(j <0V j>i)Returnl CH(M)

E+ EU{M,} (0,K) < ASIG(sky, M)

Returnk; Returno

ASign(M) Finalize(d)

1 i+1; M; < M Return(b = d)

(Ui, Iii) s AS|G(S]€, Mz)

Returno;

Finalize(M, (o, k))

Return(M ¢ E AN AVF(pk, M, (o,k)) = 1)

Figure 2: GameAUF-CMA in the left used to define existential unforgeability, gaA®SON in the center used
to define anonymity and gamiéNAMB in the right used to define unambiguity of anonymous sigmaticheme
AS = (AKG, ASIG, AVF).

When we refer to the running time of an adversaryve mean the total time for the execution@fwith A
whered is the game defining the adversary’s advantage. This caovesitnplifies running time analyses.

DIGITAL SIGNATURES. A digital signature schem®S consists of three algorithms with the following
functionality. The key generation algorith&iKG returns a paifpk, sk) of keys consisting of the public key
and matching secret key, respectively. The signing algor$1G takes the secret keyk and a message
M to return a signature. The deterministic verification algorith§\VF takes a public keypk, a candidate
signatures and a messag®/ to return eithefl or 0. We require that all public keys have the same length, as
do all signatures output B§1G. The consistency requirement is that for &flwe haveSVF(pk, s, M) = 1

with probability 1 in the experiment

(pk, sk) <—s SKG() ; s <=5 SIG(sk, M).
The notion of existential unforgeability is captured by gsmeEUF-CMA of Figure 8 in Appendix A.

3 Anonymous Signatures

SYNTAX. Syntactically, an anonymous signature schedA®® = (AKG, ASIG, AVF) is simply a digital
signature scheme in which any signature output by the gigaigorithm is a paifo,). We refer to the
first component of the pair as the anonymous signature argettend as the de-anonymizer.

SECURITY. We propose three security properties: existential umfabpgity, anonymity and unambigu-
ity. The formal definitions are underlain by the gam@EF-CMA, ANON and UNAMB shown in
Figure 2. The corresponding adversary advantages are delfmAdv'j{‘é(A) = Pr [AUF—CMAf}lS],
AdviS™(A) = 2-Pr[ANON%g | — 1 andAdv{e™ (4) = Pr [UNAMBY; | respectively.

In gameAUF-CMA, an adversary' can query the oraclASign to get an anonymous signature on
any message of its choice. It can then, selectively, opechelier of these it pleases, meaning obtain the
de-anonymizer, via it®pen oracle. To winF' must output a messagd and a valid full signaturéo,)
of M such that eithel/ was not queried té Sign or M was queried tAA Sign but the signature returned

Alg ASIG(sk, M) (Algwé\Vi(ik, M, 0, k)
Alg AKG() s+ SIG(sk, M) it (CVF(0. sl|pk.) = 1) then
(pk, sk) < SKG() | (o,w) s CMT(s||pk)
Return(pk, sk) K (5,w) If (SVF(pk,s, M) =1)
- ’ then Return 1
Returno
Return O

Figure 3: Algorithms defining anonymous signature schem® = (AKG, ASIG, AVF) based on signature scheme
DS = (SKG, SIG, SVF) and commitment schentgM 7T = (CMT, CVF).

was not opened.

The formalization of anonymity follows [4]. The adversamtonly gets target public keys:, andpk;
but also knows the corresponding secret kéysandsk,. Via the CH oracle, it can obtain an anonymous
signature, undesk;,, of a messag@/ of its choice, and it wins if it guesses the challengeb(it is allowed
only one query to th€H oracle. Security against multiple queries follows by a Iylargument.)

Suppose Alice has produced an anonymous signatafesome messagk/, under her public keyk.
Unambiguity ensures that only Alice can openby requiring that an adversary be unable to produce a
public keypk;, messagé/; and de-anonymizet; such thatAVF(pky, My, (0,k1)) = 1 butpky # pky.
Actually the requirement is stronger, preventing even é&lherself from priori creating which she can
later open in two ways. This addresses the concern that Adaecreate for herself two identities and, after
sending an anonymous signature, “change” the messagentitydeom which it “originated”.

4 The CMT Construction

In this section we propose and prove correct a general ttemssf any signature scheme into an anonymous
one. The idea is simple: the anonymous signature is a conanttto the base signature, and the de-
anonymizer is the decommital key together with the baseasiga. We consider this a good starting point
because this simple construction will later be the basisitonerous refinement leading to more efficient
schemes. Itis also of direct interest because it shows hashigve anonymous signatures without random
oracles and because the proof of unforgeability shows aapegse in which we can solve the selective
de-commitment problem. We begin by recalling the defininba commitment scheme.

COMMITMENT SCHEMES. A commitment schemé&MT consists of two algorithms. The commitment
algorithm CMT takes the messag®/ to be committed and returns a pair @f,w) consisting of a com-
mitmento and decommital kew. The deterministic verification algorithiGVF takes as input candidate
valueso, M,w of a commital, message and decommital, respectively, andnseeitherl or 0. The con-
sistency requirement is that for alf we haveCVF(o, M,w) = 1 with probability 1 in the experiemnt
(o,w) «—s CMT(M). The definitions of hiding and binding are formalized by tlemgs of Figure 8 in
Appendix A.

OuUR CONSTRUCTION Our Sign-then-Commit (StC) transform associates to bag®ldsignature scheme
DS = (SKG,SIG,SVF) and base commitment sche@@a17 = (CMT,CVF) the anonymous signature
schemeAS = (AKG, ASIG, AVF) whose constituent algorithms are defined in Figure 3.

SECURITY RESULTS. In this section, we give three results about the securith@fbove anonymous sig-

nature scheme. First we consider unforgeability. We prhaeif the base signature scheme is existentially
unforgeable under chosen message attack and the base coamirscheme has the hiding property, then the
anonymous signature scheme associated to them is exadlientiforgeable under chosen message attack.

Theorem 4.1 Let DS = (SKG, SIG,SVF) be a digital signature scheme a6d17 = (CMT,CVF) a
commitment scheme. LetS = (AKG, ASIG, AVF) be the anonymous signature scheme constructed from

Alg AKG()
(pk, sk) <—s SKG()
Return(pk, sk)

Alg ASIGH (sk, M)
s s SIG(sk, M)
w s {0,1}*

o s H(w||s|Ipk)
k4 (w,s)
Return(o, k)

Alg AVFH (pk, M, (0, K))
(w,s) < K
If (H(w||s||pk) =0 A |w| = k) then
If (SVF(pk,s, M) =1) then
Return 1
Return O

Figure 4:Algorithms used to define the RH construction.

Alg AVF (pk, M, (0, k)
S < K
If (H(s||pk) = o) then

Alg ASIGH (sk, M)

Alg AKG() s <5 SIG(sk, M)

(pk, sk) s SKG() | o <s H(s||pk) If (SVF(pk,s, M) = 1) then
Return(pk, sk) K< S
Return(o.) Return 1
g, K Return 0

Figure 5:Algorithms used to define the DH construction.

DS andCMT as in Figure 3. Lef’ be an adversary against the unforgeabilityAdf makingq > 1 queries
to oracleASign. Then there exist adversarids B such that

AdVES(F) < 2¢- Advis(A) + q- AdvEiir(B). (1)
Furthermore, the running times df, B are the same as the running timefgfand A makesg queries to its
Sign oracle.

Due to space limit, the whole proof is deferred to Appendix B.

Next we prove that if the commitment sched#17 is hiding then our anonymous signature scheme is
anonymous.

Theorem 4.2 Let DS = (SKG, SIG,SVF) be a digital signature scheme a7 = (CMT,CVF) a
commitment scheme. LetS = (AKG, ASIG, AVF) be the anonymous signature scheme constructed from
DS andCMT as in Figure 3. Le# be an adversary against the anonymity4ff that makes one query to
oracleCH. Then there exists adversaB/such that

AdviS™(A) < AdvEile (B).)

Furthermore, the running time @& is that of A.

Due to space limit, the whole proof is deferred to Appendix C.
Finally, we show that if the commitment scheme is bindinghtiiee anonymous signature scheme is
unambiguous.

Theorem 4.3 Let DS = (SKG, SIG,SVF) be a digital signature scheme a6d7 = (CMT,CVF) a
commitment scheme. LedS = (APG, AKG, ASIG, AVF) be the anonymous signature scheme constructed
from DS andCMT as in Figure 3. Le#d be an adversary against the unambiguityddf. Then there exists

an adversanp such thatAdv{£™"(A) < Adv@i-(B). Furthermore, the running time &f is that of A.

Proof: AdversaryB runs A to get(pko, pk1, Mo, My, 0, ko, k1). Itlets (sg,wq) < Ko and(sy,wy) < k1.
AdversaryB then outputss, (so||pko, wo), (s1]|pk1,w1).

5 The RH Construction

The Randomized Hash (RH) construction is the result of migtang the commitment scheme of the CMT
construction with the RO-model commitment schefuel7 = (CMT, CVF) defined as follows:

Alg CVF (o, M, w)
o'« H(w||M)

If (Jw| # k) then return O
If (6 = ¢’) thenreturn 1

Alg CMTH (M)
w s {0,1}*
ReturnH (w|| M)

Figure 4 depicts the algorithms of anonymous signaturersehéS = (AKG, ASIG, AVF) obtained from
the CMT construction of Section 4 applied to a base signadahemeDS = (SKG, SIG,SVF) and the
commitment scheme we just defined.

We can set the output lengthof the RO to 160 bits. (80 bits is not enough because bindidgaes to
finding collisions and is subject to the birthday attack.eTasults of Section 4 imply that théS scheme
of Figure 4 is secure in the RO model. In this way, we can tansfany standard signature scheme into an
anonymous one with the following characteristics. The catafonal overhead is just one hash, meaning
signing and verifying are effectively just as efficient asdoe. The bandwidth overhead is 320 bits: the
anonymous signature is 160 bits and the de-anonymizer isit§donger than the base signature. This
is pretty good, yet, in what follows, we will provide altetiv@ constructions that reduce the bandwidth
overhead even further.

A word of warning. If the base signature scheme already uge® &as for instance do FDH [6] and
BLS [9]) then the ROH of Figure 4 must be different and independent. This can baredsby domain
seperation as discussed in [5]. This issue arises also lmidwhowed be addressed in the same way.

6 The DH Construction

Base signature schemes such as Schnorr [20], GQ [14] anéBRahir [13] are randomized, and their
signatures have quite a bit of entropy. We will now show thaguch cases, the randomizeiof Figure 4
can be dropped. This saves 160 bits in bandwidth. But thensehe no longer an instance of the StC
transform, and a tailored analysis is heeded. We now proteeeétail the construction and provide the
analysis.

The DH (Deterministic Hash) construction transforms a Isiaadard signature scher®$ = (SKG,
SIG, SVF) into an anonymous ondS = (AKG, ASIG, AVF) using a ROH : {0,1}* — {0,1}*, as shown
in Figure 5. For the analysis, we make the following defimitio

Definition 6.1 [Min-Entropy of Digital Signatures] LeDS = (SKG,SIG,SVF) be a digital signature
scheme. The min-entropi/ . (DS) of DS is defined by the equation

97 Ho(DS) = max Pr[s=s:s+sSIGM,sk)]
(pk,sk),s,M

where the maximum is over glbk, sk) that might be output b$KG, all stringss, and all message®/. 1

For example, the Schnorr (Sch) scheme [20] over a group ef pridas min-entropyg(p). A deterministic
scheme such as FDH [6] or BLS [9], however, has min-entropyf e DH-Sch scheme has bandwidth
overhead 160 bits as compared to 320 bits for RH-Sch.

SECURITY. We show that the anonymous signature scheme of Figure Busesin the RO model assuming
a secure, high entropy base signature scheme.

Theorem 6.2 Let DS = (SKG, SIG, SVF) be a digital signature scheme. L&S = (AKG, ASIG, AVF) be
the anonymous signature scheme constructed as in Figuret®:’ he an adversary in the random oracle
model against the unforgeability gfS, makingqgs queries to oracld Sign, gy queries to oracl@l andgo
queries to oracl®pen. Then there exists adversasysuch that

4s(qs + 4(qm + 90))

AdviE(F) < Advis(A) + ST H (D5 . (3)

Furthermore, the running time ¢f is that of /" and A makesgp queries to itsSign oracle.

Theorem 6.3 Let DS = (SKG, SIG, SVF) be a digital signature scheme. L& = (AKG, ASIG, AVF) be
the anonymous signature scheme constructed as in Figuret 5.He the output length of the RE in the
scheme. Le#d be an adversary in the random oracle model against the aritynyftdS makingqy queries
to oracleH and one query to oracl€H. Then

AdvSY(A) < 2qy - 27 H=(DS) 4

Theorem 6.4 Let DS = (SKG, SIG, SVF) be a digital signature scheme. LdtS = (AKG, ASIG, AVF)
be the anonymous signature scheme constructed as in Figueg 5 be the output length of the R@ in
the scheme. Lefl be an adversary in the random oracle model against the ugaitybof AS makingqy
gueries to oracl@l. Then we have

2
unam q
Advis™(4) < (5)

Due to space limit, the whole proofs of the above three thasrare deferred to Appendix D, Appendix E
and Appendix F.

7 The Splitting Construction

The splitting construction of anonymous signature is baseithe Schnorr protocol [20] and a hash function.
The details of Schnorr protocol are deferred to Appendix @.c¢all it splitting because in our construction,
the transcript of the Schnorr protocol is separated intogans. The message in the first move is viewed as
the anonymous signature while the message in the third nsoxiewed as a de-anonymizer. The associated
anonymous signature schends = (AKG, ASIG, AVF) is defined in Figure 6. Here, and throughout this
section, we have fixed a grodp of prime orderp and a generatay of G. Note that this SP-Sch anonymous
signature scheme has zero overhead relative to the basesglgce the full signature is exactly a Schnorr
signature. Since the challenge in the Schnorr protocol beezhly 80 bits long (not 160) we get an anony-
mous signature scheme with an 80-bit anonymous signatar@ 460 bit de-anonymizer for a 240-bit full
signature. Our proof will exploit the general forking lemid3], recalled in Appendix H.

SECURITY. First we recall the Discrete Logarithm Assumption that wik wse later. LetG* = G — {1}
be the set of generators 6f, wherel is the identity element of:. We letDLog,(h) denote the discrete
logarithm ofh € G to base a generatgre G*. Let

Advcg’g(A) = Pr [ac —sZy; @' s Alg,g") : ¢ = gx]

denote the advantage of an adversdrin attacking the discrete logarithm (dI) problem.

Theorem 7.1 Let AS = (AKG,ASIG, AVF) be the splitting-based anonymous signature scheme con-
structed in Figure 6. Let the range of the RDin the scheme b0, 1}* C Z,,. Let F' be an adversary in

10

Alg ASIG(sk, M)
Ys$Lp; Y < g¥
T + sk

o« H(X[|Y]|M)
K< y+ox modp
Return(o, k)

Alg AVF(pk, M, (0, K))

If X ¢ GVlo|#kV«k ¢ Z,then returr)
Y« g X0

If o = H(X||Y||M) then return 1

Else return O

Alg AKG()
T4—sLpy; X < g°
Return(X, x)

Figure 6: Algorithms used to define the splitting-based smayus signature scheme. Herds a group of
prime orderp andg is a generator ofs.

the random oracle model against the unforgeabilitydsf, makingq, queries to oracl\ Sign, ¢ queries
to oracleH and having running time at most. Then there exists an algorithm that attacks the discrete
logarithm problem with advantadek such that

Advauf (F) < qz + 4QSQH + 2QSQO
AS = 2p

+ 31 Jqn -k
p
Furthermore, the running time & is 2t .

Theorem 7.2 Let AS = (AKG,ASIG, AVF) be the splitting-based anonymous signature scheme con-
structed in Figure 6. Let the range of the RON the scheme b€0, 1}* C Z,. Let A be an adversary in the
random oracle model against the anonymity4f makingqy queries to oracl@#l and one query to oracle
LR. Then

AdviS"(A) < 2qu/p. (6)

Theorem 7.3 Let AS = (AKG,ASIG, AVF) be the splitting-based anonymous signature scheme con-
structed in Figure 6. Let the range of the RDin the scheme b0, 1}¥ C Z,. Let A be an adversary in
the random oracle model against the unambiguityl6fmakingqz queries to oracl&l. Then

AQVEE™(4) < g /2

Due to space limit, the whole proofs of the above theoremsiaferred to Appendix H, Appendix | and
Appendix J respectively.

8 A Reverse Connection

From the primitive definitions, we can see that anonymousasiges (AS) and commitment schemes (CMT)
share something in common. Firstly, AS hide the identitylef signer while CMT hide the committed
message. Secondly, in the AS setting the signature can ragidreed under a different public key while in
the CMT setting the committed message can not be opened ffeeedt way. Do these imply that when
we have a scheme of one primitive we can transform it to théte@bther primitive? We have showed one
direction in our CMT construction in Section 4. To compldie whole picture, we are going to propose a
generic transformation, to convert any anonymous sigaaaheme into a commitment scheme. However
the similarities between these two primitives don't imphat it is trivial to find such a transformation,

11

Alg CMT (M) Alg CVF (o, M, w)
(pko, sko) s AKG() (b,o') <o
(pk1, ski1) <s AKG() If (b = 1) then
If (pko = pky) thenbad+ true If (6! = M ANw = M) then return 1
n + | M| Else return O
Fori=1ton Else
(03, ki) <=3 ASIG(skpr, 1) K|« ||k < w
o+ (0,01]|...||onl|lpkol|pk1) o1l ... ||lonllpkol|pk1 < o’
w4 K1l| ... ||kn If (pko = pki) then return O
If bad= truetheno < (1, M); w <+ M Fori = 1ton d; < AVF(pkypi), i, (04, ki)
Return(o,w) Returnd; A ... A d,

Figure 7:CMT construction from AS.

especially an efficient one. Our transformation, which pies a direct and efficient conversion from AS to
CMT, is depicted in Figure 7.

SECURITY OF OUR CONSTRUCTION We prove that if the given anonymous signature scheme daewvac
unforgeability, anonymity and unambiguity, then the conmnaint scheme obtained using our construction
has the property of hiding and binding. For the analysis, seetbe following game to capture the situation
that two independently generated public keys are the samaw® use Lemma 8.1 to bound the probability
that such public key collision happens.

procedure Initialize // PKColl 45
(pk‘o, Sk‘o) At AKG()

(pk‘l, Sk‘l) s AKG()

Return(pky = pk1)

Lemma 8.1 Let AS = (AKG, ASIG, AVF) be an anonymous signature scheme. Then there is an adversary
F against the unforgeability oAS such thaPr [PKColl 45| < Adv4E(F). The running time of” is that
of AKG and F makes no oracle queries.

Proof: On inputpk F let pkq < pk and(pk;, sk1) <—s AKG. Itlet M be any message, for examglé = 0.
It lets (o, k) <—s ASIG(sk, M) and returng M, (o,)). If pk1 = pko, then it wins the gamaUF-CMA 4,
so we havePr [PKColl 45] < Advyd(F).

Theorem 8.2 Let AS = (AKG, ASIG, AVF) be an anonymous signature scheme@nd7 = (CMT, CVF)
the commitment scheme constructed fr@& as in Figure 7. Lefl be an adversary against the hiding prop-
erty of CMT, making one query to oracleR, this always consisting of a pair efbit messages, and having
running time at most4. Then there exists adversaBs makingn queries to oracl€CH and adversary’
making no queries such that

Advlle (A) <n- AdviS"(B) +2- Advii(F) .

Furthermore, the running times &f and F' are the same as that df B makes one query to il€H oracle
and F' makes no queries.

Due to space limit, the whole proof is deferred to Appendix K.

12

Theorem 8.3 Let. AS = (AKG, ASIG, AVF) be an anonymous signature scheme@nd7 = (CMT, CVF)
the commitment scheme constructed froh as in Figure 7. Letd be an adversary against the binding
property ofCMT . Then there exists an adversdsysuch that

AdvERL(4) < AdviET™(B) .

Furthermore, the running time @ is that of A.

Due to space limit, the whole proof is deferred to Appendix L.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]
[11]

[12]
[13]

[14]

[15]

[16]
[17]

[18]

[19]

M. Abdalla, J. An, M. Bellare, and C. Namprempre. Fromritiication to signatures via the Fiat-Shamir trans-
form: Minimizing assumptions for security and forward-gaty. EUROCRYPT 2002, LNCS 2332, Springer-
Verlag.

K. BARR AND K. AsANoVIC. Energy aware lossless data compressidobi Sys 2003, ACM Press.

M. BELLARE AND G. NEVEN. Multi-signatures in the plain public-key model and a gahéorking lemma.
ACM CCS 2006, ACM Press.

M. BELLARE, D. MICcCIANCIO AND B. WARINSCHI. Foundations of group signatures: formal definitions,
simplified requirements, and a construction based on geassamptions.EUROCRYPT 2003, LNCS 2656,
Springer-Verlag.

M. BELLARE AND P. ROGAWAY. Random oracles are practical: A paradigm for designingiefit protocols.
ACM CCS1993, ACM Press.

M. BELLARE AND P. ROGAWAY. The exact security of digital signatures: How to sign witBARand Rabin.
EUROCRYPT 1996, LNCS 1070, Springer-Verlag.

M. BELLARE AND P. RoGAWAY. The Security of Triple Encryption and a Framwork for CodasBd Game-
Playing Proofs EUROCRYPT 2006, LNCS 4004, Springer-Verlag.

A. BENDER, J. KATZ, AND R. MORSELLI. Ring signatures: stronger definitions, and constructieitisout
random oraclesTCC 2006, LNCS 3876, Springer-Verlag.

D. BONEH, B. LYNN, AND H. SHACHAM. Short signatures from the weil pairinglournal of Cryptology,
17(4):297-319.

D. CHAUM AND E. HEYST. Group signhatureEEUROCRYPT 1991, LNCS 547, Springer-Verlag.

C. DWORK, M. NAOR, O. REINGOLD AND L. STOCKMEYER. Magic functions. Journal of the ACM 2003,
50(6):852-921.

M. FISCHLIN. Anonymous signatures made eaBiKC 2007, LNCS 4450, Springer-Verlag.

A. FIAT AND A. SHAMIR. How to prove yourself: Practical solutions to identifioatiand signature problems.
CRYPTO 1986, LNCS 263, Springer-Verlag.

L. GuiLLOU AND J. QUISQUATER. A “paradoxical” identity-based signature scheme resgltirom zero-
knowledge.CRYPTO 1988, LNCS 403, Springer-Verlag.

J. HASTAD, R. IMPAGLIAZZO, L. LEVIN AND M. LuBY. A Pseudorandom generator from any one-way
function. SSAM Journal on Computing 1999, 28(4):1364—1396.

M. NoAR. Bit Commitment Using Pseudorandomneisirnal of Cryptology 1991, 4:151-158.

N. NISAN AND A. TA-SHMA. Extracting randomness: a survey and new constructidmg.nal of Computer
and System Sciences, 58(1):149-173.

N. NISAN AND D. ZUCKERMAN. Randomness is linear in spac#&urnal of Computer and System Sciences,
52(1):43-52.

R. RIVEST, A. SHAMIR AND Y. TAUMAN. How to leak a secretAS ACRYPT 2001, LNCS 2248, Springer-
Verlag.

13

Initialize Initialize Initialize
b<+s{0,1} (pk,sk) +sSKG(); i+ 0; S+ 0
Finalize(o, (Mo, wg), (M7,w1)) Returnpk

LR(]\/[Q,Ml) dp + (CVF(U, Mo,wo) = 1)

|f(|]\/[0| 75 |]\/[1|) then returnL di + (CVF(U, Ml,wl) = 1) Sigl’l(M)

(o,w) <—s CMT(Mp) Return(dp A di A My # M) t—1+1; M;+ M

Returnc S« SU{M;}; s; +sSIG(sk, M)
Returng;

Finalize(d)

Return(b = d) Finalize(M, s)
Return(M ¢ S A SVF(pk,s, M) =1)

Figure 8: GameHIDE in the left used to define hiding and gaB&ND in the center used to define binding of
commitment scheméM7T = (CMT, CVF). GameEUF-CMA in the right used to define existential unforgeability
of signature schemPS = (SKG, SIG, SVF).

[20] C. ScHNORR. Efficient signature generation by smart cardtsurnal of Cryptology, 4(3):161-174, 1991.

[21] G. YANG, D. WONG, X. DENG, AND H. WANG. Anonymous sighature schemeBKC 2006, LNCS 3958,
Springer-Verlag.

A Security Definitions of Signatures and Commitments

The advantage of an adversdryin attacking the unforgeability is
Adviig(F) = Pr[EUF-CMA%] ,
where gamd& UF-CMA is shown in Figure 8.
The advantage of an adversatyin attacking the hiding property is
AdvEile (A) =2 Pr[HIDES 7] — 1.

where gamélIDE is in Figure 8. In the gamed is allowed only one query to iR oracle. The advantage
of an adversary in attacking the binding property is

AdvE(4) = Pr [BINDZ 7 |
where gameéIND is in Figure 8.

B Proof of Theorem 4.1

Proof. We use game&, G1, G2, G3, G4 of Figure 9, wheré denotes the length of a signatureldd. We
assume wlog thaf’ always makes exactly queries toA Sign rather than at mosj. Note thatG, and
(G, are different only in procedurBinalize. For G, any execution with¥" in which the outcome isrue
satisfiesM ¢ S. ForGy, any execution withF" in which the outcome isrue satisfiesM € S. So we have

AdvS(F) < Pr[GE]+Pr[GT]. (7)

Gameg7; andG,, are identical except for the first condition in the procedBiaalize. Any execution of
G2 with F' in which the outcome isrue must have not only/ € S but alsoM = M,. On the other hand
G does not usg anywhere and thus the ever$ and M = M, are independent and the probability of
the latter isl /q. Hence, we have

Pr[Gf]gq-Pr[Gg]. (8)

14

Initialize // Gy, G1,G2, G5, G4

(pk, sk) < SKG() ASign(M) // G4
S+0;E+0;i+0;5+0 i i+1; My« M; S+ SU{M;}
g+s{l,...,q} If (i = g)thens; <s {0,1}
Returnpk elses; «sSIG(sk, M;)

(Ui, wi) s CMT(SZH]D]C)

Open(j) // Go, G1,Ga, [Gs |, i 4 (51, 01)

If(j <0V j> 1) Returnl Returno;
AR Finalize(M, (0.)) // G

:) inalize(M, (o, k 0
(= g)thenbad « true; Return(M ¢ S A M ¢ E A AVF(pk, M, (0, 5)) = 1)
Returnk;

Finalize(M, (o, k)) // G1

ASign(M) // Go,G1,G2,G3 Return(M € S A M ¢ E A AVF(pk, M, (0,k)) = 1)
i<—i+1; My« M; S+ SU{M,}
s; <5 SIG(sk, M) Finalize(M, (0,k)) // G2, G3, G4
(04, w;) s CMT(s;||pk) ; ki + (si,w;) Return(M = My A M ¢ E NAVF(pk, M, (0,k)) = 1)
Returng;

Figure 9:Game sequence used in proof of Theorem 4.1. G&@me&, include the boxed code whilgy, G1, G> do
not.

The difference betweefi; and G, is that the former includes the boxed codédpen. But any execution
of G'3 with I in which the outcome isrue must haveM = M, andM ¢ E, so the boxed code would not
have been executed. Recall ti&D; denotes the event that bad is setime in gameG;. Then based on
Lemma 2.1, we have

Pr[GY] = Pr[G5 ABD:y] = Pr[G{ ABD3] . (9)

Combining (7), (8) and (9), we get
AdviS (k) < Pr[Gl] + q Pr[G} ABD;s]. (10)

We will build Ay, A1, B so that

PrGE] < Advis(4o) (12)
Pr[G{ ABD3] —Pr[Gf ABDy] < Adv@ (B) (12)
Pr[GY ABDs] < Advis(4)) (13)

Agp, A1 will make ¢ oracle queries andg, A1, B will have the same running time & Now let A on input
pk pick ¢ «—s {0, 1} and runA.(pk). Then

1
2
Equation (1) follows from (10), (11) (12), (13) and (14). Wegeed to describdg, A4, B.

AdversaryA gets inpuipk and then does the following initializations:

1
Advips(A) = §Adv%fs(f40)+ Advihs(Ar) . (14)

S+ 0; E+0;i+0;j+0;9+s{l,...,q}. (15)
It then runsF'(pk). It answersF’s queries toA Sign using the following procedure:

procedure ASign(M)

15

i< 1+1; M;« M; S+ SU{M;}
s; s Sign(M)

(04, w;) <= CMT (s;|pk) ; ki + (si,w;)
Returno;

Ag answersF’s queris toOpen exactly asG, does. Finally,F’ outputs(M, (o, x)). AdversaryA, parses
k to (s,w) and then output§M, s).

AdversaryB against the hiding property 6tM7 begins by executing the code of theitialize procedure
of G5, thereby defining for itself the parametes’, sk, S, E, i, j,g. It then starts running” on pk. It
answerst’s queries toA Sign using the following procedure:

procedure ASign(M)

i< 1+1; M;« M; S+ SU{M;}

s; <3 SIG(sk, M)

If (i = g)thensg < {0,1}' ; o; + LR(so||pk, s;||pk)
else(o;,w;) s CMT (s;||pk) ; ki < (Si,w;)

Returno;

It answersF’s queries toOpen exactly asis does. Finally,F' outputs(M, (o, x)). AdversaryB outputs
Lift M = Mg ANM & ENAVF(pk, M, (0,x)) = 1, and0 otherwise. Lettingl denote the output aB, we
have

Prid=1|b=1] = Pr[G{ ABDs]
Prid=1|b=0] = Pr[Gf/\@d

in gameHIDECBj/IT. Subtracting, we get
Pr[G§ ABD3] —Pr[Gf ABDy] = Advii (B) .

AdversaryA; gets inpupk and then does the initializationss). It then runsF'(pk). It answersF’s queries
to ASign using the following procedure:

procedure ASign(M)

i< 1+1; M;« M; S+ SU{M;}
If (i = g)thens; «s {0,1}!

Elses; «+s Sign(M)

(04 wi) s CMT (s;]|pk) 5 ki < (85, w;)
Returno;

It answersF’s queris toOpen exactly asG4 does. Finally,F’ outputs(M, (o, x)). A; parsess to (s,w)
and outputg M, s).

C Proof of Theorem 4.2

Proof: AdversaryB begins with(pk;, sk;) <—s AKG() for i = 0, 1. It then runsA((pko, sko), (pk1, sk1))
and answersgl’s queries toCH using the following procedure:

16

Initialize // Go — G¢
(pk, sk) <3 SKG()
E+Q;U+0;i+0
Returnpk

Asign(M) //| Go G

t—1+1; M; < M

s; +$SIG(sk, M;) ; 0y <5 {0,1}*
S« {j:1<j<iNsj=si}

If S# @thenj<«sS; 05 0

Else if H[s;||pk] theno; < H|[s;||pk]

H{s;||pk] < o4

Returno;

Asign(M) //| G2 | Gs
t—1+1; My < M

s; +8SIG(sk, M;) ; o5 <5 {0,1}F
S« {j:1<j<iNnsj=si}

If S # 0 thenbad< true;|j<+sS5; 0; < 0

Returno;

ASign(M) // G4, Gs

Returno;

ASign(M) // Gs

i i+1; M+ M; o; <${0,1}*
Returno;

Finalize(M, (o, k)) // Go — Gs

Else if H[s;||pk] thenbad< true;| o; + H|[s;||pk]

Return(M ¢ E A H|[s||pk] = o A SVF(pk,s, M) = 1)

i< i4+1; M; < M; s; <sSIG(sk, M;) ; o; <5 {0,1}F

Open(j) // Go| G1 | Ga || Ga]| Ga || G |
If(j <0V j>i)ReturnLl
B+ BEU{M;}; U< UU{j}

H[s;||pk] « o

Returns;

Open(j) // Gs

If(j <0V j>i)Returnl

55 «8SIG(sk, M;); E <« EU{M,;}; U+ UU{j}
H{s;||pk] = o

Returns;

H(z) // G1,G2,G3

If (H[z]) ReturnH [z]

s||pk < x; H[z] <3 {0,1}F

T+ {j:1<j<iNs=s;Nj¢U}
If (T # 0)thenj <—s T ; H[z] + o}
ReturnH|[z]

H(z) //| G4 | G5

If (H[z]) ReturnH [x]

s||pk + z; H[z] +${0,1}*

T« {j:1<j<iAs=s;AjgU}

If (T # () thenbad<— true;| j «s$T; H[z] < o
ReturnH[z]

H(z) // Go, Ge

If (H[z]) ReturnH [x]
Hlz] +s {0, 1}"
ReturnH[z]

Figure 10:Game sequence used in proof of Theorem 6.2.

procedure CH(M)

S0 <=3 SIG(sko, M) ; s1 <—s SIG(sky, M)
g < LR(SQHka, Salkl)

Returno

After A outputs its guess, adversaryB outputs the sameé. We have

Pr [HIDEE,; | b=1]
Pr [HIDEZ s | b=10]

in gameHIDE?MT, from which (2) follows.

D Proof of Theorem 6.2

Pr[ANON%s | b=1]
Pr [ANON%s | b=0]

Proof: We refer to the games of Figure 10. Gagigis equivalent tAAUF-CMA 45, SO

Advii(F)=Pr[G}].

17

Game(G, omits the boxed code iASign, meaningH [s;||pk] is not assigned; at this point. Instead the
assignment is delayed, being donefyx) or Open as necessary . So

Pr[G(I;] :Pr[Gf] .
But G4, G, are equivalent ands andGj3 are identical until bad, so by Lemma 2.1
Pr[Gf] = Pr[Gg]
= Pr[G{]+Pr[G]]—Pr[G]]
< Pr[GL]+Pr[BD;]
G35 andG, are equivalent and’, andG5 are identical until bad, so by Lemma 2.1
Pr[G?Ij] = Pr[Gf]
= Pr[GI]+Pr[G}]—Pr[Gf]
< Pr[G{]+Pr[BDs]
In G5, the signature; for i ¢ U is unused beyond for settirtiad so inG¢ we don’t compute it. We have
prlcf]=pr[Gl].
Putting the above together we have
AdviE(F) <Pr[GE] +Pr[BD3] +Pr[BDs]. (16)

Adversary A sets inpuipk and perform the initializatio < (0 ; U « 0 ; i < 0. It then runsF(pk). It
responds td and ASign queries as do&Sg, and toOpen queries via th@pen procedure ofys except
that the computatioSIG(sk, M;) is substituted by a caign(M;) to A’s sign oracle.A outputs the same
thing asF'. We have

Pr[G{] < Advis(A) 17)
Now
qs .
1—1 qH + 4o
Pr[BD;] < Z(QHOO(DS) + QHOO(DS))
i=1
o qs(gs — 1) + 2q5(qu + qo0)
- 91+ Ho (DS) (18)
Finally the maximum size df in procedureH of Gj is ¢, and hence
qsqH
Pr[BD;] < 5T (DS) - (19)
Putting together (16), (17), (18) and (19) completes theforo
E Proof of Theorem 6.3
Proof. We use game&, GG1, G, of Figure 11. So we have
Advi$"(A) =2 -Pr[G§] —1. (20)

18

Initialize // Go, G1,G2
b+«s{0,1} CH(M) // ’GQ r
(pho, sko) s SKG() 5+ SIG(sky, M) ; o <s{0,1}
(pk1, sk1) +s SKG() If (Hs||pks]) thenbad<+ true; | o + H|[s||pks]
Return((pko, sko), (pk1, sk1)) His||pks) « o
CH(M) // Gy Returno
s+ SIG(skp, M) ; o < H(s||pks) H(x) // Go, G1,G2
Returno If (H[z]) ReturnH [z]
k
Finalize(d) // Go, G1, Gs gg{]};ﬁo} 1
Return(b = d) *

Figure 11:Game sequence used in proof of Theorem 6.3.

Gamed5, andG, are equivalent, and'; andG, are identical untibadso by Lemma 2.1 we have

Pr[Gé] = Pr[Gf]
= Pr[Gf]—Pr[G?]—FPr[G?]
< Pr[BD2]+Pr[G%] (21)

Combining (20) and (21), we get
Adv$"(A) <2 (Pr[G4] +Pr[BDy]) — 1.

In gameG,, the challenge signaturf! [s||pks] is set to be a random string with length so we have
Pr[G4'] =1/2 and thus
Adv¥yS"(A) <2-Pr[BDy]. (22)

In gameG,, badis settrue when the signature generatedliRR is equal to some which A queried toH,
so we have
Pr[BDy] < g - 27 =(PS) (23)

Equation (4) follows from (22) and (23).

F Proof of Theorem 6.4

Proof: Let (pko, pk1, My, M1, 0, ko, k1) denote the output ofl. Let sy < ko ands; < 1. If A wins the
gameUNAMB 45, then we haved (so||pko) = H(s1||pk1) = o but pky # pk1, meaning that we have a
collision for H. SinceA makesqy queries toH we have (5).

We remark that, as the proof shows, for unambiguity. we nedylthat H is collision resistant rather
than a RO.

G Schnorr Identification Protocol

In Figure 12, we give the description of Schnorr Identificatprotocol, on which our splitting construction
in Figure 6 is based.

19

Algorithm KG Prover Verifier

R Y/ Input: sk = x Input: pk = X

X 4" Y 3 Ly

pk +— X Y « ¢¥ Y

sk <+ o

Return(pk, sk) K<+ y+ox modp K If g =Y X7 thenDEC « 1 elseDEcC + 0
ReturnDEC

Figure 12: Schnorr Identification Protocol used in Section 7

H Proof of Theorem 7.1

Before giving the security proof, we first recall the gendogaking lemma [3], which will be used later.

Lemma H.1 [General Forking Lemma] Fix an integerq > 1 and a setd of sizeh > 2. Let A be a
randomized algorithm that on inpiX, ~4, ..., h, returns a pair, the first element of which is an integer in
the range), ..., ¢ and the second element of which we refer to ada output. Let /G be a randomized
algorithm that we call the input generator. Taeeepting probability of A, denotedacc, is defined as the
probability that/ > 1 in the experiment

X <sIG; hy,....,hgsH; (J,s) s AX, hi,...,hg) .
Theforking algorithm F 4 associated tal is the randomized algorithm that on inpuproceeds as follows:

Algorithm F 4(z)
Pick coinsp for A at random
hl,...,hq<—$H
(I,8) < Az, h1,...,hg; p)
If I =0then return(0,¢,¢)
Ry by s H
(I',s") <= Az, hy, ... hy1, W, By p)
If (I =I'"andh; # h}) thenreturn(l, s, s")
Else return0, ¢, ¢).

Let
frk = Pr[b=1 : X+«sIG; (bs,s') <sFa(X)] .
Then
1
frk > acc- <ﬂ — —> . (24)
q h
Alternatively,
acc < %—I—«/q-frk. (25)

20

Proof: Let g = ¢s + g and consider games, — G; of Figure 13. We have

Advi(F) = Pr[G]
= Pr [Gf]
= Pr [Gf]
= Pr[Gg] —i—Pr[Gg] —Pr[Gg]
< Pr[G§]+Pr[BDs].
And
Pr[Gf] = Prlcf]
= Pr[G?] —i—Pr[Gf] —Pr[Gg]
< Pr[G{]+Pr[BDs]
< Pr[G§]+Pr[BDg]
i qu +q
Pr[BDs] < S (4 TR0y
=1 p p
_ 45 +205(qn +)
< %
Pr[BDs] < L4
So)
Advii(p) <pr[cl]+ & 4‘]5‘;1; 20500
Let A be the algorithm that oninpd€ € G, hy, ..., hy, € {0,1}* and coing = pp||o1]| ... ||og.||#1]] - - - kg
whereo, ..., 04, € {0, 1}* andky, . .. , kgy € Zp, TUNsF on inputX and coinsr. Itletsoy, ..., o, and
K1,...,Kq, play the role of the quantities of the same naméritialize of G;. It answerslE”s queries to

ASign, H, Open in the same way a§;. WhenF outputs(M, (o,)), algorithm A let
Y« g" X7 0+ HX||Y||M); I+ Ind(X|]Y||M) .

where the call taH is answered as id/7. If M € E or o # o then A returns(0, ¢), else it returns
(I,(M,0,k,Y)). Now consider the experiment whepe= pr||o1]|...||og||k1]] ... ||ke, IS chosen at
random and then

‘T<_$ZP; hl?"'7hlIH 8 {07 1}k7 (I7S) %$A(gx7hla"'7hq1{;p)'

Let acc be the probability thaf # 0 in this experiment. Notice that i/ ¢ E then H[X||Y'||M] was
defined by anf{-query X ||Y'|| M rather than byOpen, so Ind X||Y'||M) € {1,...,qx}. So

acc:Pr[Gf] .

21

Let IG be the algorithm that let <—s Z,, and returng;”. Let F4 be the algorithm of Lemma H.1 and lek
be defined as that.

How consider the experiment
x<sZy; (bys,s) < Fa(g")

and assumé = 1. Let (I,s) and (I’,s") be the output ofd in the execution ofF4. Sinceb = 1 we
havel #£ 0 andI’ # 0, so we can parseM,Y, o, k) < sand(M')Y’ o' k") «+ s'. The definition of

A implies that IndX||Y'||M) = I and Ind X||Y"||M") = I'. Now in the first execution ofd it must be
that H[X ||Y'|| M] was defined by ai-query of F' rather than byOpen, and the response to the query was
o = hy which remains the value o/ [X||Y||M] thenceforth. Similarly in the second executionAfit
must be that/[X||Y”’||M’] was defined by aiif-query of F' rather than byOpen, and the response to the
query wass’ = h’;, which remains the value dff [X||Y”||M’] thenceforth. As a consequent@|)/ and
Y'||M’" were determined by, hy,...,hr(h;—1) (recalll = I') andp and henc&’||M = Y’||M’. Now
sincel # 0 andI’ # 0 we have

Y:gH'X_O-:gH ’X_OJ:Y,

ando # o/, so
(k—k")a

r =g

wherea = (0 — ¢’)~! mod p. SOF 4 can easily be extended to an adversBrihat on inputX computes
DLog(X) with probability frk. But by Lemma H.1 and the above

a2 + 495qm + 24590

Advii(F) < 5 + acc
p
2
4 2
< qs + QSZI; + 24540 4 qlii + /qH frk

The theorem follows.

| Proof of Theorem 7.2

Proof. We use game&, GG1, G, of Figure 14. We have
Advie™(A) =2 -Pr[Gf] - 1. (26)
Since games;; andG; are equivalent, we have
Pr[Gé‘]:Pr[Gf] . (27)
Gamegy; andGs are identical untibad Then based on Lemma 2.1, we have
Pr(Gi] = Pr[Gi]-Pr[G4]+Pr[Gf]
< Pr[BDy]+Pr[G3] (28)
Combining (26), (27) and (28), we get

Advye™(A) <2 (Pr[G4] +Pr[BDy]) — 1. (29)

22

Note that inG2, the challenge anonymous signatuféX,||Y'|| V] is set to be a random string with length
k, so we havé’r [G4' | = 1 and thus

Adv¥9"(A) < 2-Pr[BD,]. (30)

In addition, badis settrue whenH [X,||Y||M] is already defined. Since is chosen randomly from group

G of sizep, we have
Pr[BDg]gq?H. (31)
Equation (6) follows from (30) and (31).

J Proof of Theorem 7.3

Proof: Let (Xy, X1, My, M1, 0, ko, k1) denote the output ofl. If adversaryA wins the gam@/NAMB 4s,
then it must be thak, X; € G and|o| = k andky, k1 € Z, andH(pko||Yo||Mo) = H(pk:1||Y1||M1) = o
whereY, = ¢"° X, andY; = g™ X[“. But the probability thatd can find a collision in RQH in gg
queries is at most?, /251,

K Proof of Theorem 8.2

Proof. Consider gamesl,, H; in Figure 15. We have
AdvEle (A) =2Pr [HE'] - 1.
H, and Hj are identical untibad By Lemma 2.1, we have
Advgile (A) = 2Pr[HE'] -1
= 2Pr[H{']| +2Pr[Hg'] —2Pr [H{'] -1
= (2Pr[H{'] — 1)+ 2Pr[BD;]

Lemma 8.1 gives ug’ such that
Pr[BD;] < Adv3i(F) .

It remains to desigmB so that

2(Pr[H{'] — 1) <n-Advi(B). (32)
Towards this end consider gam@s, L;(0 < j < n) of Figure 15. It is easy to see
2Pr [H{'] —1="Pr[L}] -Pr[L{]. (33)

The boxed code included i, is the key-swap that swaps the roles(pky, sko), (pk1, sk1) under certain
conditions. However sinc@ky, sko), (pk1, sk1) are independently chosen and only seemttrough the
response to thER query, swapping them has no effect visibleApmeaning

Pr[Gi] =Pr[L{](1<j<n). (34)
We will designB so that
AdviE'(B) = ~(Pr[G}] ~Pr[Gf]). (35)

23

Putiing together (33), (34) and (35) yields (32)and congdehe proof.

AdversaryB gets input(pko, sko), (pk1, ski1). It picksg <—s {1, ...,n} and then starts running, respond-
ing to A’s LR query via the following procedure

LR(My, M)
If (Mplg] = 1A Milg] =0) then
(pk, sk) < (pko, sko) ; (pko, sko) + (pk1, sk1)
(pk1, sk1) < (pk, sk)
Fori=1,...,9 — 1do(0;,r;) < ASIG(skny, 3, 7)
If (Mo[g] = Mi[g]) then(oy, rg) s ASIG(skar,[g): 9)
Else(oy, kg) <3 CH(g)
Fori=g+1,...,ndo(oy, k) <=s ASIG(skasy), %)
o+ (0,01]|...||on|lpko||pk1)
Returno

Letting d denote the output ofl adversaryB returnsd. Then lettingh denote the challenge bit &fINON 4s.
We claim that
Prid=1]|g=jAb=1]=Pr[G}](1<j<n). (36)

To justify this consider two cases. First,My[j] = M;[j] then the code iB3’s simulatedLR oracle is
the same as id7;. Second, ifMy[j] # M, [j], letc = My[g]. Then(o;,«;) is produced byCH(j) under
pkige. (We use here that the key swap occurs# 1.) Butpkig. = pkay,[;), Sincec = Mo[j] = 1&M;[j],
so again this corresponds . On the other hand,

Prid=1|g=jAb=0]=Pr[G{,]1<j<n). (37)

To justify this consider two cases. First,M,[j] = M;[j] then the code iB’s simulatedLR oracle is
equivalent to the one i&;_; in this same case. SecondMf,[j] # M [j], letc = My[j]. Then(o;, ;) is
produced byCH(j) underpk,. (we use here that the key swap occurs # 1.) But pk. = pk,,;), since
¢ = Mylj], so this corresponds t8,_;. Now from (36) and (37) we have

Advig(B) = Y [nG o or {iﬁl}

j=1
= ~(ee[Gi] - PrGd))

which yields (35) as desired.

L Proof of Theorem 8.3

Proof: B runsA to obtain its outputo, (Mo, wy), (M7, w1)). AssumeCVF (o, (My,wp)) = CVF (o, (M1,w1))
= 1. B sets(b,0’) «+ o. If b = 1 then by definition ofCVF it must be that’ = My = wg = My = wy,
meaningM, = M, so A does not win and3 returns_L. If b = 0 then B parses’ aso1|| . .. ||on||pko||pk1
where|o;| = [, the latter being the length of a signature AS. Since keys also have a fixed length (as
assumption we made in our signature syntax), the parsingepsouniquely defines from ¢’. But then
CVF(o, (My,wp)) = CVF(o, (M1,w1)) = 1 implies thatn = | My| = | M| andpky # pki. Now if A wins
then it must be thad/, # M, so letj be such thaf\fy[j] # M [j]. B further letsk. 1] ... ||ken < we for
c=0,1.B returns(pko,pkrl,j, Js 0j, K055 I{Lj).

24

Initialize // Go — Gg
x$Zp; X+ g*; E+~Q0; U+ 0;i+0
ReturnX

Asign(M) //[Go | G1
i< i+1; M; < M
Ki+$Zp; 0 <${0,1}F ; V; < gFi X i
S {71 <7 <inY;||M; =Yil|M;}
If S#Qthenj«sS; o5 < 0j; ki < Kj
Else if H[X||Y;||M;] then
o1 + HIX||Yi[|M;] : n; ¢ DLog, (V) + 20y mod p
HIX||Y5[|M;] + o3

Returno;

Asign(M) //[G2]G5

11+ 1; M; < M

Ki+$Zp; 0 <${0,1}F ; Y < gFi X i

S {j:1<j<inY;||M;=Y;||M;}

If S # (Z)thenbad<—true;‘ J88; 0; 4 0j; Ki < Kj ‘

Else if H[X||Y;||M;] thenbad+< true

o < H[X||Y;||M;] ; ;i < DLogy(Y;) + zo; mod p ‘

H[X||Yi||Ms] + o3
Returno;

ASign(M) // G4, G5

i< i+1; M; < M

Ki+$Zp; 0 <${0,1}F ; V; < gFi X i
Returno;

ASign(M) // Gs
i i+ 1; M+ M; o; <${0,1}*
Returno;

ASign(M) // Gr
i< i+1; M; < M
Returno;

Finalize(M, (o, k)) // Go — Gs
Y + g"X~7; o' + H(X||Y||M)
Return(M ¢ EA H[X||Y||M] = o)

Finalize(M, (o, k)) // G7
Y« ¢"X 7 ; o/ + H(X||Y||M); I + Ind(X||Y||M)
Return(M ¢ E Ao = o)

Initialize // G~
24$Zp; X+ g*; E+D;¢c+0;i+0

k
hl,...,th,Ul,...,O'qS (—${0,1}
Rl,-..,RKqs <_$ZP

ReturnX

Opent(s) // Go| G || Ga || Ga || Ga || G
If (7 <0V j>1)thenreturnl
E+— BEU{M;}; U« UU{j}

HIX||Y;1M;] < o |

Returnk ;

Open(j) // G¢

If (5 <0V j > i) then returnl
Kj<$ZLp; Yj < g X ™%
E « BU{M;}
HX|Y;||M;] + o
Returnk ;

Open(j) // G7

If (5 <0V j > i) then returnl

Yj - g"i X% ; E+ EU{M;}
HX|Y]||M;] + o

Returns

H(z) // G1,G2,G3

If (H|[z]) then returnH [x]

X||Y||M < = ; H[z] s {0,1}*

T {j:1<j<inY;||M; =Y|MAj¢U}
If (T # 0) thenj «<—s T ; H[z] < o0

ReturnH [z]

H(x) //[G1] Gs

If (H|[z]) then returnH [z]

X||Y||M < = ; H[z] +$ {0, 1}*

T {j:1<j<inY[|[Mj=Y|[MAj¢U}

If (T # 0) thenbad« true;| j «sT; H[x] < o}

ReturnH [z]

H(x) // Go, Ge

If (H|[z]) then returnH [z]
Hl[z] 8 {0,1}*
ReturnH [z]

H(z) // Gz

If (H|[z]) then returnH [z]

cc+1; Hlz] « he; Ind(z) « ¢
ReturnH [z]

Figure 13:Game sequence used in proof of Theorem 6.2.

25

Initialize // Go, G1,G2
b<«s{0,1}

Return((zo, Xo), (z1, X1))

CH(M) //| G1 |G2

o <+s{0,1}F

Ys$Zy; Y < g¥

If (H[X]|Y||M]) thenbad+ true;
[0« H[X,||Y]|M]|

H[X|[Y[[M] <= o

Returno

2o 8Ly X1 3Ly ; Xo < 9705 X1 = g™

CH(M) // Go
YysLy; Y < g¥; o« H(X|[Y]|M)
K <4 y+oxpy mod p

Returno

H(.I‘) // Go, Gl,Gg
If (H[z]) ReturnH [z]
Hz] s {0,1}*
ReturnH [z]

Finalize(d) // Gy, G1, G2
Return(b = d)

Figure 14:Game sequence used in proof of Theorem 7.2.

Initialize // Hy, Hy
b<+s{0,1}

(p/{(), Sko) s AKG()
(pkl, Skl) 3 AKG()

LR (Mo, M) //| Ho | Hy

Fori=1ton
(Ui, Iii) < AS|G(Ska[i],i)
o < (0,01 ... [lon|lpko|lpk1)
If pko = pki thenbad« true;
Returno
Finalize(d) // Ho,H1
Returnd = b

Initialize // G;,L;(0 < j <n)
(p/{(), Sko) s AKG()
(pkl, Skl) <—$ AKG()

LR(Mo, M1) // | G, | L;(0 < j < n)
If (Molj] = 1 A M[j] = 0) then
(pk, sk) < (pko, sko)

(pkOa Sko) ~ (pkla Skl

(pk1, sk1) < (pk, sk)
Fori=1,...,5do(oy, i) <= ASIG(skpy, 1), 1)
Fori=j+1,...,ndo(o;,k;) < ASIG(skay,i),)
o < (0,01(]. .. |lon|lpkol[pk1)

Returno

~—

Finalize(d) // G;,L;(0 < j <n)
Returnd = 1

Figure 15:Game sequence used in proof of Theorem 8.2.

26

