
Group-oriented Fair Exchange of Signatures

Qiong Huang∗ Duncan S. Wong∗ Willy Susilo†

Abstract

Optimistic fair exchange (OFE) allows two parties to fairly exchange their items without re-
quiring an online trusted party. Previous works focus on the setting in which the two parties are
individuals. In this work we study a variant of OFE, named group-oriented optimistic fair exchange
(GOFE), in which two groups of users exchange their signatures in a fair manner. We focus on
the setting in which one user on behalf of its group, exchanges signatures with another group. We
formally define the notion of GOFE, and propose a security model for it. We present a concrete
and efficient construction of GOFE, and prove its security under the proposed security models with
random oracles based on decision linear assumption and strong Diffie-Hellman assumption.

Keywords: fair exchange, signature, ambiguity, fairness.

∗Department of Computer Science, City University of Hong Kong, Hong Kong S.A.R., China. Emails:
csqhuang@student.cityu.edu,hk, duncan@cityu.edu.hk.

†School of Computer Science and Software Engineering, University of Wollongong, Australia. Email:
wsusilo@uow.edu.au.

Contents

1 Introduction 1

2 Group-Oriented Optimistic Fair Exchange 3
2.1 Security Properties . 4
2.2 Relations Among The Properties . 7

3 Mathematical Background 7

4 A Zero-Knowledge Protocol for A Variant of SDH Problem 8
4.1 The Basic Zero-Knowledge Protocol . 8
4.2 Signature of Knowledge for Double-SDH . 12

5 The Group-oriented OFE scheme 12

6 Generic Construction of AOFE from GOFE 15

7 Conclusions and Future Work 16

A Proof of Lemma 2.8 and Further Discussions 18

B Security Proofs of the Zero-Knowledge Protocols 18

C Details of the Generation of (14) 19

D Proof of Theorem 5.1 20

1 Introduction

Optimistic fair exchange (OFE in short), introduced by Asokan, Schunter and Waidner [ASW97] in
1997, aims to solve the problem of fairly exchanging items between two parties say, Alice and Bob. In
OFE, there is an arbitrator semi-trusted by Alice and Bob, and involves into a transaction only if one
party attempts to cheat the other or crashes. Later, Asokan, Shoup and Waidner proposed a protocol
for optimistically fairly exchanging digital signatures [ASW98], in which Alice, the signer, first sends
a partial signature to Bob, the verifier, which then returns his full signature; in response, Alice sends
back her full signature. If Alice refuses or fails to respond, Bob then resorts to the arbitrator for
resolving her partial signature into a full one.

(Related Work). Most of the previous work on optimistic fair exchange are in the single-user
setting, in which there are only signer and one verifier, along with an arbitrator. Dodis et al. [DLY07]
studied optimistic fair exchange in the multi-user setting in which there are many signers and many
verifiers (along with an arbitrator), and showed that security of OFE in the single-user setting does
not necessarily imply security in the multi-user setting. They proposed an efficient construction of
OFE in the multi-user setting and the certified-key model in which the adversary has to prove its
knowledge of the secret key before using a public key. Huang et al. [HYWS08b] further improved
their results, by showing that security of OFE in the certified-key model does not imply security in
a more relaxed model, named chosen-key model, in which the adversary is free to use any public key
without showing its knowledge of the corresponding secret key. They also presented a generic and
efficient construction of OFE in the multi-user setting and chosen-key model without random oracles
[BR93].

Traditional OFE has a potential weakness in fairness/abuseness. Specifically, after receiving Alice’s
partial signature, instead of returning his full signature, Bob turns to a third party and convinces it
that the partial signature was indeed generated by Alice. This is possible because the validity of
Alice’s partial signature indeed shows that she committed herself to something. In this way Bob may
be able to obtain some benefit, while Alice gains nothing. Certainly this is unfair for Alice. Recently
Huang et al. [HYWS08a] proposed the notion of ambiguous optimistic fair exchange (AOFE in short),
which is similar to the abuse-free optimistic contract signing [GJM99], aiming to solve this problem.
AOFE differs from the original OFE in that Alice’s partial signature is ambiguous in the sense that
Bob is also able to produce indistinguishable signatures on the same message. Thus, the abuseness
problem does not occur again, as anyone else would not believe in Bob that a partial signature is
binding to Alice.

(Our Work). To the best of our knowledge, there is currently no work on OFE discussing a setting
in which either party consists of a group of users. That is, either or both of Alice and Bob are groups
of users. In this work we study OFE in the latter setting, i.e. both parties are groups of users. We
propose the notion of GOFE, which is similar to the combination of group signatures [CvH91] and
AOFE. In GOFE, there are two groups of users, i.e. a signing group GA and a verifying group GB,
along with an arbitrator. Each group has a group manager, which takes charge of the enrolment of
users by issuing user secret keys to them. After joining a group and obtaining its user secret key, a
user in a group then can act on behalf of its group, to exchange signatures with (another user in) the
other group. Anyone, including the manager of the group that it belongs to and the arbitrator, cannot
even find out who the real signer is. While in AOFE, though the partial signature is ambiguous, any
third party can still tell from the signature that either Alice or Bob is the real signer.

GOFE has practical applications. For example, consider the case in which two companies say, CA

and CB want to sign an electronic contract. Any board member of CA or CB can sign the contract
on behalf of their respective company. The chairman of the board acts as the group manager. After

1

sending out the partial signature, a board member in CA certainly does not want company CB to
gain any advantage from the signature; meanwhile, it does not want CB to find out who he/she really
is either, for the sake of privacy. All CB is ensured is that the partial signature is from someone in
the board of company CA, and CB is also prevented from convincing anyone else the fact due to the
ambiguity of the partial signature.

In this work we give a formal definition of group-oriented optimistic fair exchange, which is a
combination of the definition of group signatures and that of ambiguous optimistic fair exchange,
except we do not have an ‘open’ algorithm in GOFE which binds a partial signature to an individual
in a group. We also propose a formal security model for GOFE. Besides the security properties an
OFE scheme should have, we also define a new property, named group ambiguity, an analogy to the
signer ambiguity of AOFE, which basically means that no one except the arbitrator can tell a partial
signature was generated by a user in which group. We also define the property user anonymity, which
means that no one can tell by which user in group GA a (partial) signature was generated. We then
show that if a GOFE scheme is group ambiguous, it is also user anonymous. Like AOFE [HYWS08a],
we show that group ambiguity of GOFE implies a weak variant of security against verifying groups as
well.

An efficient construction of GOFE is then presented in this paper. Roughly, in our GOFE scheme,
the user secret key of the signer is (linearly) encrypted, and a signature of knowledge is attached to
show that the ciphertext contains the user secret key of a user in either the signing group GA or the
verifying group GB. The security of the proposed scheme is then proved under the decision linear
assumption and strong Diffie-Hellman assumption in the random oracle model.

(Discussion). One might think of building a GOFE scheme from a group signature scheme by trans-
forming it to a verifiably encrypted one, an analogy to the verifiably encrypted signature [BGLS03].
Say, the partial signature of the signing group is a group signature verifiably encrypted under the
arbitrator’s public key. Theoretically it is feasible, however, in order to build an efficient scheme, it
is not trivial to do so. To the best of our knowledge, almost all the recently proposed efficient group
signature schemes, for example, [ACJT00, AdM03, BBS04, BS04, BW06, BW07, Gro07], actually
follow the following paradigm, though not exactly the same:

1. first generate a signature σ on the message using the user secret key;

2. compute an encryption of/commitment c to σ; and

3. provide a non-interactive proof π showing that the ciphertext/commitment c contains a signature
generated by a user in the group.

One possible way to convert a group signature to a verifiably encrypted one is to directly encrypt σ
under the arbitrator’s public key and modify π accordingly to show that the ciphertext contains either
group GA’s signature or GB’s signature. This method has the problem that the arbitrator is able to
reveal the identity of the real signer, which is what we want to avoid. Another possible way is to
encrypt c under the arbitrator’s public key to obtain a new ciphertext c′, and provide another proof π′

showing that the ciphertext c′ contains an encryption of/wcommitment to a signature generated by a
user in either group GA or GB. This method has the problem that the proof π′ becomes complicated,
making the method not efficient enough for practical use.

(GOFE v.s. AOFE). In a nutshell, GOFE and AOFE are two different but closely related variants of
the original definition of optimistic fair exchange of signatures. They share all the security properties
that an OFE scheme has, however, there is a main difference between them. Specifically, AOFE
focuses on the setting in which the signing party is a single user, while GOFE concentrates on the
setting in which the signing party is a group of users (with a group manager). GOFE has all the

2

security properties that AOFE has, and additionally allows any member in the group to sign any
document and exchange the signature with another group, without revealing any information about
its identity. Therefore, one can view GOFE as an extension of AOFE to the group setting. In Sec. 6
we show that GOFE is actually backward compatible with AOFE by giving a generic conversion from
GOFE to AOFE without any security loss.

(Paper Organization). In the next section we propose the definition of group-oriented optimistic
fair exchange, and the security model. In Sec. 3 we review some mathematical assumptions which
will be used in our construction of GOFE. In Sec. 4 we present a core tool for our construction of
GOFE, i.e. a zero-knowledge proof of knowledge for a specific problem related to strong Diffie-Hellman
assumption. The efficient construction of GOFE is then given in Sec. 5, and is proved to be secure
under the proposed model. In Sec. 6 we give the generic conversion from GOFE to AOFE. Finally,
the paper is concluded in Sec. 7.

2 Group-Oriented Optimistic Fair Exchange

In a Group-oriented Optimistic Fair Exchange scheme (GOFE) there are two groups, i.e. the signing
group and the verifying group, and an arbitrator, which is involved only when there is any dispute
between the two groups. Each group has a group manager, which is equipped with a public/private
key pair, and is in charge of issuing secret keys to users who join the group. Any member in a group
can sign a message on behalf of the group where it belongs, without revealing any information about
its identity. Meanwhile, a (partial) signature should not confirm the identity of a group either, except
that the signature is from either the signing group or the verifying group. Thus, the verification of a
(partial) signature requires the public keys of the two groups, along with the arbitrator’s public key.
Below we give a formal definition of GOFE.

Definition 2.1 (Group-oriented Optimistic Fair Exchange (GOFE)). A Group-oriented optimistic
fair exchange scheme consists of the following (probabilistic) polynomial-time algorithms:

• PMGen: On input 1k where k is a security parameter, it outputs a system parameter PM.

• SetupTTP: On input PM, the algorithm generates a public arbitration key apk and a secret arbi-
tration key ask for the arbitrator.

• SetupGroup: On input PM and (optionally) apk, the algorithm outputs a public/secret key pair
(gpk, gsk) for a group. For group Gi, we use (gpki, gski) to denote its key pair.

• Join: On input a group secret key gsk and (optionally) a user’s identity IDt, the algorithm outputs
a user secret key uskt for the user.

• GSig and GVer: GSig(M, uskt, gpki, gpkj , apk) outputs a (full) signature σF on M of group Gi

with the verifying group Gj, where message M is chosen from the message spaceM and uskt is
the user secret key of the user with identity IDt in group Gi, while GVer(M,σF , gpki, gpkj , apk)
outputs 1 or 0, indicating σF is a valid full signature on M of Gi with verifying group Gj or not.

• GPSig and GPVer: They are partial signing and verification algorithms respectively. PSig(M ,
uskt, gpki, gpkj, apk) outputs a partial signature σP , while PVer(M,σP ,gpk, apk) outputs 1 or
0, indicating σP is a valid partial signature on M of group Gi or Gj, where gpk := {gpki, gpkj}.

• Res: This is the resolution algorithm. Res(M,σP , ask,gpk), where gpk = {gpki, gpkj}, outputs
a full signature σF , or ⊥ indicating the failure of resolving a partial signature.

3

The correctness can be defined in a natural way. Namely, we require that for any k ∈ N,
PM← PMGen(1k), (apk, ask)← SetupTTP (PM), (gpki, gski)← SetupGroup(PM, apk), (gpkj , gskj)←
SetupGroup (PM, apk), usk← Join(gski, ID), and M ←M, let gpk := {gpki, gpkj}, we have that

1← GPVer(M,GPSig(M, usk, gpki, gpkj , apk),gpk, apk),

1← GVer(M,GSig(M, usk, gpki, gpkj , apk), gpki, gpkj , apk),

1← GVer(M,Res(M,GPSig(M, usk, gpki, gpkj , apk), ask,gpk), gpki, gpkj , apk).

The resolution ambiguity requires that the ‘resolved’ signatures output by the arbitrator, i.e. Res(M ,
GPSig(M , usk, gpki, gpkj , apk), ask,gpk), are computationally indistinguishable from the ‘actual’ sig-
natures output by the real signer, i.e. GSig(M, usk, gpki, gpkj , apk).

2.1 Security Properties

(Group Ambiguity). Roughly, group ambiguity requires that it is infeasible for an adversary to tell
if a given (valid) partial signature was generated by the signing group or the verifying group, even it
knows the secret keys of both group managers. This is for protecting the fairness of the signing group,
i.e. preventing the verifying group from using the signature for other purposes. To achieve it, we endow
members of the verifying group the ability of producing indistinguishable partial signatures on the
same message. Formally, we consider the following game, in which D is a probabilistic polynomial-time
distinguisher.

PM← PMGen(1k)

(apk, ask)← SetupTTP(PM)

(M, {gpkd, gskd, IDd}1d=0,Υ)← DORes(ask,·,·,·)(PM, apk)
b← {0, 1}

uskb ← Join(gskb, IDb)
σP ← GPSig(M, uskb, gpkb, gpk1−b, apk)

b′ ← DORes(ask,·,·,·)(Υ, σP)
success of D :=

[
b′ = b ∧ (M,σP , {gpk0, gpk1}) 6∈ Query(D,ORes(ask, ·, ·, ·))

]
where Υ is D’s state information, ORes(ask, ·, ·, ·) takes as input a message M , a partial signa-
ture σP and a set of group public keys {gpki0

, gpki1
}, and outputs a full signature σF or ⊥, and

Query(D,ORes(ask, ·, ·, ·)) is the set of valid queries thatD issued to the resolution oracleORes(ask, ·, ·, ·).
The advantage of D, denoted by AdvGA

D (k), is defined as the absolute value of the difference between
D’s success probability in the game above and 1/2.

Definition 2.2 (Group Ambiguity). A Group-oriented OFE scheme is said to be (t, qr, ε) group
ambiguous if there is no algorithm D which runs in time at most t, makes at most qr queries to ORes

and wins the game above with advantage at least ε.

Remark 1 : Note that in the game above we do not require that ID0 and ID1 should be different. The
group ambiguity here considers that partial signatures of two signers in different groups on the same
message are indistinguishable. Similarly, we can define ‘User Anonymity ’, which considers that partial
signatures of two signers from the same group on the same message are indistinguishable. Below is
the formal security game for it:

PM← PMGen(1k)

4

(apk, ask)← SetupTTP(PM)

(M, {gpkd, gskd, IDd}1d=0,Υ)← DORes(ask,·,·,·)(PM, apk)
b← {0, 1}

uskb ← Join(gsk0, IDb)
σP ← GPSig(M, uskb, gpk0, gpk1, apk)

b′ ← DORes(ask,·,·,·)(Υ, σP)
success of D :=

[
b′ = b

]
The advantage of D in the distinguishing game above is defined to be AdvUA

D (k) := |Pr[b′ = b]− 1/2|.

Definition 2.3 (User Anonymity). A Group-oriented OFE scheme is said to be (t, qr, ε) user anony-
mous if there is no algorithm D which runs in time at most t, makes at most qr queries to ORes and
wins the game above with advantage at least ε.

Remark 2 : We stress that the user anonymity is different from the signer ambiguity in [HYWS08a].
The signer ambiguity is closely related to group ambiguity defined above. It is defined in the setting
in which individual users instead of groups of users are involved in a transaction. It requires that the
partial signatures of the two individual users are indistinguishable, while the user anonymity requires
that partial signatures of two users in the same group are indistinguishable.

(Security Against Signing Groups). We require that no PPT adversary A should be able to
produce a partial signature with non-negligible probability, which looks good to a verifying group
but cannot be resolved to a full signature by the honest arbitrator. This ensures the fairness for the
verifying group, that is, if a signer in the signing group has committed to a message with respect to
a verifying group, the verifying group should always be able to obtain the full commitment of the
signing group. Formally, we consider the following game:

PM← PMGen(1k)

(apk, ask)← SetupTTP(PM)

(gpkB, gskB)← SetupGroup(PM, apk)

(M,σP , gpkA)← AOGPSig(gskB ,·,·,·),ORes(ask,·,·,·)(PM, apk, gpkB)
σF ← Res(M,σP , ask, {gpkA, gpkB})

success of A := [GPVer(M,σP , {gpkA, gpkB}, apk) = 1 ∧
GVer(M,σF , gpkA, gpkB, apk) = 0 ∧
(M, ·, gpkA) 6∈ Query(A,OGPSig(gskB, ·, ·, ·))]

where oracle ORes(ask, ·, ·, ·) is described in the previous game, OGPSig(gskB, ·, ·, ·) takes as input a
message M , an identity ID and a group public key gpki, and outputs a partial signature on M under
{gpki, gpkB} generated using the secret key of the user with identity ID derived from gskB, and
Query(A, OGPSig(gskB, ·, ·, ·)) is the set of queries made by A to oracle OGPSig(gskB, ·, ·, ·). Note that
the adversary is not allowed to corrupt gpkB, otherwise it can easily succeed in the game by simply
outputting a partial signature generated under group public keys gpkA, gpkB using any user secret
key derived from gskB. The advantage of A in the game AdvSASG

A (k) is defined to be A’s success
probability.

Definition 2.4 (Security Against Signers). A GOFE scheme is said to be (t, qp, qr, ε) secure against
signers if there is no adversary A which runs in time at most t, makes at most qp queries to OGPSig

and qr queries to ORes, and wins the game above with advantage at least ε.

5

(Security Against Verifying Groups). This security notion requires that any user in a verifying
group B, even the manager of the group, should not be able to transform a partial signature into a full
one with non-negligible probability if no help has been obtained from the signer in the signing group
or the arbitrator. Formally, we consider the following game:

PM← PMGen(1k)

(apk, ask)← SetupTTP(PM)

(gpkA, gpkA)← SetupGroup(PM, apk)

(M, gpkB, σF)← BOGPSig(gskA,·,·,·),ORes(ask,·,·,·)(PM, gpkA, apk)
success of B := [GVer(M,σF , gpkA, gpkB, apk) = 1 ∧

(M, ·, {gpkA, gpkB}) 6∈ Query(B,ORes(ask, ·, ·, ·))]

where oracle ORes(ask, ·, ·, ·) is described in the game of signer ambiguity, Query(B, ORes(ask, ·, ·, ·)) is
the set of valid queries B issued to the resolution oracle ORes(ask, ·, ·, ·), and oracle OGPSig(gskA, ·, ·, ·)
takes as input a message M , an identity ID and a group public key gpki and outputs a partial signature
on M using the user secret key of ID derived from gskA. The advantage of B in the game AdvSAVG

B (k)
is defined to be B’s success probability in the game above.

Definition 2.5 (Security Against Verifying Groups). A GOFE scheme is said to be (t, qp, qr, ε) secure
against verifying groups if there is no adversary which runs in time at most t, makes at most qp queries
to OGPSig and qr queries to ORes, and wins the game above with advantage at least ε.

(Security Against the Arbitrator). Intuitively, a GOFE is secure against the arbitrator if no PPT
adversary C, including the arbitrator, should be able to generate with non-negligible probability a full
signature without explicitly asking the signer for generating one. This ensures the fairness for the
signing group, that is, no one can frame the signing group on any message with a forgery. Formally,
we consider the following game:

PM← PMGen(1k)
(apk,Υ)← C(PM)

(gpkA, gskA)← SetupGroup(PM, apk)

(M, gpkB, σF)← COGPSig(gskA,·,·,·)(Υ, gpkA)
success of C := [GVer(M,σF , gpkA, gpkB, apk) = 1 ∧

(M, ·, gpkB) 6∈ Query(C,OGPSig(gskA, ·, ·, ·))]

where the oracle OGPSig(gskA, ·, ·, ·) is described in the previous game, Υ is C’s state information,
which might not contain the corresponding private key of apk, and Query(C,OGPSig) is the set of
queries C issued to the oracle OGPSig. The advantage of C in this game AdvSAA

C (k) is defined to be its
success probability.

Definition 2.6 (Security Against the Arbitrator). A GOFE scheme is said to be (t, qp, ε) secure
against the arbitrator if there is no adversary C which runs in time at most t, makes at most qp

queries to OGPSig and wins the game above with advantage at least ε.

Remark 3 : As AOFE [HYWS08a], both the signing group GA and verifying group GB are equipped
with public/secret key pairs, and any user in them can generate indistinguishable partial signatures on
the same message using the user secret keys issued by their respective group managers. If the security

6

against the arbitrator holds for group GA (as described in the game above), it should also hold for
group GB. That is, even when colluding with GA (and other groups), the arbitrator should not be
able to frame GB for a full signature on a message, if it has not obtained a partial signature on the
message generated by any user in GB.

Definition 2.7 (Secure GOFE). A GOFE scheme is said to be secure in the multi-user setting and
chosen-key model, if it is group ambiguous, secure against signing groups, secure against verifying
groups and secure against the arbitrator.

Remark 4 : If a GOFE scheme is provably secure in the random oracle model, the adversaries in the
games above have access to the random oracles. Also, we stress that all the definitions above are in
the multi-user setting and chosen-key model. Namely, we allow the adversary to collude with other
users in the system and use a public key without proving its knowledge of the secret key.

2.2 Relations Among The Properties

As mentioned above, group ambiguity considers that two users in two different groups can produce
indistinguishable partial signatures on the same message, while user anonymity considers that two
users in the same group produce indistinguishable signatures. Below we show that group ambiguity
actually implies user anonymity.

Lemma 2.8. If a GOFE scheme is (t, qr, ε) group ambiguous, it is also (t′, qr, ε
′) user anonymous,

where
t′ ≈ t and ε′ ≤ ε.

The proof is deferred to Appendix A.

On the other hand, the security against the verifying groups indicates that a verifying group
(manager) cannot convert the signing group’s partial signature into a full one without help from the
signing group and the arbitrator. Intuitively, if someone (in the verifying group) is able to convert a
partial signature from the signing group, it can also convince others before the end of a transaction
that someone in the signing group committed to some message. This contradicts the intuition behind
the definition of group ambiguity.

As [HYWS08a] we define a weak version of security against verifying groups, in which the game
challenger chooses (gpkA, gskA) and (gpkB, gskB) and gives (gpkA, gpkB, gskB) together with apk to
the adversary B, and the full signature output by B should be valid with respect to the given gpkA

and gpkB. We call this version of security as ‘weak security against verifying groups’. Similarly, we
have the following lemma:

Lemma 2.9. If a GOFE scheme is group ambiguous and secure against the arbitrator, it is also
weakly secure against verifying groups. Specifically, if a GOFE scheme is (t1, qr, ε1) group ambiguous
and (t2, qp, ε2) secure against the arbitrator, it is also (t′, qp, qr, ε

′) weakly secure against verifying
groups, where

t′ ≈ t1 andε′ ≤ 2ε2 + 2q2
pε1.

The proof of this lemma is almost the same as that in [HYWS08a] except some minor modifications,
so we omit it here.

3 Mathematical Background

(Admissible Pairings). Let G and GT be two cyclic groups of large prime order p. The mapping
e : G×G→ GT is said to be an admissible pairing, if

7

Bilinearity ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab;

Non-degeneracy there are some u, v ∈ G such that e(u, v) 6= 1T , where 1T is the identity element
of GT ; and

Computability there exists an efficient algorithm for computing e(u, v) for any u, v ∈ G.

(Decision Linear Assumption (DLN) [BBS04]): Let G be a cyclic group of large prime order p.
The linear problem is defined as follows: given u, v, h, uα, vβ ∈ G, where α, β ← Zp, output hα+β . The
DLN assumption (t, ε) holds in G, if there is no adversary A which runs in time at most t, and∣∣∣∣Pr[u, v, h← G;α, β, δ ← Zp;Z0 ← hα+β ;Z1 ← hδ; b← {0, 1}; b′ ← A(u, v, h, uα, vβ, Zb) : b′ = b]− 1

2

∣∣∣∣ > ε

where the probability is taken over the random choices of u, v, h ∈ G, α, β, δ ∈ Zp, and the random
coins consumed by A.

(q-Strong Diffie-Hellman Assumption (q-SDH) [BB04]): The q-SDH problem in G is defined as
follows: given a (q+1)-tuple (g, gγ , gγ2

, · · · , gγq
), output a pair (g1/(γ+x), x) where x ∈ Z∗

p. The q-SDH
assumption (t, ε) holds in G, if there is no adversary A which runs in time at most t and

Pr
[
γ ← Z∗

p : A
(
g, gγ , · · · , gγq)

=
(
g

1
γ+x , x

)]
> ε

where the probability is taken over the random choices of g ∈ G, γ ∈ Z∗
p, and the random coins

consumed by A.

4 A Zero-Knowledge Protocol for A Variant of SDH Problem

In this section we present a zero-knowledge proof of knowledge system for a special problem related
to the SDH assumption, called Double-SDH problem.

Double-SDH Problem. Given p, G, GT , g, e : G × G → GT and Γ0,Γ1 ∈ G (Γ0 6= Γ1),
find a pair (A, x) ∈ G × Z∗

p such that either e(A,Γ0g
x) = e(g, g) or e(A,Γ1g

x) = e(g, g)
holds.

Below we present a zero-knowledge proof of knowledge protocol for the Double-SDH problem, which
does not reveal the values of A and x, and which equation is satisfied by them. In the protocol the
prover proves its knowledge of a solution to the Double-SDH problem.

4.1 The Basic Zero-Knowledge Protocol

The public values are g, u, v, h, U, V,H, Γ0,Γ1, where g is a random generator of G, u, v, h, U, V,H are
randomly chosen from G, and Γb equals gγb for some secret γb ∈ Zp for b = 0, 1. The protocol is a
generalization of Schnorr’s protocol for proving knowledge of discrete logarithm in a group of known
order [Sch91].

Assume that Alice, the prover, holds a pair (A, x) such that e(A,Γb · gx) = e(g, g) for some bit
b ∈ {0, 1}. She randomly selects exponents α, β, α′, β′ ← Zp and computes the following:

T1 ← uα, T2 ← vβ , T3 ← A · hα+β, S1 ← Uα′
, S2 ← V β′

, S3 ← Γb ·Hα′+β′
.

8

Alice sends (T1, T2, T3, S1, S2, S3) to Bob, the verifier, and then interacts with him to carry out a proof
of knowledge of values (x, α, β, α′, β′) satisfying the following statement:

uα = T1 ∧ vβ = T2 ∧ Uα′
= S1 ∧ V β′

= S2 ∧ e(T3 · h−α−β , S3 ·H−α′−β′ · gx) = e(g, g)

∧
(
Hα′+β′

= S3/Γ0 ∨ Hα′+β′
= S3/Γ1

)
(1)

For brevity, let C be the first line of the statement above, and D0, D1 be the two components of the
OR relation respectively. Then statement (1) can be expressed as C ∧ (D0 ∨ D1). To prove it, it is
equivalent to prove (C ∧D0) ∨ (C ∧D1). Below we first give a protocol for proving C ∧Db, and then
show how to extend it to prove the whole statement, i.e. (C ∧Db) ∨ (C ∧D1−b).

Protocol 1. Without loss of generality, we assume that b = 0. The proof of knowledge proceeds as
follows. Alice first computes the following helper values:

δ1 ← xα, δ2 ← xβ, δ3 ← αα′, δ4 ← αβ′, δ5 ← βα′, δ6 ← ββ′

She then selects rx, rα, rβ , rα′ , rβ′ , r1, r2, r3, r4, r5, r6 at random from Zp, and computes the following
values:

R1 ← urα , R2 ← vrβ , R3 ← U rα′ , R4 ← V rβ′ , R5 ← u−r1T rx
1 , R6 ← v−r2T rx

2 ,

R7 ← U−r3Srα
1 , R8 ← V −r4Srα

2 , R9 ← U−r5S
rβ

1 , R10 ← V −r6S
rβ

2 , R11 ← Hrα′+rβ′ ,

R12 ← e(T3,H)−rα′−rβ′ e(T3, g)rx e(h, S3)−rα−rβ e(h, H)r3+r4+r5+r6 e(h, g)−r1−r2 .

Alice sends all these values, i.e. (R1, R2, · · · , R12), to Bob, which then returns a challenge value c
chosen uniformly at random from Zp. Alice then computes the following response values:

sx ← rx + cx, sα ← rα + cα, sβ ← rβ + cβ, sα′ ← rα′ + cα′, sβ′ ← rβ′ + cβ′,

si ← ri + cδi for i = 1, 2, · · · , 6
and sends them back. Bob accepts if all the equations below hold, and rejects otherwise.

usα ?= T c
1 ·R1 (2)

vsβ
?= T c

2 ·R2 (3)

U sα′ ?= Sc
1 ·R3 (4)

V sβ′ ?= Sc
2 ·R4 (5)

u−s1T sx
1

?= R5 (6)

v−s2T sx
2

?= R6 (7)

U−s3Ssα
1

?= R7 (8)

V −s4Ssα
2

?= R8 (9)

U−s5S
sβ

1
?= R9 (10)

V −s6S
sβ

2
?= R10 (11)

Hsα′+sβ′ ?= (S3/Γ0)
c ·R11 (12)

e(T3,H)−sα′−sβ′ e(T3, g)sxe(h, S3)−sα−sβe(h, H)s3+s4+s5+s6e(h, g)−s1−s2 ?= (e(g, g)/e(T3, S3))c ·R12

(13)
It’s easy to see the following lemma.

9

Lemma 4.1. Protocol 1 is complete.

Proof. Suppose that both Alice and Bob follow the protocol, then we have that

usα = urα+cα = urα · (uα)c = R1 · T c
1 ,

vsβ = vrβ+cβ = vrβ · (vβ)c = R2 · T c
2 ,

U sα′ = U rα′+cα′
= U rα′ · (Uα′

)c = R3 · Sc
1,

V sβ′ = V rβ′+cβ′
= V rβ′ · (V β′

)c = R4 · Sc
2,

u−s1T sx
1 = u−r1−cδ1T rx+cx

1 = u−r1T rx
1 · (u

−δ1T x
1)c = u−r1T rx

1 · (u
−αT1)cx = R5,

v−s2T sx
2 = v−r2−cδ2T rx+cx

2 = v−r2T rx
2 · (v

−δ2T x
2)c = v−r2T rx

2 · (v
−βT2)cx = R6,

U−s3Ssα
1 = U−r3−cδ3Srα+cα

1 = U−r3Srα
1 · (U

−δ3Sα
1)c = R7 · (U−α′

S1)cα = R7,

V −s4Ssα
2 = V −r4−cδ4Srα+cα

2 = V −r4Srα
2 · (V

−δ4Sα
2)c = R8 · (V −β′

S2)cα = R8,

U−s5S
sβ

1 = U−r5−cδ5S
rβ+cβ
1 = U−r5S

rβ

1 · (U
−δ5Sβ

1)c = R9 · (U−α′
S1)cβ = R9,

V −s6S
sβ

2 = V −r6−cδ6S
rβ+cβ
2 = V −r6S

rβ

2 · (V
−δ6Sβ

2)c = R10 · (V −β′
S2)cβ = R10,

Hsα′+β′ = Hrα′+cα′+rβ′+cβ′
= Hrα′+rβ′ · (Hα′+β′

)c = R11 · (S3/Γ0)c, and
e(T3,H)−sα′−sβ′ e(T3, g)sxe(h, S3)−sα−sβe(h, H)s3+s4+s5+s6e(h, g)−s1−s2

= e(T3,H)−rα′−rβ′ e(T3, g)rxe(h, S3)−rα−rβe(h, H)r3+r4+r5+r6e(h, g)−r1−r2 ·(
e(T3,H)−α′−β′

e(T3, g)xe(h, S3)−α−βe(h, H)δ3+δ4+δ5+δ6e(h, g)−δ1−δ2
)c

= R12 · (e(g, g)/e(T3, S3))c.

Lemma 4.2. For any (g, u, v, h, U, V,H, Γ0,Γ1), Protocol 1 is honest-verifier zero-knowledge under
the Decision Linear Assumption.

Proof. The crux of the proof is the simulator S. It begins by randomly picking α, β, α′, β′ ∈ Zp and
A ∈ G, and computing T1 ← uα, T2 ← vβ , T3 ← A ·hα+β,, S1 ← Uα′

, S2 ← V β′
and S3 ← Γ0 ·Hα′+β′

.
Under the decision linear assumption, (T1, T2, T3, S1, S2, S3) is indistinguishable from that generated
by a real prover.

Note that the rest of the simulation is independent of the choice of (T1, T2, T3, S1, S2, S3) ∈
G6. Below we describe how S works. It randomly selects challenge c ∈ Zp, and picks at random
sx, sα, sβ, sα′ , sβ′ , s1, s2, s3, s4, s5, s6 ∈ Zp. It computes the following values:

R1 ← usα/T c
1 , R2 ← vsβ/T c

2 , R3 ← U sα′/Sc
1, R4 ← V sβ′/Sc

2,

R5 ← u−s1T sx
1 , R6 ← v−s2T sx

2 , R7 ← U−s3Ssα
1 , R8 ← V −s4Ssα

2 ,

R9 ← U−s5S
sβ

1 , R10 ← V −s6S
sβ

2 , R11 ← Hsα′+sβ′/(S3/Γ0)c,

R12 ← e(T3,H)−sα′−sβ′ e(T3, g)sxe(h, S3)−sα−sβe(h, H)s3+s4+s5+s6e(h, g)−s1−s2/(e(g, g)/e(T3, S3))c.

It’s readily seen that these values satisfy equations (2) to (13). Besides, R1, R2, · · · , R12 are distributed
identically to those in a real transcript. The simulator outputs (T1, T2, T3, S1, S2, S3, R1, R2, · · · , R12, c, sx,
sα, sβ, sα′ , sβ′ , s1, s2, · · · , s6). As discussed above, the transcript is indistinguishable from any tran-
script of Protocol 1, assuming the hardness of decision linear problem.

10

Lemma 4.3. Protocol 1 has special soundness, i.e. there is an extractor for Protocol 1 which can
extract an SDH tuple.

Proof. Suppose that an extractor can rewind a prover in Protocol 1 to the status just before the
prover is given a challenge c. At the first step of the protocol, the prover sends T1, T2, T3, S1, S2, S3

and R1, · · · , R12. Then, to challenge value c, the prover responds with sx, sα, sβ , sα′ , sβ′ , s1, · · · , s6.
To challenge value c′ 6= c, the prover responds with s′x, s′α, s′β, s′α′ , s′β′ , s′1, · · · , s′6

Let ∆c = c − c′, ∆sα = sα − s′α, and similarly for ∆sβ, ∆sα′ , ∆sβ′ and ∆si for i = 1, 2, · · · , 6.
Consider (2) first. Dividing the two instances of this equation (one instance using c and the other
using c′), we obtain u∆sα = T∆c

1 . Note that the exponents are in a group of known prime order, so
we can take roots. Let α̃ = ∆sα/∆c. Then uα̃ = T1. Similarly, from equations (3), (4) and (5) we
can get β̃ = ∆sβ/∆c, α̃′ = ∆sα′/∆c and β̃′ = ∆sβ′/∆c such that vβ̃ = T2, U α̃′ = S1 and V β̃′ = S2

respectively.
Then, from the two instances of (6), we obtain T∆sx

1 = u∆s1 , thus ∆s1 = α̃ ·∆sx. Similarly, from
(7), (8), (9), (10) and (11), we obtain ∆s2 = β̃ ·∆sx, ∆s3 = α̃′ ·∆sα, ∆s4 = β̃′ ·∆sα, ∆s5 = α̃′ ·∆sβ and
∆s6 = β̃′ ·∆sβ such that T∆sx

2 = v∆s2 , S∆sα
1 = U∆s3 , S∆sα

2 = V ∆s4 , S
∆sβ

1 = U∆s5 and S
∆sβ

2 = V ∆s6

respectively. From the two instances of (12), we obtain H∆sα′+∆sβ′ = (S3/Γ0)c. Thus, we get

Γ0 =
S3

H(∆sα′+∆sβ′)/∆c
=

S3

H α̃′+β̃′

which indicates that Γ0 is indeed embedded in (S1, S2, S3). Finally, from the two instances of equation
(13), we obtain

e(T3,H)−∆sα′−∆sβ′ e(T3, g)∆sxe(h, S3)−∆sα−∆sβe(h, H)∆s3+∆s4+∆s5+∆s6e(h, g)−∆s1−∆s2

= (e(g, g)/e(T3, S3))
∆c

Taking the ∆c-th root on both sides, we get

e(T3,H)−α̃′−β̃′
e(T3, g)x̃e(h, S3)−α̃−β̃e(h, H)α̃α̃′+α̃β̃′+β̃α̃′+β̃β̃′

e(h, g)−α̃x̃−β̃x̃ = e(g, g)/e(T3, S3)

e(T3, S3)e(T3,H)−α̃′−β̃′
e(T3, g)x̃e(h, S3)−α̃−β̃e(h, H)(−α̃−β̃)(−α̃′−β̃′)e(h, g)(−α̃−β̃)x̃ = e(g, g)

e(T3, S3H
−α̃′−β̃′

gx̃)e(h−α̃−β̃, S3H
−α̃′−β̃′

gx̃) = e(g, g)

e(T3h
−α̃−β̃, S3H

−α̃′−β̃′
gx̃) = e(g, g)

e(T3h
−α̃−β̃, Γ̃0g

x̃) = e(g, g)

Let Ã = T3h
−α̃−β̃. Then we have e(Ã, Γ0g

x̃) = e(g, g). Thus the extractor obtains an SDH tuple
(Ã, x̃) and a hidden public key Γ̃0 that satisfy the equation above. Moreover, the Ã in this SDH
tuple is the same as that contained in (T1, T2, T3), and Γ0 is indeed contained in the linear encryption
(S1, S2, S3).

Protocol 2. Protocol 1 proves C ∧ D0. The same protocol applies to C ∧ D1 when b = 1 (i.e.
e(A,Γ1g

x) = e(g, g)) by replacing Γ0 with Γ1 in the proof. Now we show how to extend it to the full
protocol that proves the whole statement (1).

Alice, the prover, is given a pair (A, x) such that e(A, Γbg
x) = e(g, g) for some bit b. She first picks

at random α, β, α′, β′ ∈ Zp, and generates (T1, T2, T3, S1, S2, S3, R
b
1, · · · , Rb

12) as in Protocol 1, except
that S3 is computed as S3 ← ΓbH

α′+β′
. She also randomly picks a challenge value c1−b ∈ Zp,

and calls the simulator of Protocol 1 to produce a transcript for the statement e(A, Γ1−bg
x) =

11

e(g, g). Let the transcript be (R1−b
1 , · · · , R1−b

12 , c1−b, s1−b
x , s1−b

α , s1−b
β , s1−b

α′ , s1−b
β′ , s1−b

1 , · · · , s1−b
6). Al-

ice sends (T1, T2, T3, S1, S2, S3, R0
1, · · · , R0

12, R1
1, · · · , R1

12) to Bob, the verifier, which then returns
a challenge value c ∈ Zp. Alice first computes cb ← c − c1−b, and then generates response values
sb
x, sb

α, sb
β , sb

α′ , sb
β′ , sb

1, · · · , sb
6 as in Protocol 1. She responds back (c0, s0

x, s0
α, s0

β , s0
α′ , s0

β′ , s0
1, · · · , s0

6, c
1, s1

x,

s1
α, s1

β , s1
α′ , s1

β′ , s1
1, · · · , s1

6). After receiving them, Bob first checks if c
?= c0 + c1. If not, he rejects; oth-

erwise, he does as in Protocol 1 to check the validity of (R0
1, · · · , R0

12, c
0, s0

x, s0
α, s0

β, s0
α′ , s0

β′ , s0
1, · · · , s0

6)
and (R1

1, · · · , R1
12, c

1, s1
x, s1

α, s1
β , s1

α′ , s1
β′ , s1

1, · · · , s1
6) with respect to (T1, T2, T3, S1, S2, S3) respectively.

If either fails, he rejects; otherwise he accepts.

Theorem 4.4. Protocol 2 is an honest-verifier zero-knowledge proof of knowledge system for the
Double-SDH problem.

The proof is deferred to Appendix B, where we show that Protocol 2 is simulatable, and has special
soundness, i.e. there is an extractor which can extract (A, x) and a bit b such that statement (1) is
satisfied. We stress that besides (A, x) and the bit b, the extractor can also output the randomness
used in the two encryptions, i.e. (α, β, α′, β′). Implied by the special soundness, the probability that
the pair (A, x) contained in (T1, T2, T3) does not satisfy statement (1) for any bit b is then upper
bounded by 1/p (see [Dam09]).

4.2 Signature of Knowledge for Double-SDH

By applying a variant of the standard Fiat-Shamir heuristic to Protocol 2 we can obtain a signa-
ture of knowledge for statement (1). Namely, after generating all the R values, the signer ap-
plies a (collision-resistant) hash function H1 : {0, 1}∗ × G13 × GT × G11 × GT → Z∗

p to the mes-
sage M to be signed, Γ0, Γ1, and these R values, and obtains a challenge value c. It then com-
putes the response values with respect to c using its secret key. A signature θ then consists of
(c0, s0

x, s0
α, s0

β, s0
α′ , s0

β′ , s0
1, · · · , s0

6, c
1, s1

x, s1
α, s1

β , s1
α′ , s1

β′ , s1
1, · · · , s1

6) ∈ Z24
p . To verify a signature, one

computes the following for b = 0, 1:

Rb
1 ← usb

α/T cd

1 , Rb
2 ← vsb

β/T cb

2 , Rb
3 ← U sb

α′/Scb

1 , Rb
4 ← V

sb
β′/Scb

2 ,

Rb
5 ← u−sb

1T
sb
x

1 , Rb
6 ← v−sb

2T
sb
x

2 , Rb
7 ← U−sb

3S
sb
α

1 , Rb
8 ← V −sb

4S
sb
α

2 ,

Rb
9 ← U−sb

5S
sb
β

1 , Rb
10 ← V −sb

6S
sb
β

2 , Rb
11 ← H

sb
α′+sb

β′/(S3/Γb)cb
,

Rb
12 ←

e(T3,H)−sb
α′−sb

β′ e(T3, g)sb
xe(h, S3)

−sb
α−sb

βe(h, H)sb
3+sb

4+sb
5+sb

6e(h, g)−sb
1−sb

2

(e(g, g)/e(T3, S3))
cb ,

and then checks if c0 + c1 ?= H1(M̄, R0
1, R

0
2, · · ·R0

12, R
1
1, R

1
2, · · · , R1

12), where M̄ = M‖Γ0‖Γ1. If not, the
verifier rejects; otherwise it accepts.

5 The Group-oriented OFE scheme

In this section we propose our efficient construction of GOFE scheme based on a zero-knowledge
protocol slightly modified from Protocol 2 given in Sec. 4. The zero-knowledge protocol uses two
more parameters, i.e. K, L ∈ G, and a collision-resistant hash function H3 : G4 → Zp. The proof
remains the same, except that the encryption of Γb is computed as

S1 ← Uα′
, S2 ← V β′

, S3 ← Γb ·Hα′+β′
, S4 ← (HχK)α′

, S5 ← (HχL)β′

12

where χ← H3(S1, S2,Γ0,Γ1). Given a proof, the verifier checks not only the validity of θ with respect
(T1, T2, T3, S1, S2, S3), but also checks if e(S1,H

χK) ?= e(U, S4) and e(S2,H
χL) ?= e(V, S5). If either

check fails, it rejects the proof; otherwise it accepts. The modified encryption of Γb is from Kiltz’
(selective-tag CCA-secure) tag-based public key encryption scheme [Kil06]. The introduction of the
two extra parameters enables us to simulate the resolution oracle in the CCA type. See the security
proofs for more details. Here we note that the signer does not need to prove the knowledge of the
discrete logarithms of S4, S5 with respect to the bases HχK and HχL respectively, as the two equations
e(S1,H

χK) = e(U, S4) and e(S2,H
χL) = e(V, S5) already implies that the signer knows their discrete

logarithms, which are the same as logU S1 and logV S2 respectively.
It’s not hard to see that the modified protocol is still honest-verifier zero-knowledge and (A, x, α, β,

α′, β′,Γb) can be extracted from two protocol transcripts sharing the same R’s. The signature of
knowledge version of the modified protocol can be obtained in the same way as in Sec. 4.2. Below we
propose our construction of GOFE.

PMGen : The algorithm takes as input 1k and outputs two multiplicative groups of prime order
p, G and GT , four random generators of G, i.e. g, u, v and h, and an admissible bilinear
pairing e : G × G → GT . It also selects three collision-resistant hash functions, i.e. H1 :
{0, 1}∗ × G13 × GT × G11 × GT → Zp, H2 : {0, 1}∗ × G10 × Z24

p × G6 → Zp, and H3 : G4 → Zp,
which will be modeled as random oracles in the security proofs.

SetupTTP : The arbitrator randomly selects U , V and H such that U ξ1 = V ξ2 = H for some (ξ1,
ξ2) ∈ Z2

p. It also picks at random K, L ∈ G. The public/private key pair is then set to be
(apk, ask) := ((U, V,H, K, L), (ξ1, ξ2)).

SetupGroup : Each group manager picks at random γ ← Z∗
p, and sets Γ← gγ . The group public/private

key pair is set to be (gpk, gsk) := (Γ, γ).

Join : When a user (with identity ID) joins a group G (with public key gpk = Γ), the group manager
selects x← Z∗

p at random and sets A← g1/(γ+x). It returns the user secret key usk := (A, x) to
the user.

GPSig : Let M be the message to be partially signed, and the signer be in group Gi (with public key
gpki = Γi) and be with private key usk = (A, x), and the verifying group be group Gj (with
public key gpkj = Γj). The signer generates a partial signature σP on M as follows:

1. selects α, β, α′, β′ ∈ Zp at random, and computes the following:

T1 ← uα, T2 ← vβ, T3 ← A · hα+β , S1 ← Uα′
, S2 ← V β′

,

S3 ← Γi ·Hα′+β′
, χ← H3(S1, S2,Γi,Γj), S4 ← (HχK)α′

, S5 ← (HχL)β′
,

where (T1, T2, T3) is the linear encryption of A under public parameters, and (S1, S2, S3, S4,
S5) is the encryption of Γi under the arbitrator’s public key.

2. computes the following helper values:

δ1 ← x · α, δ2 ← x · β, δ3 ← α · α′, δ4 ← α · β′, δ5 ← β · α′, δ6 ← β · β′.

3. computes the following signature of knowledge on message M :

θ ← SPK
{

(x, α, β, α′, β′, δ1, δ2, δ3, δ4, δ5, δ6) : uα = T1 ∧ vβ = T2 ∧ Uα′
= S1 ∧

V β′
= S2 ∧ u−δ1 · T1

x = 1 ∧ v−δ2 · T2
x = 1 ∧ U−δ3 · S1

α = 1 ∧

13

V −δ4 · S2
α = 1 ∧ U−δ5 · S1

β = 1 ∧ V −δ6 · S2
β = 1 ∧

e(T3,H)−α′−β′ · e(T3, g)x · e(h, S3)−α−β · e(h, H)δ3+δ4+δ5+δ6 · e(h, g)−δ1−δ2

=
e(g, g)

e(T3, S3)
∧
(

Hα′+β′
=

S3

Γi
∨ Hα′+β′

=
S3

Γj

)}(
M‖gpki‖gpkj

)
Note that in the generation of σP above, hash function H1 is used for converting Protocol 2
to a signature, and that the signature of knowledge above is a little bit different from the
one in Sec. 4, as we include gpki, gpkj and apk additionally into the message to be signed.
The partial signature is then set to be σP := (T1, T2, T3, S1, S2, S3, S4, S5, θ). The signer
stores (α′, β′) for later use, i.e. for converting σP to a full signature.

GPVer : Given a partial signature σP = (T1, T2, T3, S1, S2, S3, S4, S5, θ), a message M , group public
keys gpki, gpkj , and the arbitrator’s public key apk, the verifier calls the verification algorithm
of the signature of knowledge at the beginning of Sec. 5 to check the validity of σP . Namely, the
verifier checks both the validity of θ with respect to (T1, T2, T3, S1, S2, S3) and if e(S1,H

χK) ?=
e(U, S4) and e(S2,H

χL) ?= e(V, S5) both hold, where χ ← H3(S1, S2, gpki, gpkj), and rejects if
either check fails.

GSig : To (fully) sign a message M with the verifying group Gj , the signer in group Gi does as below:

• use its secret key (A, x) to compute a partial signature σP = (T1, T2, T3, S1, S2, S3, S4, S5, θ)
by running the GPSig algorithm;

• provide the following signature of knowledge ϑ, showing that the tuple (S1, S2, S3, S4, S5)
is indeed an encryption of the public key of the group it belongs to, i.e. Γi, or it can be
decrypted to Γi by the arbitrator:

ϑ← SPK
{

(η1, η2) :
(

Uη1 = S1 ∧ V η2 = S2 ∧ Hη1+η2 =
S3

Γ

) ∨
(

Uη1 = H ∧ V η2 = H ∧ Sη1
1 · S

η2
2 =

S3

Γ

)}
(M‖gpki‖gpkj‖σP)

(14)

where Γ is set to Γi. The witness used by the signer in the signature of knowledge is the
randomness used in generation of the encryption, i.e. (α′, β′). Note that hash function H2

is used in the generation of ϑ. The details of the generation of ϑ can be found in Appendix
C. The full signature on M is then set to be σF := (σP ,Γi, ϑ).

GVer : To verify the validity of a full signature σ = (σP ,Γ, ϑ), the verifier checks both the validity
of σP by calling the GPVer algorithm and that of ϑ. It rejects if either check fails, and accepts
otherwise.

Res : Given a partial signature σP = (T1, T2, T3, S1, S2, S3, S4, S5, θ), a message M and public keys
Γi, Γj and apk, the arbitrator first checks the validity of σP by invoking the GPVer algorithm.
If it’s invalid, the arbitrator returns ⊥; otherwise, it decrypts (S1, S2, S3, S4, S5) using its secret
key ask = (ξ1, ξ2). Namely, it checks if e(S1,H

χK) ?= e(U, S4) and e(S2,H
χL) ?= e(V, S5), where

χ ← H3(S1, S2,Γi,Γj). If not, it returns ⊥; otherwise, it computes Γ ← S3/(Sξ1
1 · S

ξ2
2). If Γ

is equal to neither Γi nor Γj , the arbitrator returns ⊥; otherwise, it computes a signature of
knowledge ϑ of (14) using its knowledge of (ξ1, ξ2). It returns (σP ,Γ, ϑ).

14

Remark 5 : The signature of knowledge ϑ is obtained by applying a variant of Fiat-Shamir heuristic to
the corresponding three-move zero-knowledge proof of knowledge protocol which is given in Appendix
C. We stress that implied by the special soundness of the protocol, the probability that the witness
used in the generation of the proof does not satisfy (14) is upper bounded by 1/p (see [Dam09]).

Efficiency. The following table shows the comparison of our GOFE with AOFE of [HYWS08a] in
the size of arbitrator’s public key, group/user public key, partial signature and full signature.

|apk| |ask| |pk| |sk| |usk| |σP | |σF |
GOFE 5G 2Zp 1G 1Z∗

p 1G + 1Z∗
p 8G + 24Zp 9G + 30Zp

AOFE 10G 2Zp 1G 1Zp n/a 41G + |otvk|+ |σot| 42G + |otvk|+ |σot|

Figure 1: Comparison with AOFE [HYWS08a]

In Fig. 1, pk is the group public key in GOFE, and is the public key of a user in AOFE; n/a
means that it is not applicable; otvk is a one-time verification key and σot is a one-time signature. If
we instantiate the one-time signature scheme with Boneh-Boyen short signature [BB04], the size of
a partial signature of AOFE is 45G + 1Zp, and that of a full signature is 46G + 1Zp. As suggested
by Cheon [Che06], we use 220-bit prime p for 80-bit symmetric security level. If we use a pairing
with embedding degree 6, the partial signature size is 8 × 221 + 24 × 220 = 7048 bits, and the size
of a full signature is 9 × 221 + 30 × 220 = 8588 bits, while the size of a partial signature and that
of a full signature of AOFE are 10165 bits and 10386 bits, respectively.Though the (partial and full)
signing algorithms involve dozens of (multi-)exponentiation operations, their costs are still constant,
i.e. the number of total operations are independent of the number of the users in the signing group
and verifying group, thus appropriate for practical use. We note that one disadvantage of our work
when compared with [HYWS08a] is that our scheme is provably secure in the random oracle model
(as shown below), while their AOFE scheme is secure in the standard model.

Security. For the security, we have the following theorem. The proof is deferred to Appendix D.

Theorem 5.1. Under the DLN assumption and SDH assumption, our construction above is a secure
GOFE scheme in the multi-user setting and chosen-key model (Def. 2.7) under the random oracle
model.

6 Generic Construction of AOFE from GOFE

As mentioned before, the difference between AOFE and GOFE is that the former focuses on the
setting in which the two parties (except the arbitrator) involved in a transaction are individual users,
while the latter focuses on the setting in which each party (again, except the arbitrator) consists of a
group of users. Therefore, GOFE is backward compatible with AOFE. That is, we can use GOFE to
build an AOFE scheme in a very natural way. Let GOFE be a GOFE scheme, the generic construction
of AOFE, denoted AOFE, can be constructed as below:

• PMGen(1k): same as GOFE.PMGen.

• SetupTTP(PM): same as GOFE.SetupTTP.

• SetupUser(PM, apk): call GOFE.SetupGroup to obtain a key pair (gpk, gsk), and return (pk, sk) :=
(gpk, gsk).

15

• PSig(M, ski, {pki, pkj}, apk): randomly select an identity ID ∈ {0, 1}∗, generate the correspond-
ing user secret key by usk ← GOFE.Join(ski, ID), and return the partial signature σP on M
generated by σP ← GOFE.GPSig(M, usk, {pki, pkj}, apk).

• PVer(M,σP , {pki, pkj}, apk): return GOFE.GPVer(M,σP , {pki, pkj}, apk).

• Sig(M, ski, pki, pkj , apk): randomly select an identity ID ∈ {0, 1}∗, generate the corresponding
user secret key by usk← GOFE.Join(ski, ID), and return the full signature σF on M generated
by σF ← GOFE.GSig(M, usk, pki, pkj , apk).

• Ver(M,σF , pki, pkj , apk): return GOFE.GVer(M,σF , pki, pkj , apk).

• Res(M,σP , ask, {pki, pkj}): return GOFE.Res(M,σP , ask, {pki, pkj})

Theorem 6.1. If GOFE is a secure GOFE scheme (see Def. 2.7), AOFE constructed above is also a
secure AOFE scheme (see Def. 6 of [HYWS08a]).

The proof of the theorem above follows from the definitions of the security properties naturally,
so we omit it here. Using the concrete construction of GOFE presented in Sec. 5 to instantiate the
generic conversion above, we obtain an AOFE scheme that is even more efficient than the one proposed
in [HYWS08a] in terms of both the signature size and the key size, though the security of our scheme
is only proved in the random oracle model.

7 Conclusions and Future Work

In this paper we proposed the notion of group-oriented optimistic fair exchange (GOFE) and gave a
formal security model for it. We then proposed an efficient construction of GOFE, and proved it to
be secure under the given model with random oracles based on decision linear assumption and strong
Diffie-Hellman assumption.

Our definition and construction of GOFE does not support a mechanism to ‘open’ the signature,
i.e. to allow some entity in a group to find out the real signer of the group’s (full) signature. One
direction of our future work would be to construct a GOFE scheme which allows an entity in the group
to reveal the identity of the real signer, and in the meanwhile disallows anyone outside the group to
do so.

Since our construction of GOFE is provably secure in the random oracle model, and security in this
model does not imply the security when the random oracles are replaced with real-life hash functions,
another direction of our future work would be looking for a construction of GOFE that is provably
secure in the standard model, and is comparable in efficiency with the scheme proposed here.

References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In Advances in Cryptology - CRYPTO 2000, volume
1880 of Lecture Notes in Computer Science, pages 255–270. Springer, 2000.

[AdM03] Giuseppe Ateniese and Breno de Medeiros. Efficient group signatures without trapdoors. In
Advances in Cryptology - ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science,
pages 246–268. Springer, 2003.

[ASW97] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair exchange. In
ACM Conference on Computer and Communications Security, pages 7–17. ACM, 1997.

16

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital signatures
(extended abstract). In Advances in Cryptology - EUROCRYPT 98, volume 1403 of Lecture Notes
in Computer Science, pages 591–606. Springer, 1998.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances in Cryptology
- EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 56–73. Springer,
2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in Cryptology
- CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Advances in Cryptology - EUROCRYPT 2003, volume 2656 of
Lecture Notes in Computer Science, pages 416–432. Springer, 2003.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security, pages 62–73.
ACM, 1993.

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In ACM Con-
ference on Computer and Communications Security, pages 168–177. ACM, 2004.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In Advances
in Cryptology - EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
427–444. Springer, 2006.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signa-
tures. In Proceedings of Public Key Cryptography 2007, volume 4450 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2007.

[Che06] Jung Hee Cheon. Security analysis of the strong diffie-hellman problem. In Advances in Cryptology
- EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 1–11. Springer,
2006.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In Advances in Cryptology - EURO-
CRYPT 91, volume 547 of Lecture Notes in Computer Science, pages 257–265. Springer, 1991.

[Dam09] Ivan Damg̊ard. On Σ-protocols. Course on Cryptologic Protocol Theory, Aarhus University, 2009.
http://www.daimi.au.dk/~ivan/Sigma.pdf.

[DLY07] Yevgeniy Dodis, Pil Joong Lee, and Dae Hyun Yum. Optimistic fair exchange in a multi-user
setting. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Proceedings of Public Key Cryptography
2007, volume 4450 of Lecture Notes in Computer Science, pages 118–133. Springer, 2007. Also at
Cryptology ePrint Archive, Report 2007/182, http://eprint.iacr.org/.

[GJM99] Juan A. Garay, Markus Jakobsson, and Philip MacKenzie. Abuse-free optimistic contract signing.
In Advances in Cryptology - CRYPTO 99, volume 1666 of Lecture Notes in Computer Science,
pages 449–466. Springer, 1999.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru Kurosawa,
editor, Advances in Cryptology - ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer
Science, pages 164–180. Springer, 2007. Also at Cryptology ePrint Archive, Report 2007/186,
http://eprint.iacr.org/.

[HYWS08a] Qiong Huang, Guomin Yang, Duncan S. Wong, and Willy Susilo. Ambiguous optimistic fair
exchange. In Advances in Cryptology - ASIACRYPT 2008, volume 5350 of Lecture Notes in
Computer Science, pages 74–89. Springer, 2008.

[HYWS08b] Qiong Huang, Guomin Yang, Duncan S. Wong, and Willy Susilo. Efficient optimistic fair exchange
secure in the multi-user setting and chosen-key model without random oracles. In Proceedings of
Topics in Cryptology - CT-RSA 2008, volume 4964 of Lecture Notes in Computer Science, pages
106–120. Springer, 2008.

17

http://www.daimi.au.dk/~ivan/Sigma.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin,
editors, Proceedings of 3rd IACR Theory of Cryptography Conference, TCC 2006, volume 3876 of
Lecture Notes in Computer Science, pages 581–600. Springer, 2006.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signa-
tures. J. Cryptology, 13(3):361–396, 2000.

[Sch91] C.P. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174, 1991.

A Proof of Lemma 2.8 and Further Discussions

(Proof of Lemma 2.8). We modify the definition of user anonymity to a two-game version. In the first
game G0, the user secret key of user with identity ID0 is derived from gsk0, and is used to sign the
message M , while in the second game G1, the user secret key of user with identity ID1 is derived from
gsk0, and is used to sign M . Let Xi be the event that D outputs 1 in game Gi. It’s not hard to see
that this definition of or user anonymity is equivalent to the original one given in Sec. 2.1, and that the
advantage of D in breaking the user anonymity is AdvUA

D (k) = |Pr[b′ = b]− 1/2| = 1
2 |Pr[X1]−Pr[X0]|.

Note that the user secret keys of ID0, ID1 are derived from gsk0.
We then construct another game G′ which is the same as game G0, except that the user secret key

of identity ID0 is derived from gsk1. As the only difference between games G0 and G′ is in the group
secret key used to derive the user secret key of ID0, guaranteed by the group ambiguity, we have that

|Pr[X0]− Pr[X ′]| ≤ AdvGA
D (k)

On the other hand, it is also readily seen that the gap between the probabilities that D outputs b′ = 1
in G′ and G1 is bounded by the advantage of it in the game of group ambiguity. That is,

|Pr[X ′]− Pr[X1]| ≤ AdvGA
D (k)

Therefore, we obtain that

AdvUA
D (k) = |Pr[X0]− Pr[X1]|/2

≤ (|Pr[X0]− Pr[X ′]|+ |Pr[X ′]− Pr[X1]|)/2

≤ AdvGA
D (k)

This completes the proof.

B Security Proofs of the Zero-Knowledge Protocols

Lemma B.1. Protocol 2 is complete.

This lemma simply follows from the completeness and the simulatability of Protocol 1.

Lemma B.2. Protocol 2 is honest-verifier zero-knowledge under the Decision Linear Assumption.

Proof. The simulator begins by preparing values T1, T2, T3, S1, S2, S3 as in the proof of Lemma 4.2.
By the decision linear assumption, these values are indistinguishable from those in a real proof. The
rest of the simulation is independent of the choice of (T1, T2, T3, S1, S2, S3).

The simulator picks at randomly two challenge values c, c1−b ← Zp, and sets cb ← c − c1−b. It
then runs the simulator of Protocol 1 to produce R, s values for each of cb and c1−b. Let these values
be (Rb

1, · · · , Rb
12, c

b, sb
x, sb

α, sb
β , sb

α′ , sb
β′ , sb

1, · · · , sb
6) and (R1−b

1 , · · · , R1−b
12 , c1−b, s1−b

x , s1−b
α , s1−b

β , s1−b
α′ , s1−b

β′ ,

18

s1−b
1 , · · · , s1−b

6). Then it outputs ((R0
1, · · · , R0

12, c
0, s0

x, s0
α, s0

β, s0
α′ , s0

β′ , s0
1, · · · , s0

6), c, (R
1
1, · · · , R1

12, c
1, s1

x,
s1
α, s1

β , s1
α′ , s1

β′ , s1
1, · · · , s1

6)).
Guaranteed by Lemma 4.2, the output of the simulator is indistinguishable from a real transcript.

Lemma B.3. Protocol 2 has special soundness, i.e. there exists an extractor for Protocol 2 which can
extract an SDH tuple and the hidden bit b.

Proof. Suppose that an extractor can rewind a prover in Protocol 2 to the status just before the prover
is given a challenge c. At the first step of the protocol, the prover sends (T1, T2, T3, S1, S2, S3) and
((R0

1, · · · , R0
12), (R

1
1, · · · , R1

12)). Then, to challenge value c, the prover responds with (c0, s0
x, s0

α, s0
β, s0

α′ ,
s0
β′ , s0

1, · · · , s0
6, c

1, s1
x, s1

α, s1
β , s1

α′ , s1
β′ , s1

1, · · · , s1
6). To challenge value c′ 6= c, the prover responds with

(c′0, s′0x , s′0α , s′0β , s′0α′ , s′0β′ , s′01 , · · · , s′06 , c′1, s′1x , s′1α , s′1β , s′1α′ , s′1β′ , s′11 , · · · , s′16).
Since c′ 6= c, there must be a bit d ∈ {0, 1} such that cd 6= c′d. Then we consider (T1, T2, T3, S1, S2,

S3, R
d
1, · · · , Rd

12) and the two challenge-response tuples, i.e. (cd, sd
x, sd

α, sd
β, sd

α′ , sd
β′ , sd

1, · · · , sd
6) and

(Rd
1, · · · , Rd

12, c′d, s′dx , s′dα , s′dβ , s′dα′ , s′dβ′ , s′d1 , · · · , s′d6). From these two tuples, the extractor can work as
that in the proof of Lemma 4.3 to extract α̃, β̃, α̃′, β̃′, x̃ ∈ Zp, Ã ∈ G and Γd such that uα̃ = T1,
vβ̃ = T2, U α̃′ = S1, V β̃′ = S2, Ã = T3/hα̃+β̃, Γd = S3/H α̃′+β̃′ and e(Ã, Γdg

x̃) = e(g, g). The extractor
outputs (Ã, x̃) and the bit d.

For c1−d, we claim that c1−d must be equal to c′1−d. Otherwise, we can run the algorithm of the
extractor in the proof of Lemma 4.3 on input (c1−d, s1−d

x , s1−d
α , s1−d

β , s1−d
α′ , s1−d

β′ , s1−d
1 , · · · , s1−d

6) and
(R1−d

1 , · · · , R1−d
12 , c′1−d, s′1−d

x , s′1−d
α , s′1−d

β , s′1−d
α′ , s′1−d

β′ , s′1−d
1 , · · · , s′1−d

6) to extract ᾱ, β̄, ᾱ′, β̄′, x̄ ∈ Zp

and Ā ∈ G such that U ᾱ′ = S1, V β̄′ = S2, Γ1−d = S3/H ᾱ′+β̄′ , uᾱ = T1, vβ̄ = T2, Ā = T3/hᾱ+β̄ , and
e(Ā,Γ1−dg

x̄) = e(g, g).
Since U ᾱ′ = S1 = U α̃′ , we get that ᾱ′ = α̃′. Similarly, we have β̄′ = β̃′, ᾱ = α̃ and β̄ = β̃. Thus,

Γ1−d = S3/H ᾱ′+β̄′ = S3/H α̃′+β̃′ = Γd, and a contradiction is reached, as Γ0 and Γ1 are two distinct
public keys. Therefore, we obtain that c1−d = c′1−d, and thus the two tuples of the response values
(i.e. the s values) are also the same.

C Details of the Generation of (14)

Here is the generation of the signature of knowledge ϑ in details. Note that ϑ consists of two parts,
one showing that Γ is correctly encrypted, and the other showing that Γ is correctly decrypted. So
we present two separate 3-move (sub-)protocols for proving them respectively. Again, we assume that
Alice is the prover and Bob is the verifier.

First, suppose that Alice proves to Bob that (S1, S2, S3, S4, S5) is a correct encryption of Γ. She
actually proves that there exists some η1, η2 ∈ Zp such that

Uη1 = S1 ∧ V η2 = S2 ∧ Hη1+η2 = S3/Γ (15)

Alice randomly selects r̂1, r̂2 ∈ Zp and computes

R̂1 ← U r̂1 , R̂2 ← V r̂2 , R̂3 ← H r̂1+r̂2

and sends R̂1, R̂2, R̂3 to Bob, which returns a random challenge ĉ ∈ Zp. Alice then computes the
following response values ŝ1 ← r̂1 + ĉ ·η1, ŝ2 ← r̂2 + ĉ ·η2, and sends them back to Bob. After receiving
(ŝ1, ŝ2), Bob checks if

U ŝ1 ?= R̂1S
ĉ
1, V ŝ2 ?= R̂2S

ĉ
2, and H ŝ1+ŝ2 ?= R̂3 (S3/Γ)ĉ .

19

It accepts if all the equations hold, and rejects otherwise. It’s not hard to see that the protocol is an
honest-verifier zero-knowledge proof of knowledge for statement (15).

Now we suppose that Alice proves to Bob that (S1, S2, S3, S4, S5) can be decrypted to Γ. She
actually proves that there exists some η1, η2 ∈ Zp such that

Uη1 = H ∧ V η2 = H ∧ Sη1
1 Sη2

2 = S3/Γ (16)

Alice randomly selects r̂1, r̂2 ∈ Zp and computes

R̂1 ← U r̂1 , R̂2 ← V r̂2 , R̂3 ← S r̂1
1 S r̂2

2 ,

and sends (R̂1, R̂2, R̂3) to Bob, which returns a random challenge ĉ ∈ Zp. Alice then computes the
response values ŝ1 ← r̂1 + ĉ · η1 and ŝ2 ← r̂2 + ĉ · η2, and sends them back to Bob. After receiving
(ŝ1, ŝ2), Bob checks if

U ŝ1 ?= R̂1H
ĉ, V ŝ2 ?= R̂2H

ĉ, and S ŝ1
1 S ŝ2

2
?= R̂3 (S3/Γ)ĉ .

It accepts if all the equations hold, and rejects otherwise. It’s not hard to see that the protocol is also
an honest-verifier zero-knowledge proof of knowledge for statement (16).

The full protocol for statement (14) is a standard OR-extension of the two sub-protocols above. The
signer uses the randomness (α′, β′) as the witness in the first sub-protocol and simulates the second one;
while the arbitrator uses its secret key (ξ1, ξ2) as the witness in the second sub-protocol and simulates
the first one. The signature of knowledge ϑ is obtained by applying a variant of Fiat-Shamir heuristic
to the full protocol, using hash function H2. The signature is composed of (ĉ0, ŝ0

1, ŝ
0
2, ĉ

1, ŝ1
1, ŝ

1
2) ∈ Z6

p.
To verify the validity of ϑ, anyone checks

ĉ0 + ĉ1 ?= H2

(
M‖gpki‖gpkj‖σP ,

U ŝ0
1

S ĉ0
1

,
V ŝ0

2

S ĉ0
2

,
H ŝ0

1+ŝ0
2

(S3/Γ)ĉ0
,
U ŝ1

1

H ĉ1
,
V ŝ1

2

H ĉ1
,

S
ŝ1
1

1 S
ŝ1
2

2

(S3/Γ)ĉ1

)

D Proof of Theorem 5.1

Here we prove the following lemmas, proving the group ambiguity, security against signing groups,
security against verifying groups and security against the arbitrator, respectively. Theorem 5.1 then
follows from them:

Lemma D.1. If the DLN assumption (t, ε) holds in G, the proposed GOFE scheme is (t′, qH1 , qH2 , qH3,
qr, ε

′) group ambiguous in the random oracle model, where

t′ ≈ t and ε′ = 2ε + qH1/p.

Proof. We prove the theorem by a series of games. Let D be an adversary against group ambiguity.
Let Gi be the i-th game, and Xi be D’s advantage in game Gi. Game G0 is the original game defined
in Def. 2.2.

Game G1 is identical to G0, except that the SPK θ in the challenge partial signature σP is simulated
by controlling the output of the random oracle H1. By the simulatability of Protocol 2, we have that

|Pr[X1]− Pr[X0]| ≤ qH1/p

where the term qH1/p comes from the upper bound of the probability that the challenge value c we
choose collides with the outputs of the random oracle H1 when simulating θ in the challenge partial
signature.

20

The next game G2 differs from G1 in that S3 in the challenge partial signature is chosen at random
from G. Note that this change does not affect the simulation of θ. Thus by the DLN assumption, we
get that |Pr[X2]− Pr[X1]| ≤ ε.

Game G3 differs from G2 in that T3 in the challenge partial signature is also chosen at random
from G. Again, by the DLN assumption, we get that |Pr[X3]− Pr[X2]| ≤ ε.

Note that in this game, both (T1, T2, T3) and (S1, S2, S3, S4, S5) in the challenge partial signature
are encryptions of random elements in G, thus they do not reveal any information about the bit b.
Therefore, we have that Pr[X3] = 0. In a consequence, we obtain that

ε′ = Pr[X0] = |Pr[X3]− Pr[X0]|
≤ |Pr[X1]− Pr[X0]|+ |Pr[X2]− Pr[X1]|+ |Pr[X3]− Pr[X2]|
≤ 2ε + qH1/p

This completes the proof.

Lemma D.2. The proposed GOFE scheme is (t′, qH1 , qH2 , qH3 , qp, qr, ε
′) secure against signing groups

if it is (t, qH1, qH2 , qH3 , qp, ε) secure against the arbitrator, where

t′ ≈ t and ε′ ≤ (1− 1/p)ε + 1/p.

Proof. Consider the output of an adversary A, i.e. (M,σP , gpkA). Assume that σP is a valid partial
signature on M under the group public keys gpkA, gpkB and the arbitration key apk. The special
soundness (or extractability) of Protocol 2 implies that with probability at least 1 − 1/p, the (A, x)
and Γ embedded in (T1, T2, T3) and (S1, S2, S3, S4, S5) respectively satisfy that e(A,Γ · gx) = e(g, g)
and Γ is equal to either gpkA or gpkB. On the other side, guaranteed by the security against the
arbitrator (see Lemma D.4), with probability at least 1 − ε it holds that Γ 6= gpkB. Otherwise, we
obtain a forgery of group B’s signature on M . Therefore, the advantage of A in the game is bounded
as below:

ε′ ≤ 1− (1− 1/p) (1− ε) = (1− 1/p) ε + 1/p

This completes the proof.

Lemma D.3. If DLN assumption (t1, ε1) holds in G and the proposed GOFE scheme is (t2, qH1 , qH2 , qH3,
qp, ε2) secure against the arbitrator, the proposed GOFE scheme is then (t′, q′H1

, q′H2
, q′H3

, qp, qr, ε
′) secure

against verifying groups, where

t′ ≈ t1, q′H1
≤ qH1 + 1, q′H2

≤ qH2 + qr, q′H3
≤ qH3 + qr, and ε′ ≤ ε2 + 6qpε1.

Proof. Let B be an adversary against the security against verifying groups. Let the output of B be
(M, gpkB, σF). Let G0 be the original game with B invoked. We define a new game G1 which is the
same as G0 except that if B succeeds in outputting (M, gpkB, σF) without asking OGPSig for a partial
signature on M with respect to gpkA, gpkB, the game is aborted. Denote this event by F. Since G1

is the same as G0 on condition that F does not occur, by the security against the arbitrator, it holds
that

|Pr[X1]− Pr[X0]| ≤ Pr[F] ≤ ε2

Next we show that the advantage of B in game G1 is upper bounded as Pr[X1] ≤ 6qp · ε1.
Given the adversary B, we use it to construct another algorithm B′ for breaking the decision linear

assumption. B′ is given a random instance of decision linear problem, i.e. (u, v, h, ua, vb,Z) ∈ G6 for
some unknown a, b ∈ Zp. It randomly selects g, u, v, h ∈ G, picks at random γA ∈ Zp, and computes
gpkA := ΓA ← gγA . It randomly selects ρ1, ρ2, χ

∗ ∈ Zp, and computes K ← h−χ∗
uρ1 , L← h−χ∗

vρ2 . B′

21

also randomly selects an index i ← {1, 2, · · · , qp} and sets apk := (U, V, H, K, L) ← (u, v, h,K, L). It
keeps gskA := γA secret, and invokes B on input (apk, gpkA). Thanks to the random choices of ρ1, ρ2,
the input to B is perfectly identical to that in a real attack. B′ then starts to simulate oracles for the
adversary.

• OH1 : Given an input in {0, 1}∗ × G13 × GT × G11 × GT , B′ randomly selects c ← Zp, returns c
and stores the input and c in a hash table HT1 for consistency, i.e. if the input was ever queried
before, the oracle returns the answer stored in the table.

• OH2 : Given an input in {0, 1}∗ ×G10 × Z24
p ×G6, B′ randomly selects ĉ← Zp, returns ĉ back to

B and stores the input and ĉ into a table HT2 for consistency.

• OH3 : Given the j-th distinct input (S1j , S2j ,Γ0j ,Γ1j) ∈ G4, B′ randomly selects χ ← Zp. In
the unlikely event that χ = χ∗, B′ aborts and outputs a random bit. This event occurs with
probability at most qH3/p. It stores the input and χ into a hash table HT3, and returns χ to B.

• OGPSig: Let (Mj , IDj , gpkj) be the j-th (distinct) query. If j 6= i, the oracle uses gskA to produce
a partial signature on Mj with respect to (gpkA, gpkj) as described in the scheme. Otherwise (i.e.
j = i), B′ uses gskA to derive the user secret key of identity IDi, i.e. (Ai, xi)← Join(gskA, IDi),
randomly selects αi, βi ∈ Zp, computes (T1i, T2i, T3i) ← (uαi , vβi , Ai · hαi+βi). It then sets
(S1i, S2i, S3i, S4i, S5i) := (ua, vb,ΓA · Z, (ua)ρ1 , (vb)ρ2). B′ also sets H3(S1i, S2i, gpkA, gpki) := χ∗

by storing ((S1i, S2i, gpkA, gpki), χ
∗) into table HT4. Note that

(ua)ρ1 =
(
hχ∗ · h−χ∗

uρ1

)a
=
(
hχ∗ ·K

)a
, and (vb)ρ2 =

(
hχ∗ · h−χ∗

vρ2

)b
=
(
hχ∗ · L

)b
.

It is unlikely that B ever queried the oracle OH3 on input (S1i, S2i, gpkA, gpki) due to the random
choices of ua and vb. This event happens with probability at most 1/p2, which is negligible.

In either case, B′ then generates the signature of knowledge θj by means of the simulator of
Protocol 2, i.e. patching the output of the random oracle OH1 . In case of any collision of the
output, B′ aborts and outputs with a random bit. This case happens with probability upper
bounded by (qH1qp + q2

p)/p, which is negligible if qp < qH1 � p = |G|. The oracle returns
(T1j , T2j , T3j , S1j , S2j , S3j , S4j , S5j , θj) back to B.

If Z = ha+b, the view of B is identical to that in a real attack except a difference bounded
by (qH1qp + q2

p)/p thanks to the simulation of θi. In the other case, i.e. Z is randomly chosen
from G, (S1i, S2i, S3i, S4i, S5i) is an encryption of a random element of G. Since the signature of
knowledge θi is simulated, oracle OGPSig’s answer to the i-th query does not provide B any help
in producing the final output.

• ORes: Given a message M , a partial signature σP = (T1, T2, T3, S1, S2, S3, S4, S5, θ) and two
group public keys gpk0j , gpk1j , B′ makes a query on input (S1, S2, gpk0j , gpk1j) to OH3 , and
obtains χ. If GPVer(M,σP , {gpk0j , gpk1j}, apk) outputs 0, or e(S1, h

χK) 6= e(u, S4) or e(S2, h
χL)

6= e(v, S5), B′ returns ⊥. If χ = χ∗, B′ aborts and outputs a random bit; otherwise, it computes
Γ← S3 · ((Sρ1

1 Sρ2
2)/(S4S5))

1/(χ−χ∗). The decryption is correctly done because

Sρ1
1 · S

ρ2
2

S4 · S5
=

(uα′
)ρ1 · (vβ′

)ρ1

(hχK)α′ · (hχL)β′ =
(hχ∗

K)α′ · (hχ∗
L)β′

(hχK)α′ · (hχL)β′ =
(

1
hα′+β′

)χ−χ∗

If Γ 6= gpk0j and Γ 6= gpk1j , B′ returns ⊥; otherwise, it simulates ϑ by invoking the simulator of
(14) by patching the output of the random oracle OH2 . There will be a collsion with probability
at most (qH2qr + q2

r)/p. The oracle returns (σP ,Γ, ϑ) to B.

22

Finally, B outputs (M,σF , gpkB) where σF = (σP , gpkA, ϑ) = ((T1, T2, T3, S1, S2, S3, S4, S5, θ),
gpkA, ϑ). If (M, gpkB) 6= (Mi, gpki), B′ outputs a random bit. If σF does not pass the GVer algorithm,
B′ outputs 1; otherwise, it outputs 0.

(Probability Analysis). According to the description of B′ above we know that no matter whether
Z is equal to ha+b or not, B′ aborts and outputs a random bit with the same probability. Thus, we
only concentrate on the case that B′ does not abort below.

According to the game specification of G1, B queried (M, ·, gpkB) for a partial signature. The ran-
dom guess of the index i of this query is correct with probability 1/qp. Let Guess denote the event that
the guess of i is correct. Note that, since B is forbidden from issuing queries like (M, ·, {gpkA, gpkB})
to ORes, the event that χ = χ∗ does not occur on condition that there is no collision among the outputs
of OH3 .

Let Abort denote the event that B′ aborts in the attack above. Then we have that the probability
that Abort does not occur is lower bounded by

Pr[¬Abort] ≥ 1
qp

(
1−

qH1qp + q2
p

p

)(
1− qH3

p

)(
1− 1

p2

)(
1− qH2qr + q2

r

p

)
>

1
2qp

Now we assume that B′ does not abort. If Z = ha+b, B’s view is identical with that in a real attack
and thus B succeeds with probability Pr[X1]; if Z is randomly selected from G, (S1i, S2i, S3i, S4i, S5i)
is an encryption of a random element of G. Thanks to the extractability of (the 3-move version of)
the arbitrator’s signature of knowledge, it turns out that the probability that ϑ is a valid signature
showing that (S1i, S2i, S3i, S4i, S5i) can be decrypted to ΓA, is upper bounded by 1/p.

Let the bit d = 0 if Z = ha+b and d = 1 if Z← G, and let d′ be the bit that B′ outputs. We have
that

ε1 ≥ AdvDLN
B′ (k) =

∣∣∣∣Pr[d′ = d]− 1
2

∣∣∣∣
=
∣∣∣∣Pr[¬Abort]

[
Pr[X1]

(
1− 1

p

)
+ (1− Pr[X1])

1
2

]
+ Pr[Abort]

1
2
− 1

2

∣∣∣∣
=
∣∣∣∣Pr[¬Abort]Pr[X1]

(
1
2
− 1

p

)∣∣∣∣
≥ 1

2qp

(
1
2
− 1

p

)
Pr[X1]

>
1

6qp
Pr[X1]

Combining the results above, we obtain that

ε′ = Pr[X0] ≤ |Pr[X0]− Pr[X1]|+ Pr[X1]
≤ Pr[F] + Pr[X1]
< ε2 + 6qpε1

This completes the proof.

Lemma D.4. If DLN assumption (t1, ε1) holds and 1-SDH assumption (t2, ε2) holds in G, the proposed
GOFE scheme is (t′, qH1 , qH2 , qH3 , qp, ε

′) secure against the arbitrator in the random oracle model, where

t′ ≈ 1
2
t2 and ε′ ≤

qH1qp + q2
p + 1

p
+ qpε1 +

(
16qH1ε2
1− 2/p

)1/2

.

23

Proof. We prove it by a series of games. Let C be a malicious arbitrator. The first game G0 is the
original game defined in Def. 2.6. Game G1 is the same as G0 except that the signature of knowledge
θ in the answer to each partial signing query is simulated by means of the simulator of Protocol 2,
i.e. patching the output of the random oracle H1. In case of any collision of the output of H1 while
generating θ, the game aborts. The difference between the advantages of C in G0 and G1 is then upper
bounded by

|Pr[X0]− Pr[X1]| ≤ (qH1qp + q2
p)/p

For 1 ≤ i ≤ qp, we define game Gi+1 the same as Gi except that in game Gi+1, to answer the i-th
partial signing query, T3 is chosen at random from G and the SPK θ is still generated by means of the
simulator of Lemma B.2. Obviously, by the decision linear assumption, it holds that

|Pr[Xi]− Pr[Xi+1]| ≤ AdvDLN(k) ≤ ε1

Now we consider game Gqp+1, in which T3’s in the answers to all partial signing queries are chosen
at random and θ’s are simulated by programming the random oracle H1. Next we show the upper
bound of the advantage of C in game Gqp+1.

We use C to construct an algorithm F against 1-SDH assumption. Given g, gγ for some unknown
γ ∈ Z∗

p as input, F randomly chooses u, v, h and invokes C on input (g, u, v, h) which then returns
(U, V,H). F gives gpkA := ΓA ← gγ to C, and then begins to simulate the oracles for C. The three
random oracles are simulated naturally, i.e. on input a distinct query from its respective domain,
a random element is selected from Zp and returned to C. According to the description of game
Gqp+1, to answer each partial signature query, F chooses T1, T2, T3 at random from G, generates
(S1, S2, S3, S4, S5) according to the protocol, and produces θ by means of the simulator of Protocol 2.

Finally C outputs (M, gpkB, σF) which passes the verification algorithm GVer, where σF = (σP ,ΓA,
ϑ) = ((T1, T2, T3, S1, S2, S3, S4, S5, θ),ΓA, ϑ). We parse θ as (c0, s0

x, s0
α, s0

β, s0
α′ , s0

β′ , s0
1, · · · , s0

6, c1, s1
x, s1

α,
s1
β, s1

α′ , s1
β′ , s1

1, · · · , s1
6). The rest of the proof follows the methodology and notation of the Forking

Lemma of [PS00].
Let c := c0 + c1, σ0 := (T1, T2, T3, S1, S2, S3, S4, S5, R1, · · · , R12), the values input, together with

message M and group public keys gpkA, gpkB, to the random oracle H1, and from which c is derived.
Let σ1 := (c0, s0

x, s0
α, s0

β , s0
α′ , s0

β′ , s0
1, · · · , s0

6, s
1
x, s1

α, s1
β, s1

α′ , s1
β′ , s1

1, · · · , s1
6). Then the output of C can be

abbreviated as (M , gpkB, ((σ0, c, σ1),ΓA, ϑ)). Note that those values omitted from the signature, i.e.
the R’s, can be recovered as in the verification algorithm (see Sec. 4).

A run of C is completely described by randomness string ω used by the adversary C and ran-
domness h used in simulating the random oracles. Let S be the set of pairs of (ω,h) such that
C outputs successfully the forgery (M, gpkB, ((σ0, c, σ1),ΓA, ϑ)) and C queries the random oracles
H1 on (M‖gpkA‖gpkB, σ0). In this case we denote by Ind(ω,h) the index of h at which C queried
(M‖gpkA‖gpkB, σ0). We define ν := Pr[S]−1/p, where the 1/p term accounts for the possibility that C
guessed the hash value of (M‖gpkA‖gpkB, σ0) without the hash oracle H1’s help. For each 1 ≤ i ≤ qH1 ,
let Si be the set of pairs of (ω,h) as above and such that Ind(ω,h) = i. Let I be the set of auspicious
indices i such that Pr[Si | S] ≥ 1/(2qH1). Then as shown in [PS00] we have Pr[Ind(ω,h) ∈ I | S] ≥ 1/2.

Let h|ba be the restriction of h to its elements at indices a, a+1, · · · , b. For each i ∈ I, we consider
the Splitting Lemma [PS00] with rows X = (ω,h|i−1

1) and columns Y = (h|qH1i). Clearly Prx,y[(x, y) ∈
Si] ≥ ν/(2qH1). Let Ωi be the set of those rows such that ∀(x, y) ∈ Ωi : Pry′ [(x, y′) ∈ Si] ≥ ν/(4qH1).
Then by the Splitting Lemma, Pr[Ωi | Si] ≥ 1/2. A simple argument (similar to Lemma 3 in [PS00])
then shows that Pr[∃i ∈ I : Ωi ∩ Si | S] ≥ 1/4. Thus, with probability ν/4, C succeeds and outputs
(M, gpkB, ((σ0, c, σ1),ΓA, ϑ)) such that (M,σ0, c, σ1) that derives from some (x, y) ∈ Ωi for some i ∈ I,
i.e., an execution (ω,h) such that Prh′ [(ω,h′) ∈ Si | h′|i−1

1 = h|i−1
1] ≥ ν/(4qH1).

24

Now if F rewinds the adversary C to the i-th query and proceed with another oracle vector h′ that
differs from h from the i-th entry on, we obtain that with probability at least ν/(4qH1) C succeeds in
outputting another forgery σ′F = (M, gpkB, ((σ0, c

′, σ′1),ΓA, ϑ′) with (M‖gpkA‖gpkB, σ0) still queried
at C’s i-th hash query to H1. The success of C indicates that it did not ask F for a partial signature on
M with respect to gpkB. By using the extractor of Protocol 2 (Lemma B.3) we obtain from (σ0, c, σ1)
and (σ0, c

′, σ′1) an SDH tuple (A, x) and the group public key Γ such that e(A, gx · Γ) = e(g, g)
and either Γ = gpkA or Γ = gpkB, along with randomness (α, β, α′, β′) used for the generation of
(T1, T2, T3, S1, S2, S3, S4, S5). Note that in the simulation above oracles H2 and H3 are simulated in a
natural way, namely, on input a distinct query, the oracles return a random element selected from Zp.

We then look at the signature of knowledge in the full signature σF , i.e. ϑ. The extractability of (the
three-move version of) the signature of knowledge (see Appendix C) implies that the probability that
the group public key hidden in (S1, S2, S3, S4, S5) is not the one claimed in the signature of knowledge
ϑ, is at most 2/p. Therefore, with probability at least 1−2/p we have that Γ = gpkA(= gγ). Therefore,
the pair (A, x) we obtained satisfies that e(A, gγgx) = e(g, g), which breaks the 1-SDH assumption.

Put everything above together, we have that the probability that F solves the 1-SDH problem is
as below:

ε2 ≥ Adv1-SDH(k) ≥ ν

4
· ν

4qH1

(
1− 2

p

)
=

1
16qH1

(
Pr[S]− 1

p

)2(
1− 2

p

)

=⇒ Pr[Xqp+1] = Pr[S] ≤

√
16qH1ε2
1− 2/p

+
1
p

Combining all the results above, we then obtain that

AdvSAA
C (k) = Pr[X0]

≤ |Pr[X1]− Pr[X0]|+ |Pr[X2]− Pr[X1]|+ · · ·+ |Pr[Xqp+1]− Pr[Xqp]|+ Pr[Xqp+1]

≤
qH1qp + q2

p

p
+ qpε1 +

(
16qH1ε2
1− 2/p

)1/2

+
1
p

This completes the proof of Lemma D.4.

25

	Introduction
	Group-Oriented Optimistic Fair Exchange
	Security Properties
	Relations Among The Properties

	Mathematical Background
	A Zero-Knowledge Protocol for A Variant of SDH Problem
	The Basic Zero-Knowledge Protocol
	Signature of Knowledge for Double-SDH

	The Group-oriented OFE scheme
	Generic Construction of AOFE from GOFE
	Conclusions and Future Work
	Proof of Lemma ?? and Further Discussions
	Security Proofs of the Zero-Knowledge Protocols
	Details of the Generation of (??)
	Proof of Theorem ??

