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Introduction

Recent studies have addressed that heat induces sig-
nal transduction pathways for apoptosis such as p53-
centered1) and c-Jun N-terminal kinase (JNK)-centered 
signal transduction pathways2,3).  However, heat simulta-
neously activates signal transduction pathways for anti-
apoptosis and/or cellular proliferation.  Key signaling 
factors, such as Akt, p38, extracellular signal-regulated 
kinase (ERK) and heat shock protein (HSP), play impor-
tant roles in anti-apoptosis/cellular proliferation pathway.  
Such signaling factors are negative for hyperthermic 
cancer therapy.  Therefore, targeted inhibition of the 
signaling factors is an attractive therapeutic objective for 
the development of potent hyperthermic cancer therapies 
(Fig. 1).  We previously summarized several inhibitors 
of the signaling factors4).  In this review we newly report 
several inhibitors of the signaling factors.  

1. Anti-apoptosis signal transduction induced 
by heat and inhibitors of signaling factors

1-1. Akt pathway 
  A serine/threonine kinase, Akt, plays important roles 

in anti-apoptotic/cell survival responses5-7).  The activity 
of Akt is generally high in cancer cells, because ampli-
fication of the Akt gene is frequently observed in various 
types of cancer cells.  Phosphatase and tensin homologue 

deleted on chromosome 10 (PTEN), which downregu-
lates Akt activity, has been reported to be defective in 
various types of cancer cells.  These abnormalities of 
Akt have been considered to be closely related to tumori-
genesis.  Therefore, Akt is now becoming a promising 
and attractive molecular target for enhancing apoptosis8) 
and cancer therapy9).

Akt is activated by heat through phosphatidylinositol-
3-kinase (PI3-K) and the 3-phosphoinositide-dependent 
kinase-1 (PDK1)-mediated phosphorylation pathway10).  
The activity of Akt is maintained by HSP90 which pro-
tects Akt against dephosphorylation via protein phos-
phatase 2A (PP2A1)11).  Activated Akt interferes with 
the heat-induced apoptosis pathway by phosphorylating 
caspase-912) and Bcl2-antagonist of cell death protein 
(Bad)13,14).  Akt also blocks the translocation of orphan 
nuclear receptor HMR (Nur77) and Forkhead family 
proteins into the nucleus, resulting in the upregula-
tion of Fas ligand and TNFRI-associated death domain 
(TRADD) protein expression as a result of phosphory-
lation of these transcription factors12,13).  Furthermore, 
Akt phosphorylates nuclear factor κB (NF-κB).  The 
phosphorylated NF-κB transcriptinally regulates the 
synthesis of proteins involved in cell survival14) and thus 
it result in suppression of the efficiency of the cancer 
therapy15). The X-chromosome-linked inhibitor of apop-
tosis protein (XIAP) is one of the proteins regulated 
by NF-κB and is known to be an inhibitory factor for 
caspase-3.  XIAP is involved in cell survival and plays 
a pivotal role in cancer progression16).  High expression 
levels of XIAP are clinically associated with poor sur-
vival prognosis in patients17). Considering these facts, 
down-regulation of XIAP expression could be advanta-
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geous in cancer therapy.  Heat-induced Akt activation is 
observed in vivo as well18).  PI3-K activity increases after 
hyperthermia in the liver of rat via a tyrosine kinase-
dependent mechanism19).  Glycogen synthase kinase-3 
(GSK-3), which is a possible downstream factor of PI3-K 
through Akt, undergoes hyperphosphorylation.  Thus, in 
vivo heat-induced activation of the Akt pathway plays an 
important role in the protection against apoptosis19).  Akt 
plays a central role in multiple pathways for the inhibi-
tion of heat-induced apoptosis, and thus one expects that 
interference with the Akt pathway by inhibitors would 
enhance heat-induced apoptosis.

1-2. Inhibitors of Akt pathway
1-2-1. PI3-K inhibitors

Wortmannin inhibits the activity of DNA-PK at 
lower doses and ATM at higher doses. As DNA-PK 
and ATM contribute to the DNA repair machinery, it 
has been reported that wortmannin enhances the radio-
sensitivity of cancer cells20,21).  Another report showed 
that wortmannin enhances the radiosensitivity of ataxia 
telangiectasia cells, but it does not enhance the radio-
sensitivity of DNA-PK-deficient cells22).  Therefore, it 
is possible that wortmannin sensitizes cells to radiation 
through inhibition of the DNA-PK-mediated DNA repair.  
Enhancement of heat-induced apoptosis by wortman-
nin has also been reported in a human breast cancer cell 
line23). 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-
one (LY294002) sensitizes not only radiosensitivity but 
also heat-sensitivity24).  The mechanism of the inhibition 
of heat-induced PI3-K activation seems to be different 
between wortmannin and LY294002.  LY294002 p53-
independently sensitizes cells to heat via the inhibition 
of heat-induced accumulations of survivin, hsp27 and 
hsp7024).  Radio-sensitization with LY294002 has been 

reported by in vitro20) and in vivo25) experiments but heat 
sensitization with LY294002 has not been reported.

1-2-2. PDK1 inhibitor 
7-hydroxystaurosporine (UCN-01) has been used 

as a PDK1-inhibitory drug in clinical trials.  Unlike 
geldanamycin, UCN-01 induces Akt inactivation by 
inhibiting PDK1 directly, resulting in the suppression 
of the survival signals and the induction of apoptosis26).  
Staurosporine has also been reported to suppress PDK1 
directly26).

1-2-3. NF-κB inhibitor
Dicoumarol, a coumarin derivative, was reported to 

potentiate TNF-induced apoptosis in HeLa cells, prob-
ably by blocking the anti-apoptotic effect of NF-κB and 
is currently used clinically27).  Since NF-κB is a target 
of Akt, dicoumarol is a potential hyperthermic cancer 
therapeutic inhibitor of NF-κB.

1-2-4. XIAP inhibitors
Enhancement of heat sensitivity of cancer cells by 

XIAP inhibitors has not been reported yet.  However, 
enhancement of TRAIL-induced apoptosis, chemo-
sensitivity or radiation sensitivity has been currently 
reported28-31).  An XIAP inhibitor, embelin identified pri-
marily from the Embelia ribes plant, enhances TRAIL-
induced apoptosis via expression of XIAP in pancreatic 
cancer cells28).  Embelin also blocks NF-κB signaling 
pathway leading to suppression of NF-κB-regulated anti-
apoptosis29).  Small interference RNA targeting XIAP 
(XIAP-siRNA) combined with paclitaxel, cisplatin, 
fluorouracil, and etoposide enhances chemosensitivity in 
esophageal carcinoma cells30).  We recently showed that 
XIAP-siRNA enhances radiation sensitivity of lung can-
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cer cells31).  

1-3. HSP inhibitors
HSP27, 72 and 90 play inhibitory roles in varied sig-

nal transduction pathways for apoptosis.  One of these 
roles is to interfere with the formation of the apopto-
some, which consists of apoptosis protease-activating 
factor-1 (Apaf-1), caspase-9 and cytochrome c.  HSP27, 
72 and 90 interfere with apoptosome formation in dif-
ferent manners and consequently suppress the activation 
of caspase-3.  HSP27 binds to cytochrome c released 
from the mitochondrion and blocks the binding of cyto-
chrome c to Apaf-132).  Another anti-apoptotic function 
of HSP27 is to regulate the activity of Akt33).  HSP72 and 
HSP90 bind to Apaf-1 and depress the activation of cas-
pase-934-36).  HSP72 suppresses heat-induced apoptosis by 
inactivating JNK2,37-39) or by antagonizing apoptosis-in-
ducing factor (AIF)40).  HSP90 is a molecular chaperone 
whose association is required for the stability and func-
tion of signaling proteins that promote the growth and/or 
survival of cancer cells.  Client proteins associated with 
HSP90 include Akt, breakpoint cluster region (Bcr)-
Ableson tyrosine kinase (Abl), Raf-1, ErbB1/epidermal 
growth factor receptor (EGFR), ErbB2/Her2, mutated 
p53 and hypoxia-inducible factor 1α (HIF-1α)41). 

HSP90 inhibitors such as geldanamycin and radicicol 
are attractive anti-cancer agents42).  Geldanamycin and 
radicicol indirectly down-regulate the activity of Akt 
through interfering with the association between HSP90 
and PDK1.  After the dissociation of PDK1 with HSP90, 
the PDK1 is proteasome-dependently degraded and the 
degradation of PDK1 results in elimination of the bind-
ing of PDK1 to Akt.  The kinase domain of PDK1 is 
essential for complex formation with HSP90, and the in-
hibitors interact with this domain43).  Geldanamycin and 
radicicol also alter the complex formed between HSP90 
and Raf-1.  This leads to a decrease in the Raf-1 level and 
consequently to disruption of the Raf-1-Map kinase-ERK 
kinase (MEK)-MAPK signaling pathway44, 45).

17-allylamino-17-demethoxygeldanamycin (17-AAG) 
is a geldanamycin analog that is currently being used in 
Phase I clinical trials in the USA and UK46).  17-AAG 
also affects the Akt-mediated signal transduction path-
way involved in tumor cell proliferation and survival.  
Early results from phase I trials have demonstrated that 
17-AAG has an inhibitory function similar to that of gel-
danamycin but shows a significantly improved toxicity 
profile.

A coumarin antibiotic, Novobiocin, interacts with an 
ATP-binding domain in the carboxyl terminus of HSP90 
and suppresses the chaperone function of HSP9047).  
Novobiocin is already being used in cancer therapy48).

Quercetin and tamoxifen reduce heat shock protein-70 
expression at both protein and mRNA levels and syner-
gize with hyperthermia in reducing the clonogenic activ-

ity of melanoma and in inducing apoptotic cell death49). 
Quercetin and tamoxifen can be usefully combined with 
hyperthermia in recurrent and/or metastatic melanoma.

Specific inhibition of Hsp27 expression using an an-
tisense oliogodeoxynucleotide increased the irinotecan 
sensitivity. Lower expression of Hsp27 kept caspase-3 ac-
tivity in colorectal cancer cells50). From this, some kinds 
of an antisense oliogodeoxynucleotide against hsps could 
be candidates for heat sensitization of cancer cells. 

A newly synthesized chem ica l ,  N-for myl-3, 
4-methylenedioxy-γ-butyrolactam (KNK437) sup-
presses the induction of HSPs at the mRNA level.  Since 
KNK437 does not affect the constitutive amounts of 
HSPs, the inhibitory mechanism of this compound 
seems to be due to inhibition of the activation of heat 
shock factor 1 (HSF1) or the binding of HSF1 to heat 
shock element (HSE).  Based on this manner of inhibi-
tion, KNK437 is regarded as a potentially useful agent 
to suppress the heat tolerance of cancer cells which is 
frequently observed as a negative effect of fractionated 
hyperthermic cancer therapy51-53).

2. Cellular proliferation signal transduction 
induced by heat and inhibitors of signaling 

factors 

2-1. �Mitogen-activated protein kinase (MAPK) cas-
cade

The mitogen-activated protein kinase (MAPK) 
pathway is a key signal transduction cascade that links 
diverse extracellular stimuli to proliferation, differentia-
tion, and survival54).  Heat activates the MAPK cascade 
(ceramide to Ras/Raf/MEK/ERKs)55-58) called the clas-
sical MAPK cascade.  This cascade induces activation 
of intracellular substrates including transcription factors, 
such as Ets-like protein 1 (Elk-1), c-Jun, and activating 
transcription factor 2 (ATF2), and other protein kinas-
es59). Inhibition of the activity of ERK1 by overexpres-
sion of a dominant-negative ERK1 enhanced the heat 
sensitivity of cells.  In contrast, cells stably overexpress-
ing the wild-type ERK1 developed resistance to killing 
by heat55).  Ceramide activates Raf-1 via metabolism 
to sphingomyelin after heat shock.  The activation of 
MAPKs by heat is cell type-specific, because myeloid 
leukemic cells such as HL-60, U937 and K562 cells have 
no ability to activate Raf-1, while NIH3T3 fibroblasts 
do possess such ability55).  The activation of the MAPKs 
cascade is lacking in some types of cancer cells.  MAP 
kinase kinases (termed MEK1 and MEK2) involved 
in downstream signaling of Raf-1 activate ERK1/2 by 
phosphorylation of both threonine and tyrosine residues.  
Heat shock induces ERK1/2 activation in rat brain19).  
Inhibition of the MAPKs cascade, in which a key target 
kinase is MEK, is expected to provide sensitization of 
cancer cells to hyperthermic cancer therapy.
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2-2. Stress-activated MAPK, p38
p38, called stress-activated MAPK, has been charac-

terized based on its activation in response to extracel-
lular stress stimuli, including heat stress in vitro60,61) 
and in vivo19,20,62).  p38 is involved in a phosphorylation 
cascade (ceramide to MAP kinase-ERK kinase kinases 
(MEKKs)/apoptosis signal-regulating kinase1 (ASK1)/
MAP kinase kinases (MKKs)/p38) that is distinct from 
the above-described Ras/Raf/MEK/ERKs cascade63), 
and it is involved in the regulation of cellular prolifera-
tion, differentiation and transformation64,65).  In vivo 
experimental results have shown that MKK3 and/or 
MKK6 are activated downstream to MEKKs in response 
to hyperthermia in rats20).  These reports taken together 
suggest that selective inhibition of p38 is also useful 
for sensitization to heat sensitivity.  However, there are 
some reports showing that activation of p38 seems to be 
involved in the induction of apoptosis in some cell types 
upon various stress stimuli66-68).  This discrepancy in the 
functions of p38 may result from the different genetic 
backgrounds among cancer cells. 

2-3. Inhibitors of MAPK pathway
2-(2’-amino-3’-methoxyphenyl)-oxanaphthalen-4-

one (PD98059) is an inhibitor that selectively depresses 
the activity of MEK.  Inhibition of MEK by PD98059 
prevents subsequent phosphorylation of ERK substrates 
that contribute to cell growth and survival69,70).  PD98059 
abrogates the clonogenicity of leukemic cells but has 
minimal effects on normal hematopoietic progenitors71).  
The suppressive function of PD98059 has been reported 
to be effective in transplanted tissue72) or solid tumors73).  
PD98059 or U0126 enhances paclitaxel-induced apop-
tosis in solid tumor cell lines73).  We have found that 
PD98059 sensitizes non-small lung cancer cells to heat 
via the inhibition of heat-induced accumulation of hsp27 
and hsp70 and enhanced apoptosis through caspase-3 ac-
tivation (Ohnishi et al., unpublished data).  

4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-
pyridyl)1H-imidazole (SB203580) suppresses p38 activa-
tion selectively and consequently interferes with signal-
ing induced by transforming growth factor-β(TGF-β)74).  
Inhibition of p38 by SB203580 induces enhanced heat 
sensitivity of lung cancer cells (Ohnishi et al., unpub-
lished data) and suppresses invasion of cancers in which 
p38 is activated75).  In contrast to the positive function 
of SB203580, a negative function that SB203580 leads 
cells to become resistant to cisplatin has been reported76). 
RWJ-6765777) and FR16765378) are also inhibitors of p38. 
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