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Abstract The Hengduan Mountains (HM) and adjacent regions have been suggested as the important refugia of
the temperate plants during the glacial stages. However, it remains unknown how the HM endemic species can
respond to the climatic oscillations. In this study, we examined the chloroplast trnL-trnF and rps16 sequence
variation of Primula secundiflora, a relatively common alpine perennial endemic to this region. Sequence data
were obtained from 109 individuals of 11 populations covering the entire distribution range of the species. A total
of 15 haplotypes were recovered and only one of them is commonly shared by three populations while the others
are respectively fixed in the single population. The total diversity (H1=0.966) is high while the within-population
diversity (Hs=0.178) is low. Despite the high uniformity of the intraspecific morphology, an analysis of molecular
variance (AMOVA) revealed a high level of genetic differentiation (97.65%) among populations. The higher Ngt
(0.982) than Gsr (0.816) (P<0.05) suggested a distinctly phylogeographical pattern. Phylogenetic analyses of
haplotypes identified four major clusters of the recovered haplotypes: three clades in the north, and the other one
in the south. The isolated distribution of clades suggested multiple refugia of this species during the glacial stages.
We failed to detect the interglacial or postglacial range expansion of this species as revealed for the other temper-
ate plants. However, the low intra-population diversity suggested that most of the populations should have ex-
perienced the in situ shrink-expansion cycles during the climatic oscillations. This inference was further supported
by the nested clade analysis, which indicated that restricted gene flow with isolation by distance and allopatric
fragmentation were likely the major processes that shaped the present-day spatial distribution of haplotypes in this
species. Such a special phylogeographic pattern may have resulted from a combination of both climatic oscillation
and complex topology of HM.
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Hengduan Mountains (HM) in the southeast
Qinghai-Tibetan Plateau (QTP) comprise the major
component of the south-central “biodiversity hotspot™:
one of the 25 areas recognized globally as featuring
exceptional concentrations of endemic species (Myers
et al., 2000). This region consists of a series of spec-
tacular north-south trending ridges alternating with
deep valleys, with altitudes ranging from 2000 to 6000
m a.s.l. (Shi et al., 1998) and contains more than
12000 species of plants and is especially rich in
endemic species and genera (Ying & Zhang, 1984,
1993; Li & Li, 1993; Li, 1994; Hao, 1997; Wang,
2000). The production of such high diversity was
suggested to be due to two major factors: (i) this
region served as an important refugium that harbored
the ancient species; and (ii) the uplifts of the QTP as
well as the Quaternary climatic oscillations further
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promoted the divergences of intraspecific lineages and
consequently leaded to adaptive diversification of
plants (Wang & Liu, 1994; Sun, 2002; Wang et al.,
2005; Liu et al., 2006). These hypotheses were partly
confirmed in a few species-rich genera at the species
level (Li & Li, 1993; Wang et al., 2004, 2005, 2007,
Liu et al., 2002, 2006). However, very few population
genetic analyses have been conducted on the species
occurring in HM and therefore the phylogeographic
patterns, intraspecific divergence and glacial refugia
remains largely unknown in this region. The few
phylogeographic studies focused on the species dis-
tributed in the north of HM, mostly from the QTP
platform, and these studies suggested that these spe-
cies responded extensively to the past climatic oscilla-
tions (e.g. Zhang et al., 2005; Meng et al., 2007). A
few of them (Zhang et al., 2005) had experienced a
similar glacial retreat and postglacial range shift as
those temperate organisms in Europe and North
America during the past climatic oscillations (Avise,
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1998; Comes & Kadereit, 1998; Hewitt, 1996, 2000,
2004; Newton et al., 1999; Widmer & Lexer, 2001;
Abbott & Brochmann, 2003). However, this scenario
might not have occurred in the southeast QTP because
the high mountains and deep valleys may have
blocked the interglacial or interglacial range expan-
sion of plants. This topological effect might have
accelerated inter-population differentiation but re-
tained multiple refugia of plants during glacial cli-
matic oscillations. In order to test this prediction, in
the present study, we aimed to recover the phy-
logeographic pattern of another alpine perennial that is
endemic to HM.

Primula L. is one of the species-rich genera in
the HM and adjacent regions of the QTP with more
than 75% of the total number of species (ca. 425)
distributed in this region (Hu, 1994; Richards, 2002).
Despite the lack of the detailed research, the diversi-
fication of this genus may have similar causes as those
revealed for other species-rich genera (Wang et al.,
2004, 2005, 2007; Liu et al. 2002, 2006). Primula
secundiflora Franch. is endemic to HM and sparely
distributed in alpine habitats of this region. In addi-
tion, this perennial species has a wide geographical
coverage from west Sichuan to northwest Yunnan and
southeast Tibet (Hu, 1990; Hu & Kelso, 1996). This
species displays the high uniformity in morphology
(Hu, 1990) and our field investigations failed to find
any intraspecific variations. This species provides a
good model to investigate the intraspecific genetic
divergence and phylogeographic structure of alpine
species in HM. We used the chloroplast (cp) trnL-trnF
and rps16 sequence variations to explore the genetic
structure of this species. The phylogeographic struc-
tures constructed by cpDNA may accurately reflect
range shifts and population dynamics of plants be-
cause this genome is maternally inherited in most
angiosperms (Schaal et al., 1998; Newton et al., 1999;
Soltis & Gitzendanner, 1999). The phylogeographic
patterns of plants in other regions based on cpDNA
sequence variations have been revealed to correspond
well with the past range shifts and population dynam-
ics inferred from pollen and glacial or climatic signa-
tures (Fujii et al., 2002; Okaura & Harada, 2002;
Newton et al., 1999; Petit et al., 2003; Bartish et al.,
2006). Overall, our objectives in this study were: (i) to
establish the phylogeographic structure of P. secundi-
flora based on the sequence variations of two cpDNA
fragments; and (i1) to test whether this species has a
high inter-population differentiation and had possibly
retained multiple separate refugia during the glacial
stages.
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1 Material and methods

1.1 Plant materials

Leaf materials of Primula secundiflora were
sampled from almost the entire range of species,
including western Sichuan, north-western Yunnan and
south-eastern Xizang (Tibet) in HM (Table 1; Fig. 1).
Nine or 10 individuals from each population were
collected, with samples at least 10 m apart. In total,
109 individuals from 11 populations were used in the
present study. Leaf material was dried in silica gel and
stored at room temperature.
1.2 DNA extraction, PCR amplification and se-
quencing

Total DNA was extracted using the CTAB
method (Doyle, 1991). PCR amplification and DNA
sequencing were performed with universal primers for
trnL-trnF (5'-CGAAATCGGTAGACGCTACG-3' and
5'-ATTTGAACTGGTGACACGAG-3"; Taberlet et
al., 1991; Zhang et al., 2006) and 7ps16 (5'-GTGGTA-
GAAAGCAACGTGCGACTT-3' and 5'-TCGGGA-
TCGAACATCAATTGCAAC-3'; Oxelman et al.,
1997). Polymerase chain reaction (PCR) was con-
ducted in a total volume of 50 pL containing 20 ng
template DNA, 5 puL 10 X reaction buffer, 5 pL MgCl,
(25 mmol/L), 1 pL dNTP mix (10 mmol/L), 10
umol/L of each primer, and 1.5 unit of Taq poly-
merase. PCR reaction was run in a DNA Programma-
ble Thermal Cycler (PTC-200, MJ Research) with
initial denaturation at 94 “C for 5 min, followed by 34
cycles of 1 min at 94 °C, 1 min of annealing at 56 C
and 59 °C, respectively, for trnL-trnF and rpsl6, 1
min at 72 ‘C, and a subsequent 7 min of final exten-
sion at 72 ‘C. Sequencing reactions were performed
by using the dye-terminator cycle-sequencing ready-
reaction kit following the manufacturer’s protocol,
and analyzed on an ABI 377 DNA Sequencer (Ap-
plied Biosystems, Foster City, CA 94404, USA).
1.3 Data analysis

The DNA sequences were aligned using the pro-
gram Clustal X 1.81 (Thompson et al., 1997). Esti-
mates of average gene diversity within populations
(Hs), total gene diversity (Hr) and the proportion of
total diversity due to differences between populations
(Gst and Ngr) were calculated using the program
PERMUT (Pons & Petit, 1996, available at http:
//'www .pierrton.intra.fr/genetics/labo/software/permut).
Gsr is calculated solely based on haplotype frequencies,
whereas Ngsr takes into account the genetic relation
among haplotypes. When Ngr value is higher than the
Ggr estimated, it indicates the presence of a phylogeo-
graphical structure (Petit et al., 2005).
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Table 1 Sample locations of Primula secundiflora and genetic estimates of diversity within the studied populations

Pop. Location Sample Longitude  Latitude  Altitude Haplotype Hy n
No. number (E) ™N) (m) number

KD Kangding, Sichuan, China 10 101°57' 30°02’ 3500 H4 (10) 0.000+£0.000  0.00000+0.00000
(Y EE)

Y] Yajiang, Sichuan, China 10 101°00’ 30°02' 4400  H5(9),H6 (1) 0.000+0.000  0.00000+0.00000
(Y AR

ZD-1  Zhongdian, Yunnan, China 9 99°43’ 27°47 3500  HI1(9) 0.000+0.000  0.00000+0.00000
(zr )

ZD-2  Zhongdian, Yunnan, China 10 99°45’ 2727 4100  H2(10) 0.000+0.000  0.00000:+0.00000
(zF )

XC Xiangcheng, Sichuan, China 10 99°47 28°56' 3600  H10(9), H11 (1) 0.000+0.000  0.00000+0.00000
U1 2 35)

DQ Déqén, Yunnan, China 10 99°02’ 28°13' 4200  H8(10) 0.000+0.000  0.00000+0.00000
(BFTER)

ML Muli, Sichuan, China 10 101°15’ 27°54' 3200  HI15(10) 0.000+0.000  0.00000+0.00000
(P41 )

LJ Lijiang, Yunnan, China 10 100°15' 26°52' na H3 (10) 0.000+0.000  0.00000+0.00000
(Z AL

zG Zogang, Xizang, China 10 97°54’ 29°41' na H7 (3), H8 (7) 0.467+0.132  0.00029+0.00008
(PE /2 57)

MK-1 Markam, Xizang, China 10 98°41’ 29°38' na HS8 (7), H9 (3) 0.467+0.132  0.00029+0.00008
(V57T )

MK-2  Markam, Xizang, China 10 98°41’ 29°32' na H12 (2), H13 (6) 0.356+0.159  0.00043+0.00019
(5T B H14 (2)

Total 109 0.895+0.012  0.00495+0.00018

Hyg, haplotype diversity; m, nucleotide diversity; na, not available.

e W W) 100°E 105{E

30°N

Fig. 1. Sample locations and distribution of cpDNA haplotypes of Primula secundiflora. Frequency of cpDNA haplotypes in each population is
indicated in pie charts.
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A hierarchical analysis of molecular variance
(AMOVA) (Excoffier et al., 1992) was performed
using ARLEQUIN software version 3.0 (Excoffier et
al., 2005) with significance tested by 1000 permuta-
tions. Nucleotide diversity (r) and haplotype diversity
(Hd) were calculated with DnaSP version 4.0 for each
population (Rozas et al., 2003).

Phylogenetic relationships between the cpDNA
haplotypes were reconstructed by neighbour-joining
(NJ) and maximum-parsimony (MP) analyses in
PAUP 4.0b10 (Swofford, 2000). A closely related
species, P. helodoxa Balf. f., was used as outgroup. In
the MP analyses, gaps were treated as missing and
indels were scored as binary characters. NJ analyses
were performed based on Kimura’s two-parameter
model. MP tree was also constructed with the heuristic
search algorithm with tree-bisection-reconnection.
Bootstrap values were estimated (with 1000 repli-
cates) to assess the relative support for relationships
between haplotypes (Felsenstein, 1985).

To reveal the phylogenetic relationships among
haplotypes, a minimum spanning haplotype tree was
constructed by linking the haplotypes in a hierarchical
manner based on the single step mutations, with the
aid of MINSPNET (Excoffier & Smouse, 1994). We
used the nested clade analysis (NCA) to infer the
patterns of population history. The NCA nesting
design was constructed by hand on the haplotype
network following the rules given in Templeton et al.
(1987) and Templeton and Sing (1993). The program
GeoDis 2.2 (Posada et al., 2000) was used to calculate
the various NCA distance measures and their statisti-
cal significance levels. All statistical analyses in
GeoDis were performed using 1000 permutations.
Two major clade distance statistics were calculated,
viz., the clade distance (Dc), which measures the
average distance of all clade members from the geo-
graphical center of distribution, and the nested clade
distance (Dn), which measures the geographical
distribution of a clade relevant to other clades in the
same nested group and the interior-tip. These meas-
ures of geographical distribution were used to infer
historical processes following the methods of
Templeton et al. (1995). The results were interpreted
using the latest inference key of Templeton provided
at http://darwin.uvigo.es (updated November 2005).

2 Results

In this study, trnlL-trnF and rps16 regions of
cpDNA in P. secundiflora were PCR amplified and
sequenced for 109 individuals of 11 populations.
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Sequences of #nL-F and rps16 were deposited in the
GenBank database under the accession numbers
EF595526-EF595536 and EF595537-EF595550,
respectively. For the trnL-trnF region (including #rnL
intron, exon and #nL-#rnF spacer), length polymor-
phism ranges from 855 bp to 877 bp. Difference
between trnl-trnF sequences was mainly ascribed to
16 point mutations and six indels. For the rpsl6
region, high levels of length polymorphism, ranging
from 752 bp to 789 bp, were detected. Six indels were
found, while 15 sites belong to point mutations after
alignment (Table 2). Fifteen haplotypes were recov-
ered from the combined data of #rnL-trnF and rps16
data sets. Haplotype composition, haplotype number
and total cpDNA diversity in each population are
listed in Table 1 with geographical distributions
illustrated in Fig. 1. Four (H1, H2, H3 and H15) of the
15 haplotypes were fixed in the south distribution
range, while the other haplotypes were fixed in the
north distribution range.

The overall haplotype diversity (Hd) is 0.895 +
0.012 and nucleotide diversity (m) is 0.00495=+
0.00018 (Table 1). The average gene diversity within
population (Hg) is 0.178£0.0710 and the total gene
diversity (Ht) is 0.966£0.0308. Interpopulation
differentiation across the total distribution of the
species was very high (Gsr=0.816), and AMOVA
revealed that 97.65% of the total genetic variation are
partitioned among populations (Table 3). A test for
phylogeographic structure of haplotype variation
across the distribution of the species showed that Ngt
(0.982) was significantly higher than Gst (0.816)
(P<0.05), indicating the distinct correlation between
distribution and fixture of haplotypes (Pons & Petit,
1996).

The total alignment of #ruL-trnF and rpsl6 se-
quences that included indels covered 1677 characters,
of which 1626 were constant, and 29 were parsi-
mony-informative characters. The strict consensus tree
of the six most parsimonious trees (Tree length=55,
CI=0.95, RI=0.95) was shown in Fig. 2. Four major
clades were identified and tentatively supported by the
bootstrap statistics. The first clade (I) consisted of
haplotypes H7, H8, H9, H12, H13 and H14 that were
respectively fixed in populations DQ, ZG, MK-1 and
MK-2. The second one (II) included H4, H5 and H6,
presenting in populations KD and YJ while the third
one (IIT) comprised H1, H2, H3 and H15 in ZD-1,
ZD-2, ML and LJ. The last clade (IV) consisted of
H10 and H11, both fixed in XC.

The minimum spanning tree was shown in Fig. 3.
Five one-step clades (clade 1-1, 1-2, 1-3, 1-4, 1-5)
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Table 3 Analysis of molecular variance (AMOVA) for populations of Primula secundiflora based on sequences of cpDNA #rnL-trnF and rps16

regions
Source of variation d.f. Sum of squares Variance components Percentage of variation
Among populations 10 1093.780 11.01230 97.65
Within populations 98 26.000 0.26531 2.35
Total 108 1119.780 11.27761
d.f., degrees of freedom.
&[Hg 3 Discussion
gg HY In this study, we recovered 15 cpDNA haplo-
[ types based on a combination of two cpDNA sequence
5 Clade T variations. These haplotypes clustered into four distinct
86 H12 clades (Figs. 2, 3). The haplotypes in these four clades
ﬂ[ were found in geographically different regions (Fig.
56 H13 2), with haplotypes within clades I, IT and IV in the
sl . northern populations, while those of the clade III in
— the southern populations. H8 is commonly shared by
H5 three adjacent populations (DQ, ZG and MK-1 in the
= northwest Yunnan and southeast Xizang; Table 1 and
100 H6 | Clade I Fig. 1). Minimum spanning tree suggested that H8
100 might be the ancestral haplotype in the clade 2-1 and
1 two haplotypes (H7 and H9) that have the same
l distribution were derived from it recently due to the
ﬁ[ short mutations between them (Fig. 3). The other
92| H3 haplotypes in this clade (H12, H13 and H14) have
o 8 - Clade TI longer mutational steps, suggesting the later origins.
[ - However, their distributions are close to H8 in the
. s north range of the species, similarly indicating that
they may have derived from this hypothesized ances-
% H10 ) tor. Clade 1-3 consisted of three haplotypes (H4, HS
TE Clade IV and H6) that were only recovered in west Sichuan
HIT (KD and YJ). Clade 1-4 included two haplotypes (H10
Primula helodoxa and H11) fixed in XC and this clade seems to have a

Fig. 2. The neighbour-joining tree of cpDNA haplotypes. Bootstrap
support values >50% are shown in the NJ (above branches) and in
MP analyses (below branches).

were identified in the cpDNA haplotype tree. Clade
1-1 and clade 1-2 were grouped into a higher-level
clade 2-1. The most widespread clade 1-5 was distrib-
uted in four populations, and clade 1-2 occurred in
three populations. The demographic inferences sug-
gested that the restricted gene flow with isolation by
distance is the primary process within clade 1-2 and
clade 2-1, allopatric fragmentation within clade 1-3,
1-5 and total cladogram (Table 4) according to the
statistic significance between the clade distance (Dc)
and the nested clade distance (Dn).

ancient origin and isolated position (Figs. 2, 3). Clade
1-5 consisted of four haplotypes (H1, H2, H3 and
H15) centered in the northwest Yunnan and southwest
Sichuan (ZD-1, ZD-2, LJ and ML; Table 1 and Fig.
1). H2 from Zhongdian was inferred as ancestral in
this clade (Fig. 3) and the other haplotypes radiated
from this haplotype in their sympatric distributions.
Because of the low mutation rate in the cpDNA
(Newton et al., 1999; Petit et al., 2003), the diver-
gences between four clades obviously predated the
Quaternary stages. The isolated distribution of these
clades therefore suggested that multiple refugia (at
least four) must have existed for this species during
the glacial stages. It is interesting to note that another
alpine shrub Hippophae neurocarpa S. W. Liu & T.
N. He on the QTP was also revealed to have inde-
pendent refugia in the high altitude regions (Meng et
al., 2007).
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Fig. 3. Minimum spanning tree of cpDNA haplotypes used for the nested clade analysis.

The numbers above each connection represent mutational

steps.
Table 4 Inference chains based on results of geographical dispersion analysis (GEODIS)
Clade Clade key Inferences
1-2 1-2-3-4-NO Restricted gene flow with isolation by distance
1-3 1-19-NO Allopatric fragmentation
1-5 1-19-NO Allopatric fragmentation
2-1 1-2-3-4-NO Restricted gene flow with isolation by distance
Total cladogram 1-19-NO Allopatric fragmentation

In addition, the genetic measures suggested a
high inter-population differentiation in P. secundiflora
(Gs1=0.816, Fs1=0.976). Similarly, the AMOVA
analyses also indicated that 97.65% of the total genetic
variations are partitioned among populations. How-
ever, it should be noted that the average gene diversity
within populations (Hs=0.178) was extremely low.
Obviously, the current distribution range of P. secun-
diflora is characterized by low within-population
diversity, but high diversity between populations due
to genetic drift favouring/fixing different haplotypes in
different populations. Furthermore, the higher value of
Nst (0.982) than Gsr (0.816) (P<0.05) suggested a
distinct phylogeographic structure of haplotype distri-
butions (Pons & Petit, 1996). These data together
suggested that the common interglacial or postglacial
range expansion as revealed for most of the temperate
plants (e.g. Newton et al., 1999; Petit et al., 2003;
Zhang et al., 2005) obviously did not occur in this
species. Under this alternative assumption, most of the
current populations should fix a common haplotype
and contain low levels of genetic diversity both within
and between populations if they shared or were de-
rived from a common refugium. These inferences
were also supported by the nested clade analysis

(NCA) although this method is open to question (Petit
et al., 2005). The restricted gene flow/dispersal with
isolation by distance is likely the major process in
clade 1-2 and 2-1. In addition, allopatric fragmentation
was inferred as the major process influencing the
present-day spatial distribution of haplotypes within
clades 1-3 and 1-5 (Table 4).

However, our results suggest that most of the
current populations of P. secundiflora must have
experienced the in situ shrink-expansion cycles during
the Quaternary climatic oscillations. This scenario is
highly likely if the complex topology of HM and QTP
are taken into account. In the QTP, especially in its
southeast part, no extensive ice had developed in the
Quaternary stages (Li, 1995; Shi et al., 1998). This
allows the persistence of plant species in the in situ
distributions during the glacial stages. In addition, the
alpine species like P. secundiflora might retreat to the
low altitude region during this arid stage. However,
because of the deep valleys, it is difficult for different
populations to mix together in a common refugium
during such a retreat. Similarly, during the interglacial
or postglacial expansions, they still retained separate
due to the complex topology. Therefore, the climatic
oscillations only resulted in the repeated
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expansion-contraction cycles of the existent popula-
tions. The subsequent genetic drifts reduced the
intra-population diversity, but further promoted
inter-population differentiation (Powell et al., 1995;
Petit et al., 1997; Cruzan & Templeton, 2000). It
should be noted that the long-distance dispersal of
seeds or pollen grains may disrupt these genetic drifts
as revealed in a few species (Birky et al.,, 1983).
However, to our knowledge, seeds of P. secundiflora
scatter from the ripened capsules within the limited
vicinity of the parental plants, rather than being dis-
persed over long distances by the unexpected mecha-
nism.

In conclusion, our results suggest that the phy-
logeographic pattern of P. secundiflora is different
from those of the other temperate plants in which most
of the current populations had usually experienced a
common recolonization during the interglacial or
postglacial range shifts (for an example, Zhang et al.,
2005). This is mainly due to the complex topology of
HM where deep valleys and high mountains might
have prevented migrations of plants during the cli-
matic oscillations. However, more phylogeographic
studies are now required on a wide range of different
species endemic to this region to obtain a better un-
derstanding of the factors that have influenced the
evolutionary history of this region’s flora.
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