
Asynchronous Distributed Private-Key Generators

for Identity-Based Cryptography

Aniket Kate Ian Goldberg

David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, ON, Canada N2L 3G1

{akate,iang}@cs.uwaterloo.ca

Abstract

Identity-based cryptography can greatly reduce the complexity of sending encrypted messages over the Internet.

However, it necessarily requires a private-key generator (PKG), which can create private keys for clients, and so can

passively eavesdrop on all encrypted communications. Although a distributed PKG has been suggested as a way

to mitigate this problem for Boneh and Franklin’s identity-based encryption (IBE) scheme, the solution previously

proposed does not work over the asynchronous Internet. Further, a distributed PKG has not been considered for any

other IBE scheme.

In this paper, we design distributed PKG setup and private key extraction protocols in an asynchronous commu-

nication model for three important IBE schemes; namely, Boneh and Franklin’s IBE, Sakai and Kasahara’s IBE, and

Boneh and Boyen’s BB1-IBE. To establish the efficiency and the reliability of our protocols, we implement and test

the asynchronous distributed key generator used in these protocols on the PlanetLab platform. We also perform a

comparative study of the three distributed PKGs and present recommendations for their use.

1 Introduction

In 1984, Shamir [53] introduced the notion of identity-based cryptography (IBC) as an approach to simplify public-key

and certificate management in a public-key infrastructure (PKI) and presented an open problem to provide an identity-

based encryption (IBE) scheme. After seventeen years, Boneh and Franklin [8] proposed the first practical and secure

IBE scheme (BF-IBE) using bilinear maps. After this seminal work, in the last few years, significant progress has

been made in IBC (for details, refer a recent book on IBC [34] and references therein).

In an IBC system, a client chooses an arbitrary string such as her e-mail address to be her public key. Consequently,

with a standardized public-key string format, an IBC scheme completely eliminates the need for public-key certificates.

As an example, in an IBE scheme, a sender can encrypt a message for a receiver knowing just the identity of the receiver

and importantly, without obtaining and verifying the receiver’s public-key certificate. Naturally, in such a system, a

client herself is not capable of generating a private key for her identity. There is a trusted party called a private-key

generator (PKG) which performs the system setup, generates a secret called master key and provides private keys to

clients using it. As the PKG computes a private key for a client, it can decrypt all (her) messages passively. This

inherent key escrow property asks for complete trust in the PKG, which is difficult to find in many realistic scenarios.

Need for the Distributed PKG Importantly, the amount of trust placed in the holder of an IBC master key is far

greater than that placed in the holder of the private key of a certifying authority (CA) in a PKI. In a PKI, in order to

attack a client, the CA has to actively generate a fake certificate for the client containing a fake public-key/private-key

pair. In this case, it is often possible for the client to detect and prove the malicious behaviour of the CA. The CA

cannot perform any passive attack; specifically, it cannot decrypt a message encrypted for the client using a client-

generated public key and it cannot sign some document for the client, if the verifier gets a correct certificate from the

client. On the other hand, in IBC,

• knowing the master key, the PKG can decrypt or sign the messages for any client, without any active attack and

consequent detection (key escrow),

1

• the PKG can make clients’ private keys public without any possible detection, and

• in a validity period-based key revocation system [8], bringing down the PKG is sufficient to bring the system to

a complete halt (single point of failure).

Therefore, the PKG in IBC needs to be far more trusted than the CA in a PKI. This has been considered as a reason

for the slow adoption of IBC schemes outside of closed organizational settings.

Boneh and Franklin [8] suggest the use of a distributed PKG to solve these problems. In an (n, t)-distributed PKG,

the master key of the IBC system is distributed among n PKG nodes such that a set of nodes of size t or smaller

cannot compute the master key, while a client extracts her private key by obtaining private-key shares from any t + 1
or more nodes; she can then use the system’s public key to verify the correctness of her thus-extracted key. Boneh

and Franklin [8] propose verifiable secret sharing (VSS) of the master key among multiple PKGs using Shamir secret

sharing with a dealer [52] to design a distributed PKG and also hint towards a completely distributed approach using

the distributed (shared) key generation (DKG) schemes of Gennaro et al. [27]. However, none of the IBE schemes

defined after [8] consider the need and design of a distributed PKG. On the system side, the DKG schemes [27]

suggested in [8] to design a distributed PKG are not advisable for use over the Internet. These DKG schemes are

defined for the synchronous communication model, having bounded message delivery delays and processor speeds,

and do not provide safety (the protocol does not fail or produce incorrect results) and liveness (the protocol eventually

terminates) over the asynchronous Internet, having no bounds on message transfer delays or processor speeds.

As a whole, although various proposed practical applications using IBE, such as key distribution in ad-hoc net-

works [37] or pairing-based onion routing [36], require a distributed PKG as a fundamental need, there is no distributed

PKG available for use over the Internet yet. Defining efficient distributed PKGs for various IBE schemes which can

correctly function over the Internet has been an open problem for some time. This practical need for distributed PKGs

for IBC schemes that can function over the Internet forms the motivation of this work.

Contributions In this paper, we present distributed PKGs for all three important IBE frameworks: namely, full-

domain-hash IBEs, exponent-inversion IBEs and commutative-blinding IBEs. We propose distributed PKG setups

and distributed private-key extraction protocols for Boneh and Franklin’s IBE (BF-IBE) [8], Sakai and Kasahara’s IBE

(SK-IBE) [49], and Boneh and Boyen’s (modified) BB1-IBE [10] schemes for use over the Internet. In the process,

we also design practical protocols for distributed multiplication and inverse computation tasks, which have their own

applications. Observing that a distributed (shared) key generator (DKG) is the single most important component of

distributed PKG, we implement a recently devised asynchronous DKG protocol [35] and demonstrate its efficiency

and reliability with extensive testing over the PlanetLab platform [47]. Using our implementation results, operation

counts, key sizes, and possible pairing types, we compare the performance of the distributed PKGs we define.

In §2, we compare various techniques suggested to solve the key escrow and single point of failure problems in

IBC. We also discuss previous work related to DKG protocols. In §3, we describe a realistic asynchronous system

model over the Internet and justify the choices made, while we define and describe cryptographic tools in our model in

§4. With this background, in §5, we define and analyze distributed PKG protocols for the BF-IBE, SK-IBE and BB1-

IBE schemes. We then implement a practical DKG protocol, and test its performance over the PlanetLab platform in

§6. We also compare the IBE schemes based on their distributed PKGs and touch upon proactive security and group

modification protocols for the system.

2 Related Work

We divide the related work into two parts. Distributed (shared) key generation is the most important component

for distributed private-key generation in identity-based cryptography. We first discuss the existing work towards dis-

tributed key generation. As designing distributed PKGs is our main goal in this work, we concentrate on protocols in

computational (as opposed to unconditional / information-theoretic) settings. Although somewhat ignored, there have

been some efforts to mitigate the single point of failure and the key escrow issues in IBC systems; in the latter part of

this section, we compare these alternatives with distributed PKG.

Although we are defining protocols for IBE schemes, as we are concentrating on distributed cryptographic proto-

cols and due to space constraints, we do not include a comprehensive account of IBE here. We refer readers to [10] for

a detailed discussion on the various IBE schemes defined in the literature. As a take-away message from this survey,

we work in the random oracle model for efficiency and consequently practicality reasons.

2

Distributed Key Generation The notion of secret sharing was introduced independently by Shamir [52] and Blak-

ley [6] in 1979. Since then, it has remained an important topic in security research. Significantly, Chor et al. [19]

introduced verifiability in secret sharing. Feldman [22] developed the first efficient and non-interactive VSS protocol

and Pedersen [45] presented a modification to it. However, these VSS are defined assuming a synchronous commu-

nication model. For an asynchronous communication model, Cachin et al. (AVSS) [12], Zhou et al. (APSS) [56],

and Schultz et al. (MPSS) [51] defined VSS schemes in the computational setting. Of these, the APSS protocol is

impractical for any reasonable system size, as it has an exponential
(

n
t

)

factor in the message complexity (number

of messages transferred), while MPSS is developed for a more mobile setting where set of the system nodes has to

change completely between two consecutive phases. AVSS by Cachin et al. with its seemingly optimal communication

complexity (number of bits transferred) is certainly a suitable choice for a distributed PKG system.

Pedersen [46] introduced the concept of distributed key generation and developed a DKG, where each node runs a

variation of Feldman’s VSS. and distributed shares are added at the end to generate a combined shared secret without

a dealer. Gennaro et al. [27] presented a simplification using just the original Feldman VSS called the Joint Feldman

DKG (JF-DKG). Further, they found that DKGs based on the Feldman VSS (or using Feldman commitments [22])

do not guarantee uniformly random secret keys and define a new DKG combining Feldman and Pedersen commit-

ments [46] which increases the latency (number of communication rounds) by one. However, in [28], they observed

that DKGs based on Feldman commitments produce hard instances of discrete logarithm problems (DLPs), which

may be sufficient for the security of some threshold cryptographic schemes.

To the best of our knowledge, the first DKG scheme in an asynchronous setting was only defined recently by Kate

and Goldberg [35]. This protocol modifies the AVSS protocol to a more realistic hybrid model and performs leader-

based agreement with a leader-changing mechanism to decide which of the nodes’ VSS will be included in the DKG

calculation; that is, whereas in synchronous DKG schemes such as Pedersen’s above, all of the successful VSSs can

be added at the end of the protocol to determine the final master key shares, in the asynchronous setting, some global

consensus must be reached in order to find a sufficiently large set of VSSs which all honest nodes have completed.

We implement this DKG protocol and verify its efficiency and reliability. Consequently, this DKG system forms the

basis of our distributed PKG protocols. The original asynchronous DKG protocol uses Feldman commitments and

consequently does not guarantee uniform randomness of the key. However, we observe that, in the random oracle

model, using non-interactive zero-knowledge proofs of knowledge based on the Fiat-Shamir methodology [23], if

required, it is possible to achieve uniform randomness in their scheme. In such a scheme, Feldman commitments are

initially replaced by Pedersen commitments; the Feldman commitments are introduced only at the end of the protocol

to obtain the required private key. The zero-knowledge proofs are used to show that the Feldman and Pedersen

commitments both commit to the same values.

All of the above schemes are proved secure only against a static adversary, which can only choose its t com-

promisable nodes before a protocol run. They are not considered secure against an adaptive adversary because their

simulation-based security proofs do not go through when the adversary can corrupt nodes adaptively.[29, §4.4] Feld-

man claimed [22, §9.3] that his VSS protocol is also secure against adaptive adversaries even though his simulation-

based security proof did not work out. Canetti et al. [14] presented a scheme provably secure against adaptive ad-

versaries with at least two more communication rounds as compared to JF-DKG and with interactive zero-knowledge

proofs. Due to the inefficiency of adaptive (provably) secure DKG protocols, we stick to protocols provably secure

only against a static adversary, though they have remained unattacked by an adaptive adversary for the last 22 years.

Alternatives to a Distributed PKG Although none of the IBE schemes except BF-IBE considered distributed PKG

setup and key extraction in order to solve the inherent key escrow and single point of failure issues, there have been a

few other efforts in the literature to counter those.

Al-Riyami and Paterson [1] introduce certificateless public key cryptography (CL-PKC) to address the key escrow

problem by combining IBC with public-key cryptography (PKC). Their elegant approach, however, does not address

the single point of failure problem. Although it is possible to solve the problem by distributing their PKG using a VSS

(which employs a trusted dealer to generate and distribute the key shares), which is inherently cheaper than a DKG-

based PKG by a linear factor, it is impossible to stop a dealer’s active attacks without completely distributed master-key

generation. Further, as private-key extractions are less frequent than encryptions, it is certainly advisable to use more

efficient options during encryption rather than private-key extraction. Finally, with the requirement of online access to

the receiver’s public key, CL-PKC becomes ineffective for systems without continuous network access, where IBC is

considered to be an important tool.

Lee et al. [39] and Gangishetti et al. [26] propose variants of the distributed PKG involving a more trustworthy

3

key generation centre (KGC) and other key privacy authorities (KPAs). As observed by Chunxiang et al. [20] for [39],

these approaches are, in general, vulnerable to passive attack by the KGC. In addition, the trust guarantees required by

a KGC can be unattainable in practice.

Recently, Goyal [31] reduces the required trust in the PKG by restricting its ability to distribute a client’s private

key. This does not solve the problem of single point of failure. Further, the PKG in his system still can decrypt the

clients’ messages passively, which leaves a secure and practical implementation of a generic distributed PKG wanting.

3 System Model and Assumptions

In this section, we discuss the assumptions and the system model for our distributed PKG system, giving special

attention to its practicality over the Internet. We follow the system model of [35], which closely depicts the Internet,

and as their DKG forms the basis of our distributed PKGs.

3.1 Communication Model

In the theoretical sense, distributed protocols designed with a synchronous or a partially synchronous (bounded mes-

sage delivery delays and processor speeds, but the bounds are unknown and eventual [21]) communication assumption

tend to be more efficient in terms of latency and message complexity than their counterparts designed with an asyn-

chronous communication assumption. However, protocols defined in the synchronous or partially synchronous com-

munication model invariably use some time bounds in their definition. An adversary, knowing those bounds, may slow

down the protocol by appropriately delaying its messages, which makes deciding the time bounds correctly a difficult

problem to solve. On the other hand, protocols defined for the asynchronous communication model use only numbers

and types of messages and guarantee to finish quickly with only honest nodes communicating promptly. Therefore,

we assume an asynchronous communication model.

Weak Synchrony (only for liveness) Generating true randomness in a completely distributed (dealerless) asyn-

chronous setting efficiently, without using a DKG, although not impossible [15], is a difficult task to perform; the

known computational threshold coin-tossing algorithms [13] require a dealer or a synchronous communications as-

sumption. As observed in [35], asynchronous DKG requires a protocol to solve the agreement on a set problem [4],

which needs distributed randomness or a synchrony assumption [24]. In the absence of an efficient randomization

procedure, [35] uses a weak synchrony assumption by Castro and Liskov [16] for liveness, but not safety. According

to this assumption, a function delay(t), defining the message transmission delay of a message sent at time t, does not

grow faster than t indefinitely. Assuming that network faults are eventually repaired and DoS attacks eventually stop,

this assumption is valid in practice. We further discuss this assumption in §6.1.

3.2 Hybrid Adversary Model

Instead of using a standard t-Byzantine adversary in a system with n nodes P1, P2, . . . , Pn, we use a hybrid adversary

introduced in [2], having another f non-Byzantine crashes, and modified in [35] to include network link failures.

For the standard t-Byzantine adversary, t nodes compromised or crashed by the adversary remain compromised

forever. This does not depict the adversary model over the Internet accurately. Along with arbitrary behaviour by t
Byzantine nodes, some nodes can just crash silently without showing malicious behaviour or just get disconnected

from the system due to network failure or partitioning. As the adversary does not capture these f nodes or their secret

parameters, it is not computationally and communicationally optimal to consider these nodes as Byzantine. It also

gives rise to a sub-optimal resilience of n ≥ 3(t + f) + 1 instead of the n ≥ 3t+ 2f + 1 bound effected by treating

crashes and link failures separately from the Byzantine adversary.

In this hybrid adversary model, crashes and link failures belong to the same set of f nodes, as from a perspective

of any other node of the system a crashed node behaves exactly same as a node whose link with it is broken. We

recover secrets at these f nodes immediately after their trusted rebooting, which gives us the assumption that all non-

Byzantine nodes may crash and recover repeatedly with a maximum f crashed nodes at any instant. If two nodes

cannot communicate, then we treat at least one of two nodes as being either Byzantine or one of the currently crashed

nodes. That is, following the standard asynchronous communication model literature, we assume that the adversary

controls the network, but faithfully delivers all the messages between two honest uncrashed nodes.

4

3.3 Cryptographic Background

Bilinear Pairings IBC extensively utilizes bilinear pairings over elliptic curves. For three cyclic groups G, Ĝ, and

GT (all of which we shall write multiplicatively) of the same prime order p, a bilinear pairing e is a map e : G× Ĝ →
GT with following properties.

• Bilinearity: For g ∈ G, ĝ ∈ Ĝ and a, b ∈ Zp, e(ga, ĝb) = e(g, ĝ)ab.

• Non-degeneracy: The map does not send all pairs in G × Ĝ to unity in GT .

If there is an efficient algorithm to compute e(g, ĝ) for any g ∈ G and ĝ ∈ Ĝ, the pairing e is called admissible. We

also expect that it is not feasible to invert a pairing and come back to G or Ĝ. All pairings considered in this paper

are admissible and infeasible to invert. We call such groups G and Ĝ pairing-friendly groups. We refer readers to [5,

Chap. IX and X] for a detailed mathematical discussion of bilinear pairings.

Following [25], we consider three types of pairings: namely, type 1, 2, and 3. In type 1 pairings, an isomorphism

φ : Ĝ → G as well as its inverse φ−1 are efficiently computable. These are also called symmetric pairings as for

such pairings e(g, ĝ) = e(φ(ĝ), φ−1(g)) for any g ∈ G and ĝ ∈ Ĝ. In type 2 pairings, only the isomorphism φ, but

not φ−1, is efficiently computable. Finally in type 3 pairings, neither of φ nor φ−1 can be efficiently computed. The

efficiency of the pairing computation improves from type 1 to type 2 to type 3 pairings. For a detailed discussion of

the performance aspects of pairings we refer the reader to a survey by Galbraith et al. [25].

Assumptions As mentioned in §2, for efficiency reasons, we assume the random oracle framework. Further, our

adversary is computationally bounded with a security parameter κ. We assume an instance of a pairing infrastructure

of multiplicative groups G, Ĝ and GT , whose common order p is a κ-bit prime. For commitments and proofs of

knowledge, we use the discrete logarithm (DLog) [42, Chap. 3] assumption. For the security of the IBE schemes, we

use the bilinear Diffie-Hellman (BDH) [32] and bilinear Diffie-Hellman inversion (BDHI) [43, 7] assumptions. For

definitions of asymmetric versions of the latter two assumptions, we refer readers to Boyen’s recent survey [10].

4 Cryptographic Tools

In this section, we describe important cryptographic tools required to design distributed PKGs in the hybrid model

having an asynchronous network of n ≥ 3t+2f+1 nodes with a t-limited Byzantine adversary and f -limited crashes

and network failures. Note that these tools are also useful in other asynchronous computational multiparty settings.

4.1 Homomorphic Commitments over Zp

A verification mechanism for a consistent dealing is fundamental to VSS. It is achieved using distributed computing

techniques in the unconditional setting. In the computational setting, homomorphic commitments provide an efficient

alternative. Let C(α, [r]) ∈ G be a homomorphic commitment to α ∈ Zp, where r is an optional randomness

parameter and G is a (multiplicative) group. For such a homomorphic commitment, given C1 = C(α1, [r1]) and

C2 = C(α2, [r2]), we have C1 · C2 = C(α1 + α2, [r]).
VSS protocols utilize two forms of commitments. Let g and h be two random generators of G. Feldman, for

his VSS protocol [22], used a commitment scheme of the form C〈g〉(α) = gα with computational security under

the DLog assumption and unconditional share integrity. Pedersen [46] presented another commitment of the form

C〈g,h〉(α, r) = gαhr with unconditional security but computational integrity under the DLog assumption. In PKC

based on computational assumptions, with adversarial access to the public key, unconditional security of the secret

(private key or master key) is impossible. Further, in VSS schemes based on Pedersen commitments, in order to ran-

domly select the generator h, an additional round of communication is required during bootstrapping. Consequently,

in our scheme, we use simple and efficient Feldman commitments, except during a special case described in the DKG

discussion below.

In their VSSs, Feldman and Pedersen use commitments of coefficients of shared polynomials. However, fol-

lowing the computational multiparty computation protocol by Gennaro et al. [30] and AVSS by Cachin et al. [12],

we instead use commitments of evaluations of shared polynomials. This reduces the communication complexity

(the total bit length of messages exchanged) of AVSS by a linear factor and makes verifications of shares’ prod-

ucts easier in the distributed multiplication protocol of [30]. To that end, we define the Feldman commitment vector

5

C
(s)
〈g〉 = [gs, gϕ(1), · · · , gϕ(n)] where ϕ is a randomly selected polynomial of degree t over Zp with ϕ(0) = s. Sim-

ilarly, the Pedersen commitment vector C
(s,s′)
〈g,h〉 = [gshs

′

, gϕ(1)hψ(1), · · · , gϕ(n)hψ(n)] where ϕ is as above, and ψ is

similar, but with ψ(0) = s′. The jth element of a Feldman commitment vector (counting from 0) will be denoted by
(

C
(s)
〈g〉

)

j
(and similarly for Pedersen commitment vectors).

4.2 Non-interactive Proofs of Knowledge

As we assume the random oracle model in this paper, we can use non-interactive zero-knowledge proofs of knowledge

(NIZKPK) based on the Fiat-Shamir methodology [23]. In particular, we use a variant of NIZKPK of a discrete

logarithm and one for proof of equality of two discrete logarithms.

We employ a variant of NIZKPK of a discrete logarithm where given a Feldman commitment C〈g〉(s) and a Ped-

ersen commitment C〈g,h〉(s, r) for s, r ∈ Zp, a prover proves that she knows s and r such that C〈g〉(s) = gs and

C〈g,h〉(s, r) = gshr. That is, the prover proves that the Feldman commitment and the Pedersen commitment are to the

same value s. We denote this proof as

NIZKPK≡Com(s, r, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z
3
p. (1)

We describe it in detail in Appendix A; it is nearly equivalent to proving knowledge of two discrete logarithms

separately.

We also use another NIZKPK (proof of equality) of discrete logarithms [17] such that given two Feldman commit-

ments C〈g〉(s) = gs and C〈h〉(s) = hs, a prover proves equality of the associated discrete logarithms. We denote this

proof as

NIZKPK≡DLog(s, C〈g〉(s), C〈h〉(s)) = π≡DLog ∈ Z
2
p. (2)

and refer readers to Appendix A for details. There exists an easier way to prove this equality of discrete logarithms if a

pairing between the groups generated by g and h is available. Using a technique due to Joux and Nguyen [33] to solve

the DDH problem over pairing-friendly groups, given gx and hx
′

the verifier checks if e(g, hx
′

)
?
= e(gx, h). However,

when using a type 3 pairing, in the absence of an efficient isomorphism between G and Ĝ, if both g and h belong to

the same group (say G without loss of generality), then the pairing-based verification scheme does not work. In such

a situation, the above NIZKPK provides a less efficient but completely practical alternative.

4.3 DKG over Zp

In an (n, t)-DKG protocol over Zp, a set of n nodes generates an element s ∈ Zp in a distributed fashion with its shares

si ∈ Zp spread over the n nodes such that any subset of size greater than a threshold t can reveal or use the shared

secret, while smaller subsets cannot. A DKG protocol consists of a sharing (DKG-Sh) phase and a reconstruction

(DKG-Rec) phase. In the DKG-Sh phase, a distributed secret s ∈ Zp is generated among n nodes such that each

node Pi holds a share si and a commitment vector C(s) of s and all of its shares. During the DKG-Rec phase, each

node Pi reveals its share si and reconstructs s using verified revealed shares.

For our hybrid model having an asynchronous network of n ≥ 3t + 2f + 1 nodes with a t-limited Byzantine

adversary and f -limited crashes and network failures, We use a DKG protocol defined in [35] satisfying the following

conditions:

Liveness: Once protocol DKG-Sh starts, all honest finally up nodes complete the protocol, except with negligible

probability.

Agreement: If some honest node completes protocol DKG-Sh then, except with negligible probability, all honest

finally up nodes will eventually complete protocol DKG-Sh .

Consistency: Once an honest node completes protocol DKG-Sh then there exists a fixed value s ∈ Zp such that, if

an honest node Pi reconstructs zi ∈ Zp during DKG-Rec, then zi = s.

Privacy: If no honest node has started protocol DKG-Rec then, except with negligible probability, an adversary

cannot compute the shared secret s.

6

A closer look at the privacy property suggests that in the presence of an adversary, the shared secret in the above

DKG may not be uniformly random; this is a direct effect of using only Feldman commitments.[29, §3] However, in

many cases, we do not need a uniformly random secret key; the security of these schemes relies on the assumption that

the adversary cannot compute the secret. Most of the schemes in this paper similarly only require the assumption that

it is infeasible to compute the secret given public parameters and we stick with Feldman commitments those cases.

However, we do indeed need a uniformly random shared secret in the protocol in §4.6, which computes shares of the

inverse of a shared secret. In that case, we use Pedersen commitments, but we do not employ the methodology defined

by Gennaro et al. [29], which increases the latency in the system. We observe instead that with the random oracle

assumption at our disposal, the communicationally demanding technique by Gennaro et al. can be replaced with the

much simpler computational non-interactive zero-knowledge proof of equality of committed values NIZKPK≡Com

described in Eq. 1.

We represent DKG protocols using Feldman commitments and Pedersen commitments as DKGFeld and DKGPed
respectively. For node Pi, the corresponding DKG-Sh and DKG-Rec schemes are defined as follows.

(

C
(s,s′)
〈g,h〉 , [C

(s)
〈g〉,NIZKPK≡Com], si, s

′
i

)

= DKG-ShPed(n, t, f, t′, g, h, αi, α
′
i) (3)

(

C
(s)
〈g〉, si

)

= DKG-ShFeld(n, t, f, t′, g, αi) (4)

s = DKG-RecPed(t, C
(s,s′)
〈g,h〉 , si, s

′
i) (5)

s = DKG-RecFeld(t, C
(s)
〈g〉, si) (6)

Here, t′ is the number of VSS instances to be chosen (t < t′ ≤ 2t + 1), g, h ∈ G are commitment generators,

αi, α
′
i ∈ Zp are respectively a secret and randomness shared by Pi, and C

(s)
〈g〉 and C

(s,s′)
〈g,h〉 are respectively the Feldman

and Pedersen commitment vectors described in §4.1. The optional NIZKPK≡Com is a vector of zero-knowledge proofs

of knowledge that the corresponding entries of C
(s)
〈g〉 and C

(s,s′)
〈g,h〉 commit to the same values. (The polynomial ϕ for the

two types of commitments will be the same in this case.)

The worst-case message and communication complexities of protocol DKG-Sh [35] are O(tdn2(n + d)) and

O(κtdn3(n + d)) respectively, while those of protocol DKG-Rec are O(n2) and O(κn2) respectively. Here, the

function d(·) bounds the number of crashes that the adversary is allowed to perform.

Distributed Random Sharing over Zp This protocol generates shares of a secret z chosen jointly at random from

Zp. Every node generates a random ri ∈ Zp and shares that using the DKG-Sh protocol with Feldman or Pedersen

commitments as DKG-Sh(n, t, f, t′ = t + 1, g, [h], ri, [r
′
i]) where the generator h and randomness r′i are only re-

quired if Pedersen commitments are used. Liveness, agreement, consistency, privacy and message and communication

complexities remain the same as those of the DKG-Sh protocol. We represent the corresponding protocols as follows:

(

C
(z)
〈g〉 , zi

)

= RandomFeld(n, t, f, g) (7)
(

C
(z,z′)
〈g,h〉 , zi, z

′
i

)

= RandomPed(n, t, f, g, h). (8)

4.4 Distributed Addition over Zp

Let α, β ∈ Zp be two secrets shared among n nodes using the DKG-Sh protocol. Let polynomials f(x), g(x) ∈ Zp[x]
be the respectively associated degree-t polynomials and let c ∈ Zp be a non-zero constant. Due to the linearity

of Shamir’s secret sharing [52], a node Pi with shares αi and βi can locally generate shares of α + β and cα by

computing αi + βi and cαi, where f(x) + g(x) and cf(x) are the respective polynomials. f(x) + g(x) is random if

either one of f(x) or g(x) is, and cf(x) is random if f(x) is. Commitment entries for the resultant shares respectively

are
(

C
(α+β)
〈g〉

)

i
=

(

C
(α)
〈g〉

)

i

(

C
(β)
〈g〉

)

i
and

(

C
(cα)
〈g〉

)

i
=

(

C
(α)
〈g〉

)c

i
.

4.5 Distributed Multiplication over Zp

Unlike addition, local distributed multiplication of two shared secret α and β looks unlikely. We use a distributed

multiplication protocol against a computational adversary by Gennaro et al. [30, §4]. However, instead of their in-

7

teractive zero-knowledge proof, we utilize a pairing-based DDH problem solving technique [33] to verify the cor-

rectness of the product value shared by a node non-interactively. For shares αi and βi with Feldman commitments

gαi and ĝβi , given a commitment gαiβi of the shared product, other nodes can verify its correctness by checking if

e(gαi , ĝβi)
?
= e(gαiβi , ĝ) provided the groups of g and ĝ are pairing-friendly. We observe that it is also possible to

perform this verification when one of the involved commitments is a Pedersen commitment. However, if both commit-

ments are Pedersen commitments, then we have to compute Feldman commitments for one of the values and employ

NIZKPK≡Com to prove its correctness in addition to using the pairing-based verification. In such a case, the choice

between the latter technique and the non-interactive version of zero-knowledge proof suggested by Gennaro et al.

depends upon implementation efficiencies of the group operation and pairing computations.

In our IBC schemes, we always use the multiplication protocol with at least one Feldman commitment. We denote

the multiplication protocol involving two Feldman commitments as MulFeld and the one involving a combination of

the two types of commitments as MulPed.

(

C
(αβ)
〈g∗〉 , (αβ)i

)

= MulFeld(n, t, f, g∗,
(

C
(α)
〈g〉 , αi

)

,
(

C
(β)
〈ĝ〉 , βi

)

) (9)
(

C
(αβ,αβ′)

〈ĝ,ĥ〉
, (αβ)i, (αβ

′)i

)

= MulPed(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

,
(

C
(β,β′)

〈ĝ,ĥ〉
, βi, β

′
i

)

) (10)

For MulFeld, g∗ = g or ĝ. For MulPed, without loss of generality, we assume that β is distributed with the Pedersen

commitment. If instead α uses Pedersen commitment, then the Pedersen commitment groups for (αβ) change to g

and h instead of ĝ and ĥ.

Briefly, the protocol works as follows. Every honest node runs appropriate DKG-Sh(n, t, f, t′ = 2t+1, ĝ, [ĥ], αiβi, [αiβ
′
i])

from Eq. 3 or 4. As discussed above, pairing-based DDH solving is used to verify that the shared value is equal to

the product of αi and βi.
1 At the end of the DKG-Sh protocol, instead of adding the subshares of the selected VSS

instances, we interpolate them at index 0 to get the new share (αβ)i of αβ.

When DKG-Sh runs for α and β are completed before the protocol starts, this protocol can be seen as a execution

of DKG-Sh with Feldman or Pedersen commitments, and liveness, agreement, and consistency directly follow from

the underlying DKG-Sh. For privacy, along with privacy of DKG-Sh we also need to prove that for an honest node,

during DKG-Rec of (αβ)i, the adversary cannot derive the original αi or βi. We obtain that by modifying Theorem 4
in [30] defined for a synchronous model, but leave that to the next version this paper.The message and communication

complexities are the same as those of the DKG protocol. Further, as the distributed addition can be performed locally,

the above Mul protocols can be seamlessly extended for distributed computation of any expression having binary

products. For ℓ shared secrets x1, x2, · · · , xℓ, and their corresponding Feldman commitments C
(x1)
〈g〉 , C

(x2)
〈g〉 , · · · , C

(xℓ)
〈g〉 ,

shares of any binary product x′ =
∑m

i=1 kixai
xbi

with known constants ki and indices ai, bi can be easily computed

by extending the protocol in Eq. 9. We denote this generalization as follows.

(

C
(x′)
〈g∗〉, x

′
i

)

= MulBP(n, t, f, g∗, {(ki, ai, bi)},
(

C
(x1)
〈g〉 , (x1)i

)

,
(

C
(x2)
〈g〉 , (x2)i

)

, · · · ,
(

C
(xℓ)
〈g〉 , (xℓ)i

)

) (11)

Node Pj shares
∑

i ki(xai
)j(xai

)j . For a type 1 pairing, verification of the correctness of the sharing is done by other

nodes as follows.

e(g
P

i
ki(xai

)j(xbi
)j , g)

?
=

∏

i

e((g(xai
)j)ki , g(xbi

)j)

For type 2 and 3 pairings, NIZKPK≡DLog is used to provide Feldman commitments to the (xbi
)j with generator ĝ,

and then a pairing computation like the above is used.

We use this protocol in Eq. 11 during distributed private-key extraction in Boneh and Boyen’s BB1-IBE scheme in

§5.4.

4.6 Sharing the Inverse of a Shared Secret

Given an (n, t, f)-distributed secret α, computing shares of its inverse α−1 in distributed manner (without reconstruct-

ing α) can be done trivially but inefficiently using a distributed computation of αp−1. It involves O(log p) distributed

multiplications. However, using a technique by Bar-Ilan and Beaver [3] this can be done using just one Random, one

Mul and one DKG-Rec protocol.

1For type 3 pairings, a careful selection of commitment generators is required to make the pairing-based verification possible.

8

This protocol involves a DKG-Rec which outputs the product of the shared secret α with a distributed random

element z. If z is created using Feldman commitments and is not uniformly random, the product αz may leak some

information about α. We avoid this by using Pedersen commitments while generating z.

(

C
(α−1)
〈g∗〉 , (α−1)i

)

= Inverse(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

) (12)

Here g∗ belongs to any group of order p. Assuming a distributed secret
(

C
(α)
〈g〉 , αi

)

, the protocol works as follows:

every node Pi:

1. runs
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

= RandomPed(n, t, f, ĝ, ĥ);

2. computes shares of (w,w′) = (αz, αz′) as
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

= MulPed(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

,
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

);

3. then reconstructs w = DKG-RecPed(t, C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i). If w = 0, repeats the above two steps, else locally

computes (α−1)i = w−1zi;

4. finally, computes the commitment C
(α−1)
〈g∗〉 using w−1, C

(z,z′)

〈ĝ,ĥ〉
, and if required, any of the NIZKPK techniques.

As with the Mul protocol, the liveness, agreement and consistency of the Inverse protocol follow directly from the

corresponding properties of DKG-Sh. To prove the privacy, we employ the privacy property of the DKG-Sh protocol,

Lemma 6 in [3] and the uniform randomness of the w computed in public; the details are in the next version of this

paper. Although in practice this protocol is at least two times as expensive as a DKG-Sh instance, in theoretical sense,

it has same asymptotic message and communication complexities as those of the DKG-Sh protocol.

5 Distributed PKG for IBE

We present distributed PKG setup and private key extraction protocols for three IBE schemes: namely, Boneh and

Franklin’s IBE (BF-IBE) [8], Sakai and Kasahara’s IBE (SK-IBE) [49], and Boneh and Boyen’s IBE (BB1-IBE) [10].

Each of these schemes represents a distinct important category of an IBE classification defined by Boyen [9]. They

respectively belong to full-domain-hash IBE schemes, exponent-inversion IBE schemes, and commutative-blinding

IBE schemes. Note that the distributed PKG architectures that we develop for each of the three schemes apply to

every scheme in their respective categories. Our above choice of IBE schemes is influenced by a recent identity-based

cryptography standard (IBCS) [11] and also a comparative study by Boyen [10], which finds the above three schemes

to be the most practical IBE schemes in their respective categories. In his classification, Boyen [9] also includes

another category for quadratic-residuosity-based IBE schemes; however, none of the known schemes in this category

are practical enough to consider here.

The role of a PKG in an IBE scheme ends with a user’s private-key extraction. The distributed form of the PKG

does not affect the encryption and decryption steps of IBE. Consequently, we concentrate only the distributed PKG

setup and private-key extraction steps of the three IBE schemes under consideration. Note that during private-key

extractions, we insist on minimal interaction between clients and PKG nodes—transferring identity credentials from

the client at the start and private-key shares from the nodes at the end. We start by describing a bootstrapping procedure

required by all IBE schemes.

5.1 Bootstrapping Procedure

Each of the IBE schemes under consideration here requires the following three bootstrapping steps.

1. Determine the group size n, the security threshold t and the crashed-nodes threshold f such that n ≥ 3t+2f+1
and form a group of n PKG nodes.

2. Choose the pairing type to be used and compute three groups G, Ĝ, and GT of prime order p such that there

exists a bilinear pairing e of the decided type with e : G × Ĝ → GT . The group order p is determined by the

security parameter κ. We will write all of the groups multiplicatively.

9

3. Choose two generators g ∈ G and ĝ ∈ Ĝ required to generate public parameters as well as the commitments.

Any untrusted entity can perform these offline tasks. Honest DKG nodes can verify the correctness of the tuple (n, t, f)

and confirm the group choices G, Ĝ, and GT as the first step of their distributed PKG setup. If unsatisfied, they may

decline to proceed.

5.2 Boneh and Franklin’s BF-IBE

BF-IBE [8] belongs to the full-domain-hash IBE family. In a BF-IBE setup, a PKG generates a master key s ∈ Zp

and an associated public key gs ∈ G, and derives private keys (d ∈ Ĝ) for clients using their well-known identities

(ID) and s. A client with identity ID receives the private key dID = H(ID)s ∈ Ĝ, where H : {0, 1}∗ → Ĝ∗ is a

full-domain cryptographic hash function. (Ĝ∗ denotes the set of all elements in Ĝ except the identity.) The security of

BF-IBE is based on the BDH assumption.

Distributed PKG Setup The distributed PKG setup involves generation of the system master key and the associated

system public-key tuple in the (n, t, f)-distributed form among n nodes. Each node Pi participates in a DKG over

Zp to generate its share si ∈ Zp of the distributed master key s. The system public-key tuple is of the form C
(s)
〈g〉 =

[gs, gs1 , · · · , gsn]. We represent this using our RandomFeld protocol from Eq. 7.
(

C
(s)
〈g〉, si

)

= RandomFeld(n, t, f, g)

Private-key Extraction After a successful setup, PKG nodes are ready to extract private keys for clients. As a client

needs t + 1 correct shares, it is sufficient for the client to contact any 2t + f + 1 nodes (say set Q). The private-key

extraction protocol works as follows.

1. A client with identity ID contacts every node from the set Q.

2. Every honest node Pi ∈ Q verifies the client’s identity and returns a private-key share H(ID)si ∈ Ĝ over a

secure and authenticated channel.

3. Upon receiving t+1 valid shares, the client can construct her private key dID as dID =
∏

Pi∈Q(H(ID)si)λi ∈ Ĝ,

where the Lagrange coefficient λi =
∏

Pj∈Q\{i}
j
j−i .

4. The client can verify the correctness of the computed private key dID by checking e(g, dID)
?
= e(gs, H(ID)).

If unsuccessful, she can verify the correctness of each received H(ID)si by checking if e(g,H(ID)si)
?
=

e(gsi , H(ID)). An equality proves the correctness of the share, while an inequality indicates misbehaviour by

the node Pi and its consequential removal from Q.

In asymmetric pairings, elements of G generally have a shorter representation than those of Ĝ. Therefore, we

put the more frequently accessed system public-key shares in G, while the occasionally transferred client private-key

shares belong to Ĝ. This also leads to a reduction in the ciphertext size. However, for type 2 pairings, an efficient

hash-to-Ĝ is not available for the group Ĝ [25]; in that case we compute the system public key shares in Ĝ and use the

more feasible group G for the private key shares.

5.3 Sakai and Kasahara’s SK-IBE

SK-IBE [49] belongs to the exponent-inversion IBE family. The PKG setup here remains exactly same as BF-IBE

and the PKG generates a master key s ∈ Zp and an associated public key gs ∈ G just as in BF-IBE. However, the

key-extraction differs significantly. Here, a client with identity ID receives the private key dID = ĝ
1

s+H(ID) ∈ Ĝ, where

H : {0, 1}∗ → Zp. Chen and Cheng [18] prove the security of SK-IBE based on the BDHI.

Distributed PKG Setup The distributed PKG setup remains the exactly same as that of BF-IBE, where si ∈ Zp is

the master-key share for node Pi and C
(s)
〈g〉 = [gs, gs1 , · · · , gsn] is the system public-key tuple.

10

Private-key Extraction The private-key extraction for SK-IBE is not as straightforward as that for BF-IBE. We

slightly modify the Inverse protocol described in §4.6; specifically, here a private-key extracting client receives wi
from the node in step 3 and instead of PKG nodes, the client performs the interpolation step of DKG-Rec. In step 4,

instead of publishing, PKG nodes forward ĝzi and the associated NIZKPK≡Com directly to the client, which computes

ĝz and then dID = (ĝz)w
−1

. The reason behind this is to avoid possible key-escrow if the node computes both

ĝz and w. Further, the nodes precompute another generator ĥ ∈ Ĝ for Pedersen commitments using
(

C
(r)
〈ĝ〉, ri

)

=

RandomFeld(n, t, f, ĝ), and set ĥ =
(

C
(r)
〈ĝ〉

)

0
= ĝr.

1. A client with identity ID contacts all n nodes the system.

2. Node Pi verifies the client’s identity, runs
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

= RandomPed(n, t, f, ĝ, ĥ) and computes sIDi =

si +H(ID) and for 0 ≤ j ≤ n,
(

C
(sID)
〈g〉

)

j
=

(

C
(s)
〈g〉

)

j
gH(ID) = gsj+H(ID).

3. Pi performs
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

= MulPed(n, t, f, ĝ, ĥ,
(

C
(sID)
〈g〉 , sIDi

)

,
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

), where w = sIDz =

(s+H(ID))z and w′ = (s+H(ID))z′ and sends
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

to the client, which upon receiving t+ 1

verifiably correct shares (wi, w
′
i) reconstructsw ∈ Zp using Lagrange-interpolation. If w 6= 0, then it computes

w−1 or else starts again from step 1.

4. Node Pi computes
(

C
(z)
〈ĝ〉

)

i
= ĝzi and sends that along with NIZKPK≡Com(zi, z

′
i,

(

C
(z)
〈ĝ〉

)

i
,
(

C
(z,z′)

〈ĝ,ĥ〉

)

i
) from

Eq. 1.

5. The client Lagrange-interpolates t+1 valid ĝzi to compute ĝz and derives her private key (ĝz)w
−1

= ĝ
1

(s+H(ID)) .

This protocol can be used without any modification with any type of pairing. Further, online execution of the

RandomPed computation can be eliminated using batch precomputation of distributed random elements
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

.

5.4 Boneh and Boyen’s BB1-IBE

BB1-IBE belongs to the commutative-blinding IBE family. Boneh and Boyen [7] proposed the original scheme with

a security reduction to the DBDH assumption in the standard model against selective-identity attacks. However, with

a practical requirement of security against adaptive-identity chosen-ciphertext attacks (IND-ID-CCA), in the recent

IBCS standard [11], Boyen and Martin proposed a modified version of BB1, which is IND-ID-CCA secure in the

random oracle model under the BDH assumption. In [10], Boyen rightly claims that for practical applications, it

would be preferable to rely on the random-oracle assumption rather than using a less efficient IBE scheme with a

stronger security assumption or a weaker attack model. Here, we consider the modified BB1-IBE scheme as described

in [10] and [11].

In the BB1-IBE setup, the PKG generates a master-key triplet (α, β, γ) ∈ Z3
p and an associated public key tuple

(gα, gγ , e(g, ĝ)αβ). A client with identity ID receives the private key tuple dID = (ĝαβ+(αH(ID)+γ)r, ĝr) ∈ Ĝ
2,

where H : {0, 1}∗ → Zp.

Distributed PKG Setup In [10], Boyen does not include the parameters ĝ and ĝβ from the original BB1 scheme [7]

in his public key, as they are not required during key extraction, encryption or decryption (they are not omitted for

security reasons). In the distributed setting, we in fact need those parameters to be public for efficiency reasons; a

verifiable distributed computation of e(g, ĝ)αβ becomes inefficient otherwise. To avoid key escrow of clients’ private-

key components (ĝr), we also need ĥ and C
(β)

〈ĥ〉
; otherwise, parts of clients’ private-keys would appear in public

commitment vectors. As in SK-IBE in §5.3, this extra generator ĥ ∈ Ĝ is precomputed using the RandomFeld
protocol.

Distributed PKG setup of BB1 involves distributed generation of the master-key tuple (α, β, γ). Distributed PKG

node Pi achieves this using the following three RandomFeld protocol invocations.
(

C
(α)
〈g〉 , αi

)

= RandomFeld(n, t, f, g)
(

C
(β)
〈ĝ〉 , βi

)

= RandomFeld(n, t, f, ĝ)
(

C
(γ)
〈g〉 , γi

)

= RandomFeld(n, t, f, g)

11

Here, (αi, βi, γi) is the tuple of master-key shares for node Pi. We also need C
(β)

〈ĥ〉
; each node Pi provides this by

publishing
(

C
(β)

〈ĥ〉

)

i
= ĥβi and the associated NIZKPK≡DLog(βi, ĝ

βi , ĥβi). The tuple
(

C
(α)
〈g〉 , e(g, ĝ)

αβ , C
(γ)
〈g〉 , C

(β)

〈ĥ〉

)

forms the system public key, where e(g, ĝ)αβ can computed from the public commitment entries. The vector C
(β)
〈ĝ〉 ,

although available publicly, is not required for any further computation.

Private-key Extraction The most obvious way to compute a BB1 private key seems to be for Pi to compute αiβi+
(αiH(ID) + γi)ri and provide the corresponding ĝαiβi+(αiH(ID)+γi)ri , ĝri to the client, who now needs 2t+ 1 valid

shares to obtain her private key. However, αiβi + (αiH(ID) + γi)ri here is not a share of a random degree-2t
polynomial. The possible availability of ĝri to the adversary creates a suspicion about privacy of the master-key share

with this method.

For private-key extraction in BB1-IBE with a distributed PKG, we instead use the MulBP protocol in which the

client is provided with ĝ(αβ+(αH(ID)+γ)r)i , where (αβ+ (αH(ID)+ γ)r)i is a share of random degree t polynomial.

The protocol works as follows.

1. A client with identity ID contacts all n nodes the system.

2. Node Pi verifies the client’s identity and runs
(

C
(r)

〈ĥ〉
, ri

)

= RandomFeld(n, t, f, ĥ)

3. Pi computes its share wi = (αβ + (αH(ID) + γ)r)i of w = αβ + (αH(ID) + γ)r using protocol MulBP in

Eq. 11.

(

C
(w)
〈g∗〉, wi

)

= MulBP(n, t, f, g∗, desc,
(

C
(α)
〈g〉 , αi

)

,
(

C
(β)

〈ĥ〉
, βi

)

,
(

C
(γ)
〈g〉 , γi

)

,
(

C
(r)

〈ĥ〉
, ri

)

)

where desc = {(1, 1, 2), (H(ID), 1, 4), (1, 3, 4)} is the description of the required binary product under the

ordering (α, β, γ, r) of secrets.

To justify our choices of commitment generators, we present the verification of the value shared in the MulBP
protocol:

e(gαiβi+(αiH(ID)+γi)ri , ĥ)
?
= e(gαi , ĥβi)e((gαi)H(ID)gγi , ĥri)

For type 2 and 3 pairings, g∗ = g, as there is no efficient isomorphism from G to Ĝ. However, for type 1
pairings, we use g∗ = ĥ = φ(h). Otherwise, the resultant commitments for w (which is public) will contain the

private-key part gαβ+(αH(ID)+γ)r.

4. Once the MulBP protocol has succeeded, Node Pi generates ĝwi and ĝri and sends those to the client over a

secure and authenticated channel.

5. The client Lagrange-interpolates the valid received shares to generate her private key (ĝαβ+(αH(ID)+γ)r, ĝr).

6. For type 1 and type 2 pairings, the client can use the pairing-based DDH solving to check the validity of the

shares. However, for type 3 pairings, without an efficient mapping from Ĝ to G, pairing-based DDH solving

can only be employed to verify ĝwi . As a verification of ĝri , node Pi includes a NIZKPK≡DLog(ri, ĥ
ri , ĝri)

along with ĝwi and ĝri .

As in SK-IBE in §5.3, online execution of the RandomFeld computation can be eliminated using batch precomputa-

tion of distributed random elements
(

C
(r)

〈ĥ〉
, ri

)

.

5.5 Security Analysis

Next we touch upon the security analysis of the three distributed PKG setup and key extraction protocols defined

above. We only provide rough proof ideas here and leave detailed proofs for the next version of the paper.

The distributed PKG setup for all three IBE schemes only involve the instantiation of protocol RandomFeld(n, t, f, g∗)
from Eq. 7, where g∗ = g or ĝ. Consequently, the distributed PKG setups obtain liveness and agreement and the master

keys obtain consistency and privacy directly from protocol DKG-Sh.

For the private-key extraction protocols, liveness and consistency are easy to prove. A client always requests a

sufficient number of nodes (2t + f + 1 in BF-IBE and n in SK-IBE and BB1-IBE) so that malicious and crashed

nodes do not hamper the completion of the protocols. BF-IBE achieves consistency using the consistency property

12

 1

 10

 100

 1000

 10000

 5 10 20 30 40

C
o

m
p

le
ti

o
n

 T
im

e
(s

)

System Size (number of nodes)

Figure 1: Completion Time (with min/max bars) vs System Size (log-log plot)

of the underlying DKG-Sh and pairing-based verification technique, while for SK-IBE and BB1-IBE, we also require

consistency of protocol Mul.

To prove the privacy property of private-key extraction protocols against a polynomially bounded static adversary

A, which has access to t nodes in the system and can crash f others at any point during the protocol, we use the

simulation game technique. A simulator B wants to solve an instance of an appropriate hard problem (BDH prob-

lem for BF-IBE and BB1-IBE, and BDHI problem for SK-IBE) using the adversary algorithm A. It runs all n − t
non-Byzantine nodes, sets one of the problem parameters as a part of one of its nodes’ (say Pn’s) commitments, and

completes the DKG-Sh, keeping Pn’s VSS instance in the set of selected VSSs. In the key extraction part, it simulates

the random oracle and answers key extraction queries from the adversary using the available information. It finally

sets the challenge for the adversary from the remaining parameters of the hard problem, and uses the answer from A to

answer the hard problem. With no interaction between the PKG nodes, proving the privacy of BF-IBE is straightfor-

ward using the above approach, while for SK-IBE and BB1-IBE, we also need to use the privacy property of protocol

Mul.

6 System Aspects

In this section, we discuss the system aspects of distributed PKGs. As DKG is by far the most important component

of our distributed PKGs, we first implement and test the DKG protocol [35] that we use in our distributed PKGs. In

the process, we propose several system-level optimizations for this DKG. We also analyze practical aspects of our

distributed PKGs and present a comparative study. Finally, we mention proactive security and group modification

protocols for our distributed PKGs.

Note that two distributed CAs for PKC, Ω [48] and Cornell Online Certification Authority (COCA) [55], have been

designed previously. However, with their focus on CAs, the protocols they provide are mismatched to the requirements

of a distributed PKG. As a result, we do not design our distributed PKGs using these solutions.

6.1 DKG Implementation on PlanetLab

We design our DKG nodes as state machines (using the state machine replication approach [38, 50]), where nodes

move from one state to another based on messages received. Messages are categorized into three types: operator

messages, network messages and timer messages. The operator messages define interactions between nodes and their

operators, the network messages realize protocol flows between nodes, and the timer messages implement the weak

synchrony assumption described in §3.1.

We aim at building a distributed PKG for IBE schemes. Therefore, we develop our object-oriented C++ implemen-

tation over the PBC library [40] for the underlying elliptic-curve and finite-field operations and a PKI infrastructure

with DSA signatures based on GnuTLS [41] for confidentiality and message authentication. (Note that nodes have

TLS PKI certificates, which does not conflict with the goal of providing IBE private keys to clients.) In order to

examine its realistic performance, we test our DKG implementation on the PlanetLab platform [47].

13

Table 1: Operation count and key sizes for distributed PKG setups and distributed private-key extractors (per private

key)
BF-IBE SK-IBE BB1-IBE

Setup Extraction Setup Extraction Setup Extraction

Operation Count

Generator h or ĥ X
√ √

DKG-Sha

(precomputed) - 0 - 1P - 1F

(online) 1F 0 1F 1P 3F 1F

Parings

@PKG Node 0 0 0 2n 1b 2n

@Client - 2(2t + 2) - 0 - 2nb

NIZKPK 0 0 0 n nb nb

Interpolations 0 1 0 2 1 2

Key Sizes

PKG Public Key (n + 2)Gc (n + 3)G (2n + 3)G, (n + 2)Ĝ, (1)GT

Private-key Shares (2t + 1)Ĝc (3n)Zp , (3n + 1)Ĝ (2n)Zp
b, (2n)Ĝ

aFor DKG-Sh F indicates use of Feldman commitments, while P indicates Pedersen commitments.
bFor type 1 and 2 pairings, n NIZKPKs can be replaced by 2n extra pairings and the 2n Zp elements are omitted from the private-key shares.
cFor type 2 parings, the groups used for the PKG public key and the private-key shares are interchanged.

Performance Analysis We test the performance of our DKG implementation for systems of up to 40 nodes and we

observe an expected approximately cubic growth in the average completion time.2 Figure 1 presents our results in

graphical form. In practical applications such as [36], these values, ranging from seconds to a little over an hour, are

small as compared to DKG phase sizes (in days). Importantly, the use of dedicated high-performance servers instead

of unreliable resource-shared PlanetLab nodes can drastically improve the performance. We also measure minimum

and maximum completion times for the experiments. Big gaps between those values demonstrate the robustness of the

DKG system against the Internet’s asynchronous nature and varied resource levels of the PlanetLab nodes.

To check the applicability of the weak synchrony assumption [16] that we use in DKG, we also tested the system

with crashed leaders. In such scenarios, the DKG protocol successfully completed after a few leader changes. How-

ever, we observe that the average completion time of a system critically varies with the choice of delay(t) functions

and we suggest that this should only be finalized for a system after rigorous testing.

While implementing this system, we also found two system-level optimizations for this DKG.

• To the original DKG protocol, we add a new shared network message from a node to a leader having 2t+f+1
signed ready messages for a completed VSS. The leader can then include this VSS instance in its DKG send

without completion of the VSS instance at its own machine.

• During our experiments, we observed that the VSS instances are more resource consuming than the agreement

required at the end. Except during the Mul protocol, we only need t + 1 VSS instances to succeed. Assuming

t+ f VSS instances might fail during a DKG, it is sufficient to start VSSs at just 2t+ f + 1 nodes instead of at

all n nodes. Nodes that do not start a VSS initially may utilize the weak synchrony assumption to determine to

when to start a VSS instance if required.

6.2 Comparing Distributed PKGs

In this section, we concentrate on the performance of the setup and key extraction procedures of the three distributed

PKGs defined in §5. For a detailed comparison of the encryption and decryption algorithms of BF-IBE, SK-IBE and

BB1-IBE, we refer readers to the survey by Boyen [10]. The general recommendations from this survey are to avoid

SK-IBE and other exponent-inversion IBEs due to their reliance on the strong BDHI assumption, and that BB1-IBE

and BF-IBE both are good, but BB1-IBE can be a better choice due to BF-IBE’s less efficient encryption.

Table 1 provides a detailed operation count and key size comparison of our three distributed PKGs. We count

DKG-Sh instances, pairings, NIZKPKs, interpolations and public and private key sizes. We leave aside comparatively

small exponentiations and other group operations. As mentioned in §5.4, for BB1-IBE, with curves of type 1 and

2With cubic message complexity, larger distributed systems (n > 50) are not practical for the Internet.

14

2, there is a choice that can be made between using n NIZKPKs and 2n pairing computations. The table shows the

NIZKPK choice (the only option for type 3 pairings), and footnote b shows where NIZKPKs can be traded off for

pairings. As discussed in §5.2, for curves with type 2 pairings, an efficient algorithm for hash-to-Ĝ is not available

and we have to interchange the groups used for the system public key shares and client private-key shares. Footnote c
indicates how that affects the key sizes.

In Table 1, we observe that the distributed PKG setup and the distributed private-key extraction protocols for BF-

IBE are significantly more efficient than those for SK-IBE and BB1-IBE. Importantly, for BF-IBE, distributed PKG

nodes can extract a key for a client without interacting with each other, which is not possible in the other two schemes;

both BB1-IBE and SK-IBE require at least one DKG instance for every private-key extraction; the second required

instance can be batch-precomputed. Therefore, for IBE applications in the random oracle model, we suggest the use of

the BF-IBE scheme, except in situations where private-key extractions are rare and efficiency of the encryption step is

critical to the system. For such applications, we suggest BB1-IBE as the small efficiency gains in the distributed PKG

setup and extraction protocols of SK-IBE do not well compensate for the strong security assumption required. Further,

BB1-IBE can also be proved secure in the standard model with selective-identity attacks. For applications demanding

security in the standard model, our distributed PKG for BB1-IBE also provides a solution to the key escrow and single

point of failure problems, using pairings of type 1 or 2.

6.3 Proactive Security & Group Modification

With an endless supply of software and network security flaws, system attacks not only are prevalent but have also

been growing. The distributed nature of our protocols mitigates the effects of those attacks to some extent, but their

time-independence makes them vulnerable to a gradual break-in by a mobile attacker breaking into system nodes one

by one. The concept of proactive security [44] has been introduced to counter these attacks. Further, on a long-term

basis, the set of PKG nodes will need to be modified, which can also cause changes to the system’s security threshold t
and the crash-limit f . Therefore, for our distributed PKG systems, we need proactive security and group modification

protocols.

We observe that the proactive security and group modification protocols defined in [35], for the DKG protocol

used in our distributed PKGs, are directly applicable to our distributed PKGs. We suggest the use of these protocols to

achieve proactive security of our master keys and group modification of our PKGs. Note that this is possible only due

to the nature of the master keys for the three IBE schemes that we use. All master key elements in these three schemes

belong to Zp, which is also the output domain for the DKG protocol. In contrast to the three IBEs that we consider,

we leave as an open problem the possibility of providing proactive security and group modification protocols to the

master keys for IBE schemes such the original BB1-IBE [7] or Waters’ IBE [54].

7 Conclusion

In this paper, we designed and compared distributed PKG setup and private key extraction protocols for Boneh and

Franklin’s BF-IBE, Sakai and Kasahara’s SK-IBE, and Boneh and Boyen’s BB1-IBE. We observe that the distributed

PKG implementation for BF-IBE is the most simple and efficient among all and we suggest its use when the system

can support its relatively costly encryption step. For systems requiring a faster encryption, we suggest use BB1-IBE

instead. However, during every distributed private key extraction, it requires a DKG and consequently, interaction

among PKG nodes. That being said, during private-key extractions, we successfully avoid any interaction between

clients and PKG nodes except the necessary identity at the start and key share transfers at the end. Further, each of the

above three schemes represents a separate category of IBE schemes and our designs can be applied to other schemes

in those category as well.

While developing our distributed PKGs, we also developed asynchronous computational protocols for distributed

multiplication and distributed inverse computation, which may have their own applications. To confirm the feasibility

of a distributed PKG in the asynchronous communication model, we also implemented and verified the efficiency

and the reliability of an asynchronous DKG protocol using extensive testing over the PlanetLab platform. We also

suggested proactive security and group modification protocols for our distributed PKGs and in the future, we would

like add those features to our system.

15

References

[1] S. S. Al-Riyami and K. G. Paterson. Certificateless Public Key Cryptography. In ASIACRYPT’03, pages 452–473, 2003.

[2] M. Backes and C. Cachin. Reliable Broadcast in a Computational Hybrid Model with Byzantine Faults, Crashes, and Recov-

eries. In DSN’03, pages 37–46, 2003.

[3] J. Bar-Ilan and D. Beaver. Non-Cryptographic Fault-Tolerant Computing in Constant Number of Rounds of Interaction. In

PODC’89, pages 201–209, 1989.

[4] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Computation. In STOC’93, pages 52–61, 1993.

[5] I. Blake, G. Seroussi, and N. P. Smart, editors. Advances in Elliptic Curve Cryptography. Number 317 in London Mathemat-

ical Society Lecture Note Series. Cambridge University Press, 2005. 183–252.

[6] G. R. Blakley. Safeguarding Cryptographic Keys. In the National Computer Conference, pages 313–317, 1979.

[7] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In EURO-

CRYPT’04, pages 223–238, 2004.

[8] D. Boneh and M. K. Franklin. Identity-Based Encryption from the Weil Pairing. In CRYPTO’01, pages 213–229, 2001.

[9] X. Boyen. General Ad Hoc Encryption from Exponent Inversion IBE. In EUROCRYPT’07, pages 394–411, 2007.

[10] X. Boyen. A Tapestry of Identity-based Encryption: Practical Frameworks Compared. IJACT, 1(1):3–21, 2008.

[11] X. Boyen and L. Martin. Identity-Based Cryptography Standard (IBCS) (Version 1), Request for Comments (RFC) 5091.

http://www.ietf.org/rfc/rfc5091.txt, 2007.

[12] C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl. Asynchronous Verifiable Secret Sharing and Proactive Cryptosystems.

In ACM CCS’02, pages 88–97, 2002.

[13] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantipole: Practical Asynchronous Byzantine Agreement

Using Cryptography. In PODC’00, pages 123–132, 2000.

[14] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive Security for Threshold Cryptosystems. In

CRYPTO’99, pages 98–115, 1999.

[15] R. Canetti and T. Rabin. Fast Asynchronous Byzantine Agreement with Optimal Resilience. In STOC’93, pages 42–51, 1993.

[16] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance and Proactive Recovery. ACM Trans. Comput. Syst., 20(4):398–

461, 2002.

[17] D. Chaum and T. P. Pedersen. Wallet Databases with Observers. In CRYPTO’92, pages 89–105, 1992.

[18] L. Chen and Z. Cheng. Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme. Cryptology ePrint Archive,

Report 2005/226, 2005.

[19] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing and Achieving Simultaneity in the Presence

of Faults (Extended Abstract). In FOCS’85, pages 383–395, 1985.

[20] X. Chunxiang, Z. Junhui, and Q. Zhiguang. A Note on Secure Key Issuing in ID-based Cryptography. Technical report, 2005.

http://eprint.iacr.org/2005/180.

[21] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the Presence of Partial Synchrony. Journal of ACM, 35(2):288–

323, 1988.

[22] P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In FOCS’87, pages 427–437, 1987.

[23] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In CRYPTO’86,

pages 186–194, 1986.

[24] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of Distributed Consensus with One Faulty Process. Journal of

ACM, 32(2):374–382, 1985.

[25] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied Mathematics, 156(16):3113–

3121, 2008.

[26] R. Gangishetti, M. C. Gorantla, M. Das, and A. Saxena. Threshold key issuing in identity-based cryptosystems. Computer

Standards & Interfaces, 29(2):260–264, 2007.

[27] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key Generation for Discrete-Log Based Cryptosys-

tems. In EUROCRYPT’99, pages 295–310, 1999.

[28] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Applications of Pedersen’s Distributed Key Generation Protocol.

In CT-RSA’03, pages 373–390, 2003.

16

[29] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key Generation for Discrete-Log Based Cryptosys-

tems. Journal of Cryptology, 20(1):51–83, 2007.

[30] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and Fact-Track Multiparty Computations with Applications to

Threshold Cryptography. In PODC’98, pages 101–111, 1998.

[31] V. Goyal. Reducing Trust in the PKG in Identity Based Cryptosystems. In CRYPTO’07, pages 430–447, 2007.

[32] A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. In ANTS, pages 385–394, 2000.

[33] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Computational Diffie-Hellman in Cryptographic Groups.

Journal of Cryptology, 16(4):239–247, 2003.

[34] M. Joye and G. Neven. Identity-Based Cryptography - Volume 2 Cryptology and Information Security Series. IOS Press,

Amsterdam, The Netherlands, The Netherlands, 2008.

[35] A. Kate and I. Goldberg. Distributed Key Generation for the Internet. Technical Report 2008-25, CACR, University of

Waterloo, 2008. To appear at ICDCS’09. Avaliable as http://www.cacr.math.uwaterloo.ca/techreports/

2008/cacr2008-25.pdf .

[36] A. Kate, G. M. Zaverucha, and I. Goldberg. Pairing-Based Onion Routing. In 7th Privacy Enhancing Technologies Symposium

(PET), pages 95–112, 2007.

[37] A. Khalili, J. Katz, and W. Arbaugh. Toward Secure Key Distribution in Truly Ad-Hoc Networks. In IEEE Workshop on

Security and Assurance in Ad-Hoc Networks 2003, pages 342–346, 2003.

[38] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM, 21(7):558–565, 1978.

[39] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo. Secure key issuing in ID-based cryptography. In ACSW Fron-

tiers’04, pages 69–74, 2004.

[40] B. Lynn. PBC Library – The Pairing-Based Cryptography Library. http://crypto.stanford.edu/pbc/, 2009.

Accessed April 2009.

[41] N. Mavroyanopoulos, F. Fiorina, T. Schulz, A. McDonald, and S. Josefsson. The GNU Transport Layer Security Library.

http://www.gnu.org/software/gnutls/, 2009. Accessed April 2009.

[42] A. Menezes, P. V. Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1st edition, 1997.

[43] S. Mitsunari, R. Sakai, and M. Kasahara. A New Traitor Tracing. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, E85-A(2):481–484, 2002.

[44] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks (Extended Abstract). In PODC’91, pages 51–59, 1991.

[45] T. P. Pedersen. A Threshold Cryptosystem without a Trusted Party. In Eurocrypt’91, pages 522–526. Springer-Verlag, 1991.

[46] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In CRYPTO’91, pages 129–140,

1991.

[47] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introducing Disruptive Technology into the Internet.

SIGCOMM Comput. Commun. Rev., 33(1):59–64, 2003.

[48] M. K. Reiter, M. K. Franklin, J. B. Lacy, and R. N. Wright. The Omega Key Management Service. Journal of Computer

Security, 4(4):267–288, 1996.

[49] R. Sakai and M. Kasahara. ID based Cryptosystems with Pairing on Elliptic Curve. Cryptology ePrint Archive, Report

2003/054, 2003.

[50] F. B. Schneider. Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM Comput. Surv.,

22(4):299–319, 1990.

[51] D. A. Schultz, B. Liskov, and M. Liskov. Mobile Proactive Secret Sharing. In PODC’08, page 458, 2008. (Extended Draft).

[52] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[53] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO’84, pages 47–53, 1984.

[54] B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In EUROCRYPT’05, pages 114–127, 2005.

[55] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed online certification authority. ACM Trans. Comput.

Syst., 20(4):329–368, 2002.

[56] L. Zhou, F. B. Schneider, and R. van Renesse. APSS: proactive secret sharing in asynchronous systems. ACM Trans. Inf. Syst.

Secur.(TISSec), 8(3):259–286, 2005.

17

A Non-interactive Zero-knowledge Proofs

We now present the details of the non-interactive zero-knowledge proofs of knowledge (NIZKPKs) introduced in §4.2.

Here, H is a hash function modelled by a random oracle.

The first proof (which to our knowledge has not appeared before in the literature, but is straightforward) is that a

Feldman commitment F = C〈g〉(s) = gs and a Pedersen commitment P = C〈g,h〉(s, r) = gshr are both committing

to the same value s. We denote this by NIZKPK≡Com(s, r, F, P).
The proof is generated as follows:

• Pick v1, v2 ∈R Zp

• Let t1 = gv1 , t2 = hv2

• Let c = H(g, h, F, P, t1, t2)

• Let w1 = v1 − c · s (mod p), w2 = v2 − c · r (mod p)

• The proof is π≡Com = (c, w1, w2)

The verifier checks this proof (given π≡Com, g, h, F , P) as follows:

• Let t′1 = gw1F c, t′2 = hw2(P/F)c

• Accept the proof as valid if c = H(g, h, F, P, t′1, t
′
2)

The second proof is that two Feldman commitments F1 = C〈g〉(s) = gs and F2 = C〈h〉(s) = hs commit to the

same value; that is, the discrete logs of F1 and F2 to the bases of g and h respectively are equal. We denote this by

NIZKPK≡DLog(s, F1, F2). The proof is standard [17]:

The proof is generated as follows:

• Pick v ∈R Zp

• Let t1 = gv, t2 = hv

• Let c = H(g, h, F1, F2, t1, t2)

• Let w = v − c · s (mod p)

• The proof is π≡DLog = (c, w)

The verifier checks this proof (given π≡DLog, g, h, F1, F2) as follows:

• Let t′1 = gwF c1 , t′2 = hwF c2

• Accept the proof as valid if c = H(g, h, F1, F2, t
′
1, t

′
2)

18

