[Regular Paper]

Oxidation of Isobutane to Methacrolein over Ga₂O₃/Bi₂Mo₃O₁₂ Catalysts

Yoshiaki Obana^{†1)}, Kouji Yashiki^{†1)}, Masami Ito^{†2)}, Hiroyasu Nishiguchi^{†1)}, Tatsumi Ishihara^{†1)}, and Yusaku Takita^{†1)}*

^{†1)} Dept. of Applied Chemistry, Faculty of Enginnering, Oita University, Dannoharu 700, Oita 870-1192, JAPAN
^{†2)} Research and Development Center, Oita University, Dannoharu 700, Oita 870-1192, JAPAN

(Received July 22, 2002)

Catalytic performance and the surface character of the Ga₂O₃ supported Bi–Mo complex oxides were studied to achieve direct formation of methacrolein from isobutane.

Bi₂Mo₃O₁₂ (α phase) and Bi₂Mo₁O₆ (γ phase) showed higher catalytic activity than Bi₂Mo₂O₉ (β phase) for isobutane partial oxidation. Supporting Ga₂O₃, which is an active catalyst for dehydrogenation of hydrocarbons, onto the oxides, enhanced the catalytic activity.

The optimum amount of supported Ga_2O_3 on $Bi_2Mo_3O_{12}$ was about 3 wt% for methacrolein formation. In the presence of oxygen, a remarkable amounts of hydrogen over Ga_2O_3 during the isobutane oxidation but no hydrogen was formed over $Ga_2O_3/Bi_2Mo_3O_{12}$. It is confirmed from TPR that Ga_2O_3 and $Bi_2Mo_3O_{12}$ were not reduced until 550°C but the reduction of $Ga_2O_3/Bi_2Mo_3O_{12}$ started at 350-380°C. The on-set temperature in TPR of the Bi-Mo complex oxides decreased to 350-380°C from 500°C by the supporting Ga_2O_3 onto the oxides, and the catalysts after TPR measurement are composed of BiO, Bi, and MoO₂ in addition to $Bi_2Mo_3O_{12}$. These results suggest that the hydrogen spillover took place over supported catalyst.

 $Ga_2O_3/Bi_2Mo_3O_{12}$ catalyst showed higher activity and high selectivity for methacrolein at 450°C. The improvement in the selectivity for methacrolein of the $Ga_2O_3/Bi_2Mo_3O_{12}$ may be explained as following. Isobutane is adsorbed on the surface of Ga_2O_3 to form hydrogen atom and *t*-butyl fragment and both formed species migrates to $Bi_2Mo_3O_{12}$ surface. Migrated hydrogen may modify the $Bi_2Mo_3O_{12}$ surface property by the reaction with oxide ions, which is active for the deep oxidation resulting in high selectivity for methacrolein.

In the non-aerobic oxidation of isobutane over the $Ga_2O_3/Bi_2Mo_3O_{12}$ catalyst, the formation rate of CO_x significantly reduced, and methacrolein and isobutene were selectively obtained when the reduction degree of the catalyst was lower than 0.3% at 450°C.

Keywords

Isobutane oxidation, Methacrolein synthesis, Bismuth molybdate catalyst, Gallium oxide, Hydrogen spillover, Nonaerobic oxidation

1. 緒 言

メタクロレインは、機能性ポリマーであるポリメタクリレー トのビルディングブロックであるメタクリル酸メチルの重要な 中間体である。従来、メタクロレインは、Bi-Mo酸化物触媒系 を用いてイソブテンおよび t-ブチルアルコールを原料とした製 造方法が多く研究され、工業的合成が実施されている。工業的 に用いられる Bi-Mo酸化物系触媒は、Bi-Mo酸化物に Fe, Ni, Cu等の添加物を添加し、活性、選択性を向上させており、反 応は 300~450℃ で行われている¹⁾。得られたメタクロレイン は、ヘテロポリ酸でメタクリル酸に酸化した後、さらにエステ ル化する方法²⁾ や、Pd触媒によるメタノールの直接付加によ ってメタクリル酸メチルへと変換される³⁾。メタクロレイン、 メタクリル酸メチルは、今後も旺盛な需要が見込まれる化合物

* E-mail: takita@cc.oita-u.ac.jp

であり、より安価な合成プロセスの開発を目指して触媒の改良 および触媒反応プロセスの改良研究が行われている。

資源として豊富で、イソブテンや t-ブチルアルコールよりも 安価なイソブタンを原料とするイソブテンの合成、あるいはイ ソブテンからの含酸素化合物の直接合成は学術的にも工業的に もチャレンジングな分野であり、最近活発な研究が行われてい る。たとえば Sb-Re-O⁴)、ヘテロポリ酸^{5)~7)}、K, Ca, and P-doped Ni-Mo-O⁸⁾、Pt-SbO_x⁹⁾、Bi-Mo-oxide with Nb₂O₅¹⁰⁾、Mo-V-X-O¹¹⁾ などの触媒系があげられる。著者らもこれまでにイソブタンの 酸化的脱水素反応に有効な触媒について研究し、Ni₂P₂O₇や LaPO₄、CePO₄などの希土類リン酸塩を触媒として、イソブタ ンリッチ(75 mol%)で酸素の少ない(5 mol%)反応ガスを 導入すると、供給した酸素は全て消費され、450~550℃の反 応温度でイソブテンが 85 mol% もの高い選択率で生成するこ とを報告した^{12)~14)}。この触媒を用いて酸化的脱水素反応によ りイソブテンを合成し、イソブテンからメタクロレイン合成を

^{*} To whom correspondence should be addressed.

54

既存の工業プロセスで行うと、イソブタンからメタクリル酸の 合成は次のように3段のプロセスとなってしまう。

i -C ₄ H ₁₀ + 1/2O ₂ \longrightarrow i -C ₄ H ₈ + H ₂ O	(1)
$i-C_4H_8 + O_2 \longrightarrow CH_2CCH_3CHO + H_2O$	(2)
$CH_2CCH_3CHO + 1/2 O_2 \longrightarrow CH_2CCH_3COOH$	(3)

しかし、これは工程上複雑であり、コストもかかるので、反応(1)と反応(2)を一つの反応器で行うことができれば、合計2段の反応プロセスでイソブタンからメタクリル酸を合成することができる。そこで、著者らはイソブタンの酸化的脱水素反応に有効なNi2P2O7触媒とBi-Mo系酸化物触媒(Bi1-Mo12-Fe1-Co6-Ni2-CS0.14-Ox、NK-1触媒と略)を一つの反応器にシリーズに充填し、まずNi2P2O7触媒床でイソブタンの酸化的脱水素反応を行い、ここでの生成ガスに少量の酸素を添加して、次のNK-1触媒床でアリル型の酸化反応を行うと、60%もの高い選択率でメタクロレインを合成できることを報告した¹⁵⁾。また、この二つの触媒をシリーズに充填するのではなく、粉体混合あるいは粒状混合して一つの触媒層で反応したところ、粒状混合では全く相乗効果は見られないが、粉体混合した場合はCO2の生成が抑制されたものの、イソブテンとメタクロレインの生成速度は成分酸化物の活性の和にしかならなかった。

アリル型酸化触媒である Bi-Mo 酸化物は,イソブテンの酸 化には大変有効であるが,イソブタンの反応性は低い。アルカ ンの酸化は,最初の C-H 引き抜き過程が律速と考えられてお り,Bi-Mo 酸化物はその性質が低いためと考えられる。そこで 我々は,先に,Bi₂Mo₃O₁₂ に酸化活性の高い Rh,Au,Pt,Pd, Ru,Ir等の貴金属を極めて少量担持した時の効果について検 討し,極少量の貴金属の担持は,イソブテン,メタクロレイン の選択率を変化させずに,イソブタンの転化率だけを上昇させ ることを明らかにした¹⁰。

ところで、 Ga_2O_3 は脱水素能が高く、 Ga_ZSM-5 は低級パラフィンや低級オレフィンからの芳香族炭化水素合成^{17),18)} や、 自動車排ガス処理用に用いられる DeNO_x反応に優れた特性を示すことが報告されている¹⁹⁾。また、ブタンの Dehydroisomerization²⁰⁾ や、Ga-FAU、FER、MFI等によるプロパンの酸化 脱水素反応用触媒^{21),22)} 等にも応用されている。そこで、本報 告では脱水素能の高い Ga_2O_3 をオレフィンのアリル型酸化反応 に有効な Bi-Mo 酸化物に担持した触媒によるイソブタンの選 択酸化反応について検討した。

2. 実 験

Bi-Mo酸化物である α相 (Bi₂Mo₃O₁₂), β相 (Bi₂Mo₂O₉), γ 相 (Bi₂Mo₁O₆) は, それぞれ等量の Bi(NO₃)₃·5H₂O の硝酸水溶 液と (NH₄)₆Mo₇O₂₄·4H₂O の水溶液を混合した後, 蒸発乾固し, 550℃ で 5h 空気焼成した。Ga₂O₃ 担持触媒は硝酸ガリウムの 水溶液にそれぞれ α相, β相, γ相を加え, 蒸発乾固した。こ れを 600℃ 5h 空気焼成した後, 14~32 mesh に整粒した。

Ga₂O₃は Ga(NO₃)₃·8H₂Oの水溶液を蒸発乾固した。次いで 600℃で,10h焼成した後,14~32 meshに整粒した。

Bi₃Ga₁Mo₂O₁₂は, 等量の Bi(NO₃)₃·5H₂O の硝酸水溶液, (NH₄)₆Mo₇O₂₄·4H₂O の水溶液および Ga(NO₃)₃·8H₂O の水溶液 を混合した後, 蒸発乾固した。次いで, 700℃で10h 焼成した 後, 14~32 mesh に整粒した²³⁾。 XRD (X-ray diffraction) 測定は, X 線粉末解析装置 (Rigaku 製 RINT-2000, Cu K_α線, Ni フィルター使用)を用いて行った。 得られた結晶パターンは, JCPDS データファイル²⁴)と比較し, それぞれの Bi-Mo 酸化物および Bi₃Ga₁Mo₂O₁₂ について結晶相 が一致することを確認した。

反応は通常の固定床流通型反応装置を用いた。触媒量は4 cm³とし、反応ガス組成は*i*-C₄H₁₀: O₂: N₂ = 10:12:78 で流量 を 40 cm³/min として行った。分析にはガスクロマトグラフと MS を用いた。非エアロビック酸化反応は反応ガス組成を*i*-C₄H₁₀: O₂: N₂ = 10:0:90 で流量を 40 cm³/min として行った。

TPR (temperature programmed reduction) 測定では, 試料 1g を 550℃ で真空排気した後, 酸素を 100 Torr (1 Torr = 133.322 Pa) で導入し 30 min 加熱した。その後, 10℃/min で室温まで 降温し, 水素 5% を含む窒素を 20 cm³/min で流通させた。昇 温還元は 10℃/min で室温から 550℃ まで昇温した。

NH₃-TPD (temperature programmed desorption) 測定は, 試料 500 mg を He 気流中で 550°C で 1 h 加熱した後, 100°C に降温 し, 10⁻⁷ Torr 以下になるまで真空排気した。その後, 100°C で NH₃ を 100 Torr になるように導入し 10 min 保持した。余剰の NH₃ を真空排気した後, 50 cm³/min の He 気流中で 10°C/min で 600°C まで昇温した。

ESCA (electron spectroscopy for chemical analysis) 測定は、X 線光電子分光装置 (KRATOS ANALYTICAL 製 AXIS 165, Al K_{α} 線) を用いて行った。

3. 実験結果と考察

3.1. 触媒の構造

Bi-Mo酸化物には組成,構造の異なる α (Bi₂Mo₃O₁₂), β (Bi₂Mo₂O₉), γ (Bi₂Mo₁O₆)の3相が存在する。Fig. 1に, 無 担持の Bi₂Mo₃O₁₂ と Ga₂O₃ を担持した Bi₂Mo₃O₁₂の XRD パタ

(a) $Bi_2Mo_3O_{12}$, (b) $Ga_2O_3(5 \text{ wt}\%)/Bi_2Mo_3O_{12}$, (c) $Ga_2O_3(10 \text{ wt}\%)/Bi_2Mo_3O_{12}$, (d) $Ga_2O_3(30 \text{ wt}\%)/Bi_2Mo_3O_{12}$, (e) $Ga_2O_3(50 \text{ wt}\%)/Bi_2Mo_3O_{12}$, \blacksquare $Bi_3GaMo_2O_{12}$.

Fig. 1 XRD Patterns of $Bi_2Mo_3O_{12}$ and $Ga_2O_3/Bi_2Mo_3O_{12}$ Catalysts

ーンを示した。Ga 担持量は,酸化物(Ga₂O₃)の Bi-Mo酸化物に対する重量%で表している。Ga₂O₃ 担持量が $1 \sim 10$ wt%の範囲では,α相の回折ピークしか認められなかった。Ga 担持量が低い領域では,Ga₂O₃ が高分散していると考えられる。ところが,Ga₂O₃を 30 wt%,50 wt% 担持した試料では,α相以外に小さなピークが現れた。これは Bi₃Ga₁Mo₂O₁₂の回折ピークに帰属できた。α相を硝酸ガリウムの水溶液に投入し,蒸発乾固していくと濃縮された時にα相の一部と反応してBi₃Ga₁Mo₂O₁₂が生じることが分かった。この化合物の Bi とMoのモル比はα相のそれとは異なる。しかしながら,Bi とMoのモル比の異なるβ相やγ相に由来する回折ピークの確認はできなかった。

3.2. Bi-Mo 酸化物触媒, Ga₂O₃/Bi-Mo 酸化物触媒を用いた イソブタン酸化反応

 α (Bi₂Mo₃O₁₂), β (Bi₂Mo₂O₉), γ (Bi₂Mo₁O₆) の3相の化 合物とこれらに Ga2O3 を担持した触媒のイソブタン酸化特性に ついて検討した (Table 1)。低い反応温度では α 相の活性が 高く、 β 相と γ 相は非常に反応活性に乏しかった。 β 相では 550℃ でもイソブタンはわずかに 1.6% が転化しただけであっ た。この転化率レベルでの選択率を他の触媒と比べると反応温 度が 50℃ も高いのにかかわらず、メタクロレインの選択率が 高かった。γ相の450℃,500℃ での転化率は高くなかったが、 550℃ では急激に上昇した。しかし、極端に転化率の低い 450℃ を除いて CO₂への酸化分解反応が促進された。一方, α 相ではメタクロレイン選択率が約23~40%と高く、イソブテ ンとプロピレンの選択率の合計は反応温度にかかわらず約 60% となり、COx選択率は非常に小さかった。このように総 合的な酸化反応活性は α , $\gamma > \beta$ であり, γ 相は完全酸化活性 が高く、 β 相は活性が低く、イソブタンの部分酸化には α 相 が適していることが分かった。

次に、これら3種類のBi-Mo酸化物にGa₂O₃を5wt% 担持 した触媒を用いてイソブタンの酸化反応を行った。**Table 1**か ら分かるようにGa₂O₃を担持することにより α , β 相では反応 活性が向上し、 γ 相では活性が低下した。 α 相に担持した触媒 は活性が最も高く、450°Cで転化率は4.1%になった。しかし、 Ga₂O₃を担持することにより、メタクロレインやイソブタンの 選択率は大きく低下し、CO_xへの酸化分解が促進された。 β 相 に担持した触媒の反応では、転化率の向上はそう大きくなかっ た。この触媒では550°Cでも転化率は4.0%程度でCO_xの選択 率が65%にも達した。 γ 相に担持した触媒の活性は非常に低 下したが、酸化分解されやすい γ 相の特性はそのまま保たれ た。そしてメタクロレインの生成はほとんど見られなかった。

以上の結果から活性,選択性を総合的に評価すると Ga_2O_3 の 担体としては α 相が最も適していることが分かった。また α , β 相では Ga_2O_3 を担持すると反応活性が向上することから, Ga_2O_3 上で反応が開始していることが示唆された。

3.3. Bi₂Mo₃O₁₂ 触媒の反応特性に及ぼす Ga₂O₃ 担持量の影響

前項で Ga₂O₃の担体としてはそれ自身がイソブタンの酸化分 解活性の低い α 相が適していると考えられることから, α 相 への Ga₂O₃の担持量がイソブタン酸化反応に与える影響を調べ た。その結果を Fig. 2 に示した。イソブテン,メタクロレイ ンの生成速度は Ga₂O₃ 担持量の増加に従って増大したが,イソ ブテン,メタクロレインは 3 wt% あたりで極大を示し,その 後は減少した。一方,CO_xの生成速度は,Ga₂O₃ 担持量 5 wt% まで担持量の増大とともに急激に増大し,その後は緩やかに増 大した。これより Ga₂O₃ の 3 wt% までの添加はイソブタンの 転化活性を増大させるが,それ以上の担持は生成したイソブテ ン,メタクロレインの逐次酸化を促進させることが分かった。 反応前の α 相化合物の比表面積は 1.0 m²/g であった。ところ が反応後には 3.0 m²/g に上昇した。Ga₂O₃の六方晶の c 軸に垂

Catalyat	Temp.	Conv.				S	Selectivity	[%]			
Catalyst	[°C]	[%]	CH_4	C_2H_4	C_3H_6	C_4H_8	CO	CO_2	ATN	ACL	MAL
Bi ₂ Mo ₃ O ₁₂	450	0.2			4.7	55.8					39.5
	500	1.8	3.1		18.2	39.3					39.4
	550	10.9	6.1	0.8	29.0	29.7	5.9	3.6		2.0	22.9
Bi2Mo2O9	450	0.01<									
	500	0.2	3.7		14.8	3.7					77.8
	550	1.6	6.4	0.4	7.1	0.4		16.9		18.0	50.8
Bi ₂ Mo ₁ O ₆	450	0.02			25.0	75.0					
	500	1.7	2.2	1.1	6.9	1.1		74.3		5.8	8.7
	550	22.1	6.2	4.8	9.3	0.1	9.0	57.9	0.7	7.1	3.9
Ga ₂ O ₃ /Bi ₂ Mo ₃ O ₁₂	450	4.1		0.4	0.8	10.2	24.2	40.4		2.3	21.6
	500	11.3		0.6	0.3	3.2	30.1	49.0	0.8	1.9	11.7
	550	21.9	0.3	1.3	0.1	0.5	35.2	52.5	0.9	2.4	6.2
Ga ₂ O ₃ /Bi ₂ Mo ₂ O ₉	450	0.2			5.1	12.8					82.1
	500	1.0			1.7	2.3	20.3	22.1		7.7	45.9
	550	4.0	1.1	0.5	0.7	1.1	26.3	38.8		7.4	23.1
Ga2O3/Bi2Mo1O6	450	0.04		25.0	12.5	62.5					
	500	1.0		4.0	4.0	3.4		88.7			
	550	2.4	3.0	7.7	9.5	2.8		77.0			

Table 1 Isobutane Oxidation over $Bi_2Mo_3O_{12}(\alpha)$, $Bi_2Mo_2O_9(\beta)$, and $Bi_2Mo_1O_6(\gamma)$ Phases and $Ga_2O_3(5 \text{ wt}\%)$ Supported Catalysts

Feed gas concentration (mol%) 10.0 C₄H₁₀, 12.0 O₂, balance N₂; Feed rate: 40 cm³/min; ATN: CH₃COCH₃, ACL: CH₂ = CHCHO, MAL: CH₂ = CCH₃CHO.

Catalyst: 7.50 g; Feed gas concentration: isobutane 10 mol%, O₂ 12 mol%, balance N₂; Feed rate: 40 cm³/min; Temperature 450°C; \diamondsuit Total, \bigtriangleup isobutene, \bigcirc CH₂ = C(CH₃)CHO, \clubsuit CO_x.

Fig. 2 Effect of Ga₂O₃ Loading on Isobutane Oxidation over Ga₂O₃/Bi₂Mo₃O₁₂ Catalysts

直な面を考えると、3 wt%の Ga₂O₃が 3.0 m²/gのα相化合物 の表面に均一に担持されたとすると約40層と計算される。も ちろん均一に被覆する部分もあるであろうし、担体のα相が 露出している部分もあるであろう。その結果として3wt% が 最も適していることになる。前項でγ相に担持した場合は反 応活性が低下したが、Ga2O3を担持したγ相の比表面積は1 m²/g しかなかった。そこで, Ga₂O₃を5 wt% 担持した γ 相触 媒の表面組成を XPS で測定したところ, Ga 33.2%, Bi 44.9%, Mo 21.9% であった。α相担持触媒のそれと比較すると、Gaの 表面組成が 3.5% 上昇していた。この結果はα相上よりもγ相 上の方が担持された Ga₂O₃粒子が大きく,またα相上よりも 少し多くの担体表面を Ga2O3 が被覆していることを示してい る。これらが活性低下の原因であるかもしれない。Table 3に XPS で測定して求めた Ga₂O₃ 担持触媒の表面組成を示した。 Ga2O3の表面組成は、Ga2O3 担持量 5 wt% 程度まで担持量に比 例して増大したが、Ga2O3 担持量 10 wt% では少し減少した。 標準サンプルを混合した試料による検量線は作成していないの で測定値は誤差を含んでいるが、5 wt% までの担持ではいずれ の触媒も Bi と Mo の比を見るとほぼ 2:3 となっている。しか しながら, Ga2O3 担持量 10 wt% の試料はやや Bi の組成が小さ いように見える。これは担持量が大きくなると担持された Ga2O3の粒子が大きくなるとすると変化を説明することができ

る。イソブタンの酸化反応で, Ga₂O₃ 担持量 3 wt% がイソブテ ン,メタクロレインの生成速度が最も大きくなったが,これは 担持された Ga₂O₃ の粒子が小さく,過度に酸化されずに中間体 が α 相に移動するためと推定することができる。

Ga₂O₃ 触媒, Ga₂O₃/Bi₂Mo₃O₁₂ 触媒によるイソブタン 酸化への酸素濃度の影響

これまでは反応ガス中の酸素の濃度を 12 mol% に固定して 検討してきた。気相酸素の濃度は酸化反応の活性、選択性に影 響を与えると考えられる。そこで、反応ガス中の酸素濃度のイ ソブタン酸化生成物に及ぼす影響について調べた。Table 3に Ga₂O₃ (5 wt%)/Bi₂Mo₃O₁₂ 触媒によるイソブタン酸化の結果を 示した。転化率は酸素濃度の増大につれて上昇したが、直線的 ではなく次第に頭打ちとなった。酸素濃度が1mol%の時,メ タクロレインと CO_xの選択率は 40% 程度であり、イソブテン のそれは約7%であった。酸素濃度が増大するとイソブテンと COx 選択率が上昇し、メタクロレイン選択率が減少した。しか しながら、この触媒による反応では水素の生成は認められなか った。したがって、この触媒上では反応(1)の酸化的脱水素 反応、(2)のメタクロレイン生成反応とメタクロレインの逐次 酸化反応が進行するものと思われる。そして、酸素濃度が増大 するといずれの反応速度も上昇するが、(4) 式の逐次酸化の速 度が特に酸素濃度に対する依存性が大きいものと思われる。

 $CH_2CCH_3CHO + O_2 \longrightarrow CO, CO_2 + H_2O$ (4)

Table 3 に無担持の Ga₂O₃ 触媒によるイソブタン酸化に対す る酸素濃度の影響を調べた結果を示した。担持触媒に対して触 媒量を約 1/2 で行った。酸素を供給しないとイソブタンの転化 率は大きく 14.8% にも達した。この場合の生成物はプロピレ ンがごくわずかに生成した以外はイソブテンと水素が生成し た。これにより,無担持の Ga₂O₃ 触媒上では単純な脱水素反応 が進行することが分かる。ところが,反応ガスに 2.4 mol% の 酸素ガスを共存させると、イソブテンと水素の生成速度は急激 に低下し、CO₂ が 60% もの選択率で生成するようになった。 この時の転化率は W/F が小さいにもかかわらず, Ga₂O₃/Bi₂Mo₃O₁₂ 触媒によるイソブタン酸化の転化率よりやや 大きい。酸素共存によるイソブタン転化率の低下は O₂,ある いは酸化的脱水素反応により生成した H₂O の吸着が促進され、 イソブタン反応を阻害したものと考えられる。

酸素濃度をさらに増大させると転化率は緩やかに増大し、イ ソプテンの選択率は低下し、COの選択率が増大した。CO2の 選択率は約60% でほとんど変化しなかった。水素の生成速度 を見てみると、酸素非共存下、2.4 mol% 共存下では反応した イソブタンの物質量とほぼ等モルの水素が生成した。ところが

Table 2 Composition of the Elements at the Surface of Ga2O3/Bi2Mo3O12

		Ga ₂ O ₃ loading [wt%]					
		0	3.0	:	5.0	10.0	
Composition	Ga	0	21.8	29.7		24.8	
[atomic%]	Bi	41.9	32.5 (41.0) 29.8	(42.4)	29.0	(38.6)
	Mo	58.1	45.7 (58.4) 40.5	(57.6)	46.2	(61.4)

XPS: Al K_{α} anode, 15 kV-10 mA, Ga(2p), Bi(4p), Mo(3d), calibrated by Au 83.8 eV. Percentage of Bi or Mo of total (Bi and Mo) is shown in parentheses.

Catalyst	O ₂ conc.	i-C ₄ H ₁₀ conv.	Selectivity [%]					Rate of H ₂ formation [µmol/min]			
	[mol%]	[%]	CH_4	C_2H_4	C_3H_6	i-C ₄ H ₈	СО	$\rm CO_2$	MAL	Calc. ^{a)}	Obs. ^{b)}
Ga2O3(5 wt%)/	1.0	1.8		1.9		7.1		43.9	38.4		0.0
Bi ₂ Mo ₃ O ₁₂	5.0	3.3		0.4	0.4	11.5	17.5	41.2	26.5		0.0
(8.0 g)	12.0	4.1		0.4	0.8	10.2	24.2	40.4	21.6		0.0
Ga ₂ O ₃	0.0	14.8	t	t	0.4	99.6				24.0	20.5
(4.184 g)	2.4	4.0	0.2	1.6	1.7	36.3	t	60.3		6.5	6.0
	4.9	6.7	0.2	1.0	4.0	22.8	10.2	61.4		10.9	16.0
	8.0	9.2	0.3	1.2	4.4	18.8	11.1	61.9		14.9	23.8
	11.6	10.8	0.3	1.3	4.5	15.9	14.5	63.6		17.5	33.3

 $Table \ 3 \quad Effects \ of \ Oxygen \ Concentration \ on \ the \ Reaction \ of \ Isobutane \ over \ Ga_2O_3(5 \ wt\%)/Bi_2Mo_3O_{12} \ and \ Ga_2O_3 \ Catalysts$

Feed gas concentration (mol%): 10.0 C₄H₁₀, balance N₂; Feed rate: 40 cm³/min; Reaction temperature: 450°C; Products: MAL CH₂ = CCH₃CHO.

a) on the assumption that simple dehydrogenation of isobutane into isobutene proceeds. b) Observed.

Table 4 Effects of Oxygen Concentration on the Reaction of Isobutene over Ga2O3 Catalyst

O ₂ <i>i</i> -C ₄ H ₈ Catalyst conc. conv.			Rate of H ₂ formation					
	[mol%]	[%]	CH_4	C_2H_4	C_3H_6	СО	CO ₂	[µmol/min]
Ga ₂ O ₃	0.0	0.9	3.2	1.0	1.0	0.0	0.0	6.4
(4.184 g)	2.38	17.6	1.0	3.0		10.9	80.3	6.7
	11.9	69.9	0.2	1.2		15.4	81.1	35.9

Feed gas concentration (mol%): 1.77 C₄H₈, balance N₂; Feed rate: 40 cm³/min; Reaction temperature: 450°C.

興味あることに、共存酸素濃度の増大につれて水素の生成速度 は単純脱水素反応が進行したと仮定した生成速度よりも大きな 値を示した。酸素濃度 4.9 mol%, 11.6 mol% ではそれぞれ 50%,90%も過剰に生成した。この二つの条件における酸素 の転化率はそれぞれ 78.8% と 58.8% であり、反応後のガスに はまだ酸素が残存していた。このように酸素が存在するのに生 成ガス中に水素が残存することは Ga2O3 の酸化活性がそれほど 大きくないことを示している。これらの結果は、イソブタンの 単純脱水素反応およびイソブタン以外の炭化水素から水素が生 成していることを示している。イソブタン酸化における炭化水 素の主生成物はイソブテンであるので、イソブテン酸化からの 水素の生成について検討した。その結果を Table 4 に示した。 供給イソブテンの濃度はイソブタンの酸化反応におけるイソブ タンの反応速度に近い 1.77 mol%(約 28 μmol/min)とした。 酸素を供給しないとイソブテンの消費速度は非常に小さく、事 実上反応は進行しなかった。系に酸素を供給すると反応が進行 し、ほとんど全てが CO, CO2 へと酸化分解された。酸素濃度 2.4% の時, イソブテン酸化の CO + CO₂ 生成速度(0.54 + 4.0 μmol/min) はイソブタン酸化の時の CO₂ 生成速度 (3.9 μmol/ min) とほぼ等しかった。酸素濃度約12mol%の時を比較する と、イソブタン酸化の時の方が CO, CO2 生成速度は大きかっ た。イソブテン酸化の時は雰囲気にイソブタンが存在しないと いう条件の相違はあるが、イソブテンの方がイソブタンよりも 酸化されやすいことが分かった。そして,酸素濃度約12 mol%の時の水素生成速度はイソブタン、イソブテン酸化とも にほぼ等しい生成速度で生成し,反応した原料中に含まれる水 素の40~45%が酸化されずに水素として生成した。

これらの結果より,次のことが結論できる。(1) Ga₂O₃上で は酸素が共存しない時,イソブタンの単純脱水素反応が進行し, イソブテンが生じる。生じたイソブテンは酸化されない。(2) 酸素が共存する時,イソブタンの単純脱水素反応が進行し,イ ソブテンを生じる。生成したイソブテンはGa₂O₃上で分解され るが,炭素の部分はCO,CO₂へと酸化され,水素は40~45% が酸化されずに水素ガスとなって気相に脱離する。

さて、次にα相に担持されたGa2O3触媒上であるが、α相 だけではイソブタンの酸化反応速度は非常に小さいのに、 Ga2O3を担持すると転化率が4.1% になることから、イソブタ ンはGa2O3上でまず脱水素されると考えられる。無担持の Ga2O3に比べて転化率が低いのは5wt% 担持で露出したGa2O3 の少ないことが理由であろう。選択率を見るとCO、CO2への 酸化分解が約60%と高く、メタクロレインが20%強であるこ とから担持触媒では、Ga2O3触媒上で単純脱水素反応が進行し、 生成したイソブテンはGa2O3上で分解されるが、一部はα相 上に移動してメタクロレインに酸化されるものと思われる。脱 水素反応およびイソブテンの分解によって生成した水素はα相 の高い酸化活性により酸化されたものと思われる。

3.5. Ga₂O₃/Bi₂Mo₃O₁₂の酸性質と酸化還元特性

アルカンの選択酸化には触媒の酸性質が必要であるとする報告がある。そこで、 $Ga_2O_3/Bi_2Mo_3O_{12}$ の酸性質を NH_3 -TPD 測定により調べた(Fig. 3)。 Ga_2O_3 を担持していない $Bi_2Mo_3O_{12}$ は、表面積が小さいこともあり、170℃に頂点を持つ極めて小さい脱離ピークを持つスペクトルが得られた。脱離量はかなり小さ

(a) $Bi_2Mo_3O_{12}$, (b) $Ga_2O_3(1 \text{ wt\%})/Bi_2Mo_3O_{12}$, (c) $Ga_2O_3(3 \text{ wt\%})/Bi_2Mo_3O_{12}$, (d) $Ga_2O_3(5 \text{ wt\%})/Bi_2Mo_3O_{12}$, (e) $Ga_2O_3(10 \text{ wt\%})/Bi_2Mo_3O_{12}$, (f) Ga_2O_3 .

Fig. 3 NH₃-TPD Spectra of Ga_2O_3 and $Ga_2O_3/Bi_2Mo_3O_{12}$ Catalysts

かった。この α相に Ga₂O₃を担持した触媒では, 170℃の脱離 ピークが大きくなった。Ga2O3の担持量を増大させると、担持 量に比例して酸量は増加した。一方, Ga2O3 は大きなアンモニ アの脱離ピークを与えた。Ga2O3は中性の酸化物で塩基性,酸 性ともに弱いと言われている25)。ゼオライトの場合、低温で脱 離するアンモニアは酸点上に吸着したアンモニアではなく Na⁺ あるいは NH4+上に吸着したものであると報告されている^{26),27)}。 これはゼオライトに固有であって,メソポーラス物質や酸化物 にはあてはまらないといわれている。金属酸化物をかなり高い 550℃ くらいの温度で真空排気し、表面の水酸基がかなり脱離 した状態の表面に吸着し、100℃で真空排気しても脱離しない アンモニアは弱い酸点上に吸着したものと考えることができ る。α相に吸着したアンモニアが170°という同じ温度に脱離 ピークを持っているが、Ga2O3 担持触媒のアンモニアの脱離ピ ーク位置は単独 Ga2O3 表面からの脱離ピーク位置と一致してい ること、Ga2O3 担持量の増大とともに増大していることから、 担持触媒では α相に担持された Ga₂O₃上に吸着したアンモニ アが脱離したものと考えられる。スペクトルの形がよく類似し ていることから Ga₂O₃と α相との界面に強い酸点が生じてい るような状況ではないことが分かった。イソブタンの消費速度 あるいは CO_x 以外の生成物の生成速度と酸量との間には単純 な直線関係は見られないが、この担持された Ga2O3 上の酸点が イソブタンの脱水素反応に直接関与していると考えるのが自然 であろう。

ついで, Ga₂O₃/Bi₂Mo₃O₁₂触媒の酸化還元特性について TPR を用いて検討した(Fig. 4)。 α , β , γ の各相単独触媒は水素 により還元されにくく, 400~450°C で還元が開始した。とこ ろが, α 相および γ 相に Ga₂O₃ を担持した触媒の格子酸素は還

Fig. 4 TPR Spectra of Bi-Mo Oxides, Ga₂O₃/Bi-Mo Oxides and Bi₃Ga₁Mo₂O₁₂ Catalysts

 $Ga_2O_3(5 \text{ wt\%})/Bi_2Mo_3O_{12}$ (a) after and (b) before TPR; $Bi_2Mo_3O_{12}$ (c) after and (d) before TPR.

Fig. 5 XRD Patterns of Bi₂Mo₃O₁₂ and Ga₂O₃(5 wt%)/ Bi₂Mo₃O₁₂ Catalysts before and after TPR

元されやすく、320~330[°] あたりで還元が開始した。 β 相に Ga₂O₃を担持した触媒もやや還元されやすくなり、380[°] くら いから還元が始まった。これらの触媒はいずれも 1~3 m²/gの 小さな比表面積を有していた。そこで、硝酸ガリウムを 600[°] で焼成分解して 32 m²/gの大きな比表面積を持つ Ga₂O₃を調製 し水素還元を行ってみたが、550[°] まで還元は進行しなかった。 **Fig.** 5 の(a)に TPR 後の、Ga₂O₃/Bi₂Mo₃O₁₂の XRD パターン を示した。 α 相に帰属される回折ピークは非常に減少し、BiO、 Bi、MoO₂に帰属されるピークが観察された。これより、自身 は還元されない Ga₂O₃を Bi-Mo 酸化物に担持すると α 相およ び γ 相が還元されやすく、 β 相はやや還元されやすくなったこ とが分かる。すなわち、Ga₂O₃の上に吸着した水素は担体であ る α , β , γ 相に移動しそれを還元しており、Ga₂O₃が Bi₂Mo₃O₁₂ へ水素をスピルオーバーさせていることが分かる。

XRD 分析の結果, Ga₂O₃ 担持触媒に Bi₃Ga₁Mo₂O₁₂ の生成が

(a) Bi₃Ga₁Mo₂O₁₂, (b) Ga₂O₃(5 wt%)/Bi₂Mo₃O₁₂.

確認されている。そこで、この化合物を蒸発乾固法で合成した。700℃ で空気焼成した試料は $Bi_3Ga_1Mo_2O_{12}$ の強い回折ピークを与えた。この試料を用いてイソブタンの反応を行ってみたが、活性は非常に低く、500℃、550℃ で転化率はそれぞれ 1.2%、3.6% にしか達しなかった。そして主生成物は CO と CO₂ であった。Fig. 6 は $Bi_3Ga_1Mo_2O_{12}$ の NH₃-TPD の結果である。Ga₂O₃ (5 wt%)/ $Bi_2Mo_3O_{12}$ と比べて酸点は非常に少量であることが分かった。また、TPR の結果によれば還元性も低い(Fig. 4)。この化合物の活性が低いのは酸性が低いことが原因であると思われる。これらの結果より、 $Ga_2O_3/Bi_2Mo_3O_{12}$ 触媒の高い活性の源は副生した $Bi_3Ga_1Mo_2O_{12}$ が原因ではないことが分かった。

これまでの結果を総合して考えると, α, β相への Ga₂O₃の 担持による反応活性の向上は, 担持されることによって Ga₂O₃ から担体への水素のスピルオーバーが可能になったことによる Ga₂O₃上での脱水素反応の促進によるものであろう。また, 担 体単独ではイソブテンの酸化活性が高いのに対し, Ga₂O₃担持 されると水素がスピルオーバーしてきて担体表面の活性酸素を 消費することによって酸化分解が抑制される効果が相乗的に働 いて, イソブテンのメタクロレインへの選択性が向上したもの と考えられる。

Ga₂O₃/Bi₂Mo₃O₁₂の格子酸素を利用したイソブタンの 酸化反応

前節の TPR の結果より, Ga₂O₃/Bi₂Mo₃O₁₂は 350℃ 程度の低 い温度から格子酸素が還元され始めることがわかった。すなわ ち,格子酸素の反応性が増大した。格子酸素の反応性が向上し た時に気相に酸素分子が存在すると酸素の供給が速やかに行わ れ,酸化分解が進行しやすい。そこで,気相に酸素ガスを存在 させない条件(非エアロビック)で,固体酸化物の格子酸素を 用いてイソブタンの酸化反応を行った。気相酸素非共存下で は,Ga₂O₃を担持していない Bi₂Mo₃O₁₂上では 450℃ ではイソ ブタンは全く反応しなかった。一方,Ga₂O₃/Bi₂Mo₃O₁₂触媒上 ではイソブタンの非エアロビック酸化反応が進行した。イソブ タンの酸化反応が進行すると格子酸素が消費され酸化物は還元

Catalyst: 7.50 g; Feed gas concentration: isobutane 10 mol%, balance N₂; Feed rate: 40 cm³/min; Temperature 450°C; \diamondsuit Total, \bigtriangleup isobutene, \bigtriangledown CH₂ = CHCHO, \bigcirc CH₂ = C(CH₃)CHO, \blacklozenge CO_x.

Fig. 7 Non-aerobic Oxidation of Isobutane over $Ga_2O_3(5 wt\%)/Bi_2Mo_3O_{12}$ Catalyst

される。酸化物の還元率は各生成物を生成するのに必要な酸素の化学量論量を触媒の全酸素量で除して算出した。

還元率=	各生成物の生成に必要な酸素量
	帥雄の全酸素量

Ga₂O₃(5 wt%)/Bi₂Mo₃O₁₂によるイソブタンの非エアロビック酸化の結果を Fig. 7 に示した。ここで用いた試料は7.5 gであり,全格子酸素量は0.0506 molと計算された。還元率0.15%付近まではイソブタンはやや激しく反応したが,その後反応速度は低下した。生成物はイソブテン,メタクロレインおよび CO₂ で,反応初期のピークの後はメタクロレイン,イソブテンの生成速度は還元率に依存せず一定であったが,CO₂は還元率0.2%あたりから再び緩やかに上昇した。これより,Bi₂Mo₃O₁₂系酸化物では還元された状態の方が酸化分解活性が上昇することが分かる。この反応結果から,触媒の還元率が0.15%から0.40%までを繰り返し反応させれば、メタクロレインを約 60%の高い選択率で合成できることが分かる。

6時間後の触媒の還元度は、 Ga_2O_3 の酸素を含めた場合に 5.1% であり、 $Bi_2Mo_3O_{12}$ の酸素だけを基に計算すると5.42% になった。この還元反応後の触媒の結晶相を調べたところ、反 応後の触媒には α 相のほかに、 γ ($Bi_2Mo_1O_6$) 相と MoO_2 に起 因する回折ピークの存在が認められた(Fig. 8)。したがって、 α ($Bi_2Mo_3O_{12}$) 相中の一定の位置の酸素が抜けて、 γ ($Bi_2Mo_1O_6$) 相と MoO_2 が生成していることが分かった。

ついで,ガリウムの担持量を変化させた触媒を用いて,イソ ブタンの非エアロビック酸化反応を行った(Figs. 9, 10)。 Ga2O3 担持量を増大させるとイソブタンの転化率は増大した。 メタクロレインの生成速度は還元度 0.20% までの初期のピー クを除くとほぼ等しくなった。ところが,CO2の生成速度は Ga2O3の担持量に大きく依存し,Ga2O3 担持量 3 wt%の触媒で は還元率が 0.25% まで生成しないのに対し,10 wt% 担持した 触媒では反応開始直後からメタクロレインのそれより大きな生

Fig. 8 XRD Patterns of Ga₂O₃(5 wt%)/Bi₂Mo₃O₁₂ Catalysts before and after Non-aerobic Oxidation of Isobutane for 6 h

Catalyst: 7.50 g; Feed gas concentration: isobutane 10 mol%, balance N₂; Feed rate: 40 cm³/min; Temperature 450°C; \diamondsuit Total, \bigtriangleup isobutene, \bigtriangledown CH₂ = CHCHO, \bigcirc CH₂ = C(CH₃)CHO, \blacklozenge CO_x.

Fig. 9 Non-aerobic Oxidation of Isobutane over $Ga_2O_3(10\ wt\%)/Bi_2Mo_3O_{12}$ Catalyst

成速度を示し、さらに反応時間の経過とともに増大した。した がって、Ga₂O₃を3wt%担持した触媒を用いて還元率0%から 0.30%までを繰り返し反応に使用すれば、イソブテンとメタク ロレインを高選択的に合成することができることが明らかとなった。

4. 結 論

(1) イソブテンのアリル型酸化に有効な 3 種の Bi-Mo 酸化物 化合物のイソブタンに対する酸化活性序列は Bi₂Mo₃O₁₂ (α 相), Bi₂Mo₁O₆ (γ 相) > Bi₂Mo₂O₉ (β 相) となり, γ 相は完全 酸化活性が高く, β 相は活性が低く, イソブタンの部分酸化に は α 相が適している。

(2) Ga₂O₃を担持すると 450℃ のような低温でも反応が進行し, いずれの相でも活性は上昇した。その中で, Ga₂O₃/α相はイソ ブテン,メタクロレインの選択率が高く, Ga₂O₃の担体として は α 相が最も適している。

(3) α相に硝酸ガリウム水溶液から蒸発乾固法で Ga₂O₃を担持

Catalyst: 7.50 g; Feed gas concentration: isobutane 10 mol%, balance N₂; Feed rate: 40 cm³/min; Temperature 450°C; \diamondsuit Total, \bigtriangleup isobutene, \bigtriangledown CH₂ = CHCHO, \bigcirc CH₂ = C(CH₃)CHO, \blacklozenge CO_x.

Fig. 10 Non-aerobic Oxidation of Isobutane over $Ga_2O_3(3 \text{ wt\%})/Bi_2Mo_3O_{12}$ Catalyst

すると Bi₃Ga₁Mo₂O₁₂が生成する。

(4) Ga₂O₃/Bi₂Mo₃O₁₂ 触媒上では Ga₂O₃ 触媒上で単純脱水素反 応が進行し,生成したイソブテンは Ga₂O₃ 上で分解されるが, 一部は α 相上に移動してメタクロレインに酸化される。イソ ブタンの脱水素反応およびイソブテンの分解によって生成した 水素は α 相の酸素イオンにより酸化されたものと思われる。

(5) Ga₂O₃, α , β , γ 相は 500° で還元され始めるが, Ga₂O₃ を担持した α 相, γ 相は 350° 付近から, β 相は 380° から還 元されるようになり, Ga₂O₃ 担持により α , β , γ 相の格子酸 素の反応性が上昇する。これは担持により生成した第2 相が還 元されやすいのではなく, Ga₂O₃ からの水素のスピルオーバー によって反応性が向上したものと思われる。

(6) α, β相では Ga₂O₃を担持すると反応活性が向上すること
から, Ga₂O₃上で反応が開始していると思われる。

(7) α, β相への Ga₂O₃の担持による反応活性の向上は, Ga₂O₃から担体への水素のスピルオーバーによる Ga₂O₃上での 脱水素反応の促進によるものであろう。脱水素反応の促進によ るイソブテン収率の増大と,水素がスピルオーバーしてきて担 体表面の活性酸素を消費して酸化分解が抑制される効果が相乗 的に働いてメタクロレインの選択性が向上したものと考えられ る。

(8) Ga₂O₃ (3 wt%)/Bi₂Mo₃O₁₂ 触媒を用いて気相酸素の存在な しに, 触媒の格子酸素とイソブタンの反応を 450℃ で触媒の還 元率 0~0.3% まで行わせると,メタクロレインとイソブテン のみを高選択的に合成できる。

References

- 1) Misono, M., Catal. Rev., 29, 269 (1987).
- For example, Jpn. Kokai Tokkyo Koho JP57-50765 (1982), U.S. Pat. 4001317 (1977), U.S. Pat. 4012449 (1977), E.P. Pat. 43100 (1983).
- For example, Jpn. Kokai Tokkyo Koho JP09-57101 (1997), E.P. Pat. 972759 (2000).
- 4) Liu, H., Gaigneaux, E-M., Imoto, H., Shido, T., Iwasawa, Y.,

J. Jpn. Petrol. Inst., Vol. 46, No. 1, 2003

Appl. Catal. A: General, 202, 251 (2000).

- 5) Ueda, W., Suzuki, Y., Chem. Lett., 1995, 541.
- Mizuno, N., Tateishi, M., Iwamoto, M., J. Chem. Soc., Chem. Commun., 1994, 1411.
- Cavani, F., Commuzi, C., Dolcetti, G., Giuliano, E., Etinne, E., Finke, R.-G., Selleri, G., Trifiro, F., Trovarelli, A., J. *Catal.*, 160, 317 (1996).
- Kaddouri, A., Mazzocchia, M., Tempesti, E., *Appl. Catal. A: General*, 169, L3 (1998).
- Inoue, T., Oyama, S. T., Imoto, H., Asakura, K., Iwasawa, Y., Appl. Catal. A: General, 191, 131 (2000).
- 10) Matuura, I., Oda, H., Oshida, K., *Catal. Today*, **16**, 547 (1993).
- For example, Jpn. Kokai Tokkyo Koho JP06-279351 (1994), Jpn. Kokai Tokkyo Koho JP07-10801 (1995).
- 12) Takita, Y., Kurosaki, K., Mizuhara, Y., Ishihara, T., Chem. Lett., 1993, 335.
- 13) Takita, Y., Sano, K., Kurosaki, K., Kawata, N., Nishiguchi, H., Ito, M., Ishihara, T., *Appl. Catal. A: General*, **167**, 49 (1998).
- 14) Takita, Y., Sano, K., Muraya, K. T., Nishiguchi, H., Kawata, N., Ito, M., Akbay, T., Ishihara, T., *Appl. Catal. A: General*, **170**, 23 (1998).
- 15) Obana, Y., Eto, K., Qing, X., Nishiguchi, H., Ishihara, T., Takita, Y., J. Jpn. Petrol. Inst., 45, (6), 375 (2002).
- 16) Takita, Y., Yoshida, Y., Usami, K., Sato, T., Obana, Y., Ito, I., Ogura, M., Nishiguchi, H., Ishihara, T., Appl. Catal. A:

General, 225, 215 (2002).

- 17) Inui, T., Makino, Y., Okazumi, F., Nagano, S., Miyamoto, A., Ind. Eng. Chem. Res., 26, 647 (1987).
- 18) Inui, T., Nagata, H., Matusda, H., Kim, J.-B., Ishihara, Y., Ind. Eng. Chem. Res., 31, 995 (1992).
- 19) Vieira, A., Tovar, M. A., Pfaff, C., Betancourt, P., Mendez, B., Lopez, C. M., Maachado, F. J., Goldwasser, J., De Agudelo, M. M. Ramirez, *Stud. Surf. Sci. Catal.*, **130A**, 269 (2000).
- 20) Kubacka, A., Wloch, E., Sulikowasiki, B., Valenzuela, R. X., Cortes Carberan, V., *Catal. Today*, **61**, 345 (2000).
- Corberan, V. C., Valenzuela, R. X., Sulikowski, B., Derewinski, M., Olejniczak, Z., Krysciak, J., *Catal. Today*, 32, 193 (1996).
- 22) Kubacka, A., Wloch, E., Sulikowski, B., Valenzula, R. X., Corberan, V. C., *Catal. Today*, **61**, 343 (2000).
- 23) Jeitschko, W., Sleight, A. W., Mcclellan, W. R., Weiher, J. F., Acta. Cryst., B32, 1163 (1976).
- 24) "JCPDS Mineral Powder Diffraction Data Files," Park Lane, Pennsylvania.
- 25) Sanderson, R. T., translated by Fujiwara, S., "INORGANIC CHEMISTRY," Hirokawa Publishing, Tokyo (1967), p. 266. サンダーソン著,藤原鎮男監訳,"無機化学,"廣川書店, 東京 (1967), p. 266.
- 26) Niwa, M., Iwamoto, M., Segawa, K., Bull. Chem. Soc. Jpn., 59, 3735 (1986).
- 27) Katada, N., Niwa, M., Shokubai, 42, 218 (2000).

.....

要 旨

Ga₂O₃/Bi₂Mo₃O₁₂ 触媒を用いたイソブタン酸化によるメタクロレインの合成

尾花良哲^{†1)},屋舗拡嗣^{†1)},伊藤正実^{†2)},西口宏泰^{†1)},石原達己^{†1)},滝田祐作^{†1)}

^{†1)} 大分大学工学部応用化学科,870-1192 大分市旦野原700 ^{†2)} 大分大学地域共同研究センター,870-1192 大分市旦野原700

イソブタンから直接メタクロレインを合成することを目的と して,脱水素能を持つ Ga₂O₃を Bi-Mo 酸化物に担持した触媒 を調製し,その反応特性,酸性質および還元的性質を調べた。

Bi₂Mo₃O₁₂ (α phase) と Bi₂Mo₁O₆ (γ phase) は Bi₂Mo₂O₉ (β phase) より活性が高かった。450°C における Bi-Mo 酸化物の イソブタンの酸化活性は低かったが、Ga₂O₃を担持するといず れも活性は向上した。Bi₂Mo₃O₁₂ ではメタクロレイン生成に対 する最適担持量は 3 wt% であった。Ga₂O₃のみを触媒に用いた イソブタン酸化では、酸素共存下でも H₂が生成したが、Ga₂O₃/ Bi₂Mo₃O₁₂では生成しなかった。TPR により触媒の還元特性を 調べたところ、Bi₂Mo₃O₁₂、Ga₂O₃は 550°C までほとんど還元 されなかったのに対し、Ga₂O₃/Bi₂Mo₃O₁₂は 350~380°C 付近か ら還元された。そして、TPR 後の触媒には Bi₂Mo₃O₁₂以外に、 BiO, Bi, MoO2が存在した。これは担持触媒上で水素のスピ ルオーバーが進行していることを示している。したがって, Ga2O3/Bi2Mo3O12触媒でメタクロレインの生成速度が向上する のは,始めにGa2O3上で脱水素反応が進行し,生じた水素や*t*-ブチル基がBi2Mo3O12表面に移動し,水素が活性の強い表面酸 化物イオンを消費して,ブチル基または吸着イソプテンが過度 に酸化されるのを抑制し,選択的にメタクロレインが生成する ような穏和な酸化表面を生じるためと推定した。

反応ガスに酸素を共存させないと CO_x の生成速度は著しく 低下した。 Ga_2O_3 (3 wt%)/ $Bi_2Mo_3O_{12}$ では,触媒の還元率 0~ 0.3%の範囲でイソブタン酸化を行うと高選択的にメタクロレ イン,イソブテンが得られた。

.....