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1. Introduction

Corrosion, stresses and mechanical damages of oil
and gas pipelines can result in catastrophic failures, so
pipelines must be often inspected. In order to ensure
the integrity of the system, the pipelines are periodically
inspected for damage caused by corrosion and other
factors using an inspection device called a ‘pig’. Several
different types of nondestructive evaluation (NDE)
methods such as ultrasonic, X-rays method have been
tried and tested for inspecting pipelines. Ultrasonic
inspection robot is not sensitive to pipeline’s material,
and easier to measure thickness and classify defects.
Its shortage is that it is designed only for performing
pipeline crack inspections within a liquid medium
because ultrasonic signal diminishes very soon in the
air. X-Rays inspection robot also has a significant
drawback to inspect inner pipeline. MFL method can
be used to measure and locate cracks in both circumfer-
ential and axial directions, and it is the most popular
method of pipeline inspection now, although it is sensi-
tive to pipeline’s material and easily interfered by other
factors such as pipe material, inspection speed, and
fluid pressure. Supported by China National High-Tech
Research and Development Program (863 Program),
we developed an pipeline inspection system based on

magnetic flux leakage methods to inspect offshore oil
pipe defects, and this paper will mainly discuss how to
recognize pipeline defect parameters utilizing wavelet
basis function (WBF) neural network.

Artificial neural networks constitute a powerful class
of nonlinear function approach for model-free estima-
tion. They have been applied to pipeline inspection
field for some years. Udpa worked on pipeline
inspection inverse problems using neural networks1).
Kang Yihua and Yang Lijian utilized neural networks
to research signal processing of MFL inspection2),3).
Wavelet basis function neural network is a new type of
neural network, which uses wavelet transform multires-
olution and multiscale features to construct a neural
network. In this paper, orthogonal scaling functions
are used to construct wavelet neural networks accord-
ing to multiresolution theory, and a recognizing algo-
rithm based on dynamic WBF neural networks is pres-
ented to obtain pipeline inspection defect parameters.

2. Mathematical Model of Pipeline MFL Inspection

Magnetic flux leakage nondestructive testing is an
electromagnetic technique that can only be used for
testing conducting material, and is originated from
Michael Faraday’s discovery of electromagnetic induc-
tion in 1831. Maxwell’s Equations are used to
describe electromagnetic fields, and their differential
forms are expressed as follows:
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(1)

Where is electric field intensity, is magnetic
field intensity, is electric flux density, is magnetic
flux density, is electric current density, and ρ is elec-
tric charge density. As shown in Fig. 1, utilizing per-
manent magnets to magnetize a sample to saturation,
magnetic flux distributes equably in the sample when
there is no defect. But in the regions of reduced thick-
ness, such as a corrosion defect or crack, magnetic flux
leakages into the air. This leakage flux, which is corre-
lated with the size and location of the defect, can be
detected by a magneto sensor. And then we can ana-
lyze pipeline defect parameters from the leakage flux
signals.

The typical method to reconstruct defects distribut-
ing features is to utilize magnet dipole theory. Shown
in Fig. 2, Hx and Hy are magnetic field intensions in x
and y directions:

(2)

Through calculating defects magnetic flux leakage
intension, applying least-squares method, defect param-
eters and distributing figures can be obtained.
However, the calculating workload is very tremendous,
and the least-squares cost function is highly nonconvex
with respect to the locations of magnetic dipoles, so it
is now rarely adopted in pipeline inspection.

In fact, we can take a defect recognizing from
inspection signals as a non-linear system discrimination
problem. Based on ‘MARMAX’ model of non-linear
system, when the system has r inputs and m outputs,
the mathematical model of MFL inspection system can
be described as:

(3)

Then we denote y(k), u(k), e(k) as Eq. (4):

(4)

Where y(k) and u(k) are defect parameters outputs
and pipeline inspection signal inputs respectively. e(k)
is the system independence noise which has limited
mean-square deviation. f(•) is a non-linear vector
function. ny, nu, ne are the maximal time lapse of the
outputs, inputs and noise respectively, and they are also
named model steps. Equation (3) uses hysteresis
inputs, outputs, and prediction errors to describe the
function of MFL defects inspection, but in most occa-
sions noise model step ne has little impact on the sys-
tem outputs, and it can be neglected, so Eq. (3) is sim-
plified in practical operation process as:

(5)

Utilizing Eq. (5), we present a new recognizing algo-
rithm based on dynamic wavelet basis function neural
networks to obtain the defect parameters including
length, depth and etc. from inspection signals.

3. Recognizing Algorithm Using Wavelet Basis
Function Neural Network

The wavelet transform is a time-frequency trans-
form, which provides both the frequency and time
localization in the form of a multiresolution decomposi-
tion of the signal. High frequency components are
obtained with good time resolution and low frequencies
with good frequency resolution4). A function can be
reconstructed from its wavelet transform as

(6)

Where a is the dilation parameter, b is the translation
parameter, and ψ(x) denotes mother wavelet. A wavelet
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Fig. 1 Schematic Diagram of Magnetic Flux Leakage Inspection

Fig. 2 Magnetic Dipole Theory Model



based thresholding approach is utilized to eliminating
noise. The technique is known as adaptive wavelet
shrinkage denoising or soft thresholding. From the
wavelet theory, we know that the dilations and transla-
tions of the orthogonal scaling function induce a mul-
tiresolution analysis of L2(R), i.e., a nested chain of
closed subspaces:

(7)

such that , where

(8)

So there exists a sufficiently large M for any ε > 0,
can be approximated as

(9)

where . Moreover, based on discrete

wavelet multiresolution feature, when in the condition
of resolution 2M and orthogonal basis of 
ψm,n(x) = 2−m/2ψ(2−mx _ n), we can get the decomposing
and reconstructing any non-linear functions as:

(10)

The wavelet basis network is based on the theory of
multiresolution representation of a function5). A WBF
neural network architecture that implements a multires-
olution approximation is shown in Fig. 3. The output
of the network can be written as:

(11)

As shown in Fig. 3, a static WBF neural network
only shows the relation between its inputs and outputs
generally. To improve the precision of the defects
recognition, we can design a dynamic WBF neural net-
work through signals backwards propagation. Its
basic structure is shown as Fig. 4, and its output can be
formulated as:

(12)

Where u(k) is the external input, y is the output, m and
n are the number of output and external input respec-
tively. For the non-linear features of pipeline defects
MFL inspection, we adopted three layers MIMO WBF
neural networks to construct defects recognizing
model. The first layer is input layer, and prompting
function is orthogonal wavelet function; the second
layer is hidden layer; and the third layer is output layer.
A defined function F(x) can describe the corresponding
defect profile:

(13)

Where φ(x,c) is a scaling function, and ψ(x,c) is a
wavelet function, and cj is the centers of the basis func-
tions. L is the number of resolution.

(14)

(15)

Then we can obtain the output error e(f,F) and the
squared error E(f, F):

(16)

Through seeking the least squared error Emin(f,F), the
output weights matrix can be obtained. So
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Fig. 3 The Structure of Wavelet Neural Network

Fig. 4 Pipeline Defect Recognizing Dynamic WBF Neural
Network



, then

(17)

The selection of basis function centers is important
to the network, and k—means clustering algorithm is
usually adopted. We use a dyadic expansion scheme
to select the location of centers which was presented by
K. Hwang6). Concrete algorithm using the dynamic
WBF neural networks presented as above for defect
recognition is described as follows:

(1) Input MFL inspection data to the dynamic WBF
neural networks;

(2) Set coarsest resolution as resolution = 0;
(3) Select basic function centers cj;
(4) Calculate input-hidden weights and hidden-out-

put weights;
(5) Compare the squared error, if a calculated value

is bigger than a given value, then go to the 2nd
step, increase the value of resolution, repeat the
process.

(6) Output defects parameters and adjust basis func-
tion center cj.

4. Experiment Results and Discussion

Figure 5 is the structure schematic diagram of off-
shore pipeline MFL inspection. The MFL inspection
device has six parts: driver robot, system controller,
power supply, MFL sensors, MFL data processor, and
position tracer. The MFL pig adopts Hall sensors,
having 112 pieces in axial and circumferential direc-
tions. The leakage flux signals are digitized and
stored in the MFL data processor. Position tracer is
used to trace defect location. From inspection signals
we can estimate defect parameters such as length, and
etc. Figure 6 is the data acquisition function module
figure of the MFL inspection robot. The input signals
include MFL signals, temperature data, pressure data,
and location data. MFL inspection signals will be fil-
tered in DSP module, and then compressed with other
data in FPGA. Noise in pipeline inspection will affect
recognition precision greatly, so we must eliminate
noise signals from inspection signals, and an approach
to eliminate noise aim at different noise sources based
on adaptive filter and wavelet theory was presented7).
Figure 7 is the filtering result of MFL inspection signal
applying adaptive wavelet shrinkage denoising.
Central computer (it is usual PC104) controls the data
acquisition process through PCI9054. Finally,
pipeline MFL inspection data are stored in storage
device. Through many experiments and other
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Fig. 5 Schematic Diagram of Pipeline MFL Inspection Device

Fig. 6 Function Module Figure of MFL Inspection Robot Data Acquisition



researchers’ work, we can get the main characteristic
quantities of pipeline MFL defect signal as following:

(1) Signal waveform peak-peak value pp, which is a
significant indication of a defect depth;

(2) Space between peak-peak p-p can be used to
measure a defect width;

(3) Area of signal waveform S is the short time first
order central moment of MFL inspection signal.
It is formed by a waveform peak and a waveform

valley, can be expressed as ;

(4) Waveform energy E, is equivalent to the short
time second order central moment of MFL
inspection signal, reflects MFL signal scattering

degree, and ;

(5) Other derivation characteristic quantity as, 

pp/p-p, S/pp, S/p-p and etc.
In the lab., we manufactured different defects as

crack, corrosion utilizing electricity-sparkle methods on
three types of pipelines which have the same material
and sizes with Chinese offshore pipelines. Table 1
shows pipelines size parameters. When the MFL pig
inspection speed is 14 mm/s and the operation tempera-
ture is 23°C, and no oil in the pipelines, we can get par-
tial defect samples of MFL signals as Table 2.

Based on the methods presented in Section 3, com-
bining pipelines signal characteristic quantities, we
designed the input layer of the dynamic WBF neural
networks recognizing algorithm having 4-6 nodes. As
we all know, if the hidden layer has more nodes, it may
have higher accuracy but the network training time is
too long. On the contrary, when the network has sev-
eral nodes, the defect recognition system has lower
accuracy. Through many experiments, we found
when the hidden layer is about 20 nodes, it could meet
not only the needs of defect parameter output accuracy
but also the real-time feature, so we set 20 nodes of
hidden layer. Calculating for ease, the output layer
has only depth, width, length nodes. Figures 8(a)
and (b) are the recognizing results from a 10 × 10 × 1.3
mm square defect by using the dynamic WBF neural
network recognizing algorithm. The max network
training steps is given as 3000 steps, and target error is
0.0001. Figure 8(a) shows the signal approaching
curve and Fig. 8(b) shows the depth parameters
approaching curve. Figure 9 is training precision and
target precision curve diagrams with changing steps,
and the network convergence step length is 1350 steps.

Through many experiments, the recognizing algo-
rithm based on the dynamic WBF neural networks has
good refining effects, and the accuracy can be con-
trolled by varying the numbers of the network resolu-
tions. The recognizing error rate is less than 0.5%.
The result is satisfied considering the MFL pig’s
inspection precision is 10 mm. Table 3 is approach-
ing precision comparison of BP and WBF neural net-
work when they have same steps and same nodes of
input layer, output layer, and hidden layer, and the con-
vergence steps are usually no more than 4000, obviously
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Fig. 7 MFL Inspection Signal Filtering Result Applying
Adaptive Wavelet Shrinkage Denoising

Table 1 The Size Parameters of Chinese Offshore Oil Pipeline

ID Outer diameter Thickness Inner diameter

8# 219 mm 12, 13 mm 195, 193 mm
10# 273 mm 13 mm 247 mm
12# 325 mm 14.5 mm 296 mm

Table 2 Partial Defect Samples of MFL Signal

Defect ID
Length Width Depth

pp p-p S pp/p-p w Shape
[mm] [mm] [mm]

21 33.4 25 2.5 1.91 12.5 43 0.1528 27 rectangle
22 20 20 1.6 1.29 11.7 33 0.1102 20 rectangle
25 15.5 24.4 1.6 1.31 11 25 0.1191 25 rectangle
35 10 10 0.8 0.65 8 11 0.08 12 rectangle
38 10 10 1.3 0.98 8.1 18 0.121 11 rectangle
49 10 10 2   1.63 8.2 27 0.199 11 ellipse
53 400 20 3.5 2.63 13 75 0.2023 23 ellipse
65 12 25 2 1.41 10.8 49 0.1306 29 ellipse
71 9.5 11 1.3 1.03 9 32 0.1144 13 ellipse



having significant advantages than BP neural networks
used in MFL inspection. Pipeline safety evaluation is
a very important issue now, and there are more work
which needs us to do. But only in the MFL pipeline
defect recognizing field, how to improve the dynamic
wavelet basis function neural network’s output preci-
sion and select more efficiency centers and resolution,
are our future research object.
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Fig. 8 Signal Approaching and Depth Approaching Curve of
10 × 10 × 1.3 mm Square Defect

Fig. 9 Training Precision and Target Precision Curve Diagram
with Changing Steps

Table 3 Approaching Precision Comparison of BP and WBF
Neural Network

Network type 1500 steps 2000 steps 2500 steps 3000 steps

BP 74% 81% 86% 90%
WBF 82% 86% 94% 97%

……………………………………………………………………
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要　　　旨

認識アルゴリズムを用いた海洋パイプラインの漏えい磁束探傷法
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石油産業においては，海洋パイプライン等の安全評価は環境

汚染あるいは人身事故を未然に防ぐという意味合いで非常に重

要なものである。その評価方法としては，管厚の測定に対して

有効な超音波探傷法のほかに，パイプラインの管体に生じた微

小な傷を探知する手法として近年広く利用されるようになった

漏えい磁束探傷法がある。同手法は，出力信号処理として

ウェーブレット基底関数をスペクトル解析し，時間情報と周波

数情報の両方を同時に解析して得られるものである。本論文で

は，漏えい磁束探傷法を用いたパイプラインの探傷自動化装置

の開発において検討されてきたウェーブレット基底関数ニュー

ラルネットワークのダイナミックな反復アルゴリズム利用によ

る検知精度の向上，ならびに高速化を図る手法について紹介し

ている。


