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Abstract

The decentralised load-frequency controller design problem concerned is translated into an equivalent

problem of decentralised controller design for a multi-area multi-input multi-output (MIMO) control

system. It is shown that subject to a condition based on the structured singular values (SSVs), each local

area load-frequency controller can be designed independently. The stability condition for the overall system

can be stated as to achieve a sufficient interaction margin. It is demonstrated by computer simulation that

within this general framework, local H∞ controllers can be designed to achieve satisfactory performances

for a sample two-area power system.

1. Introduction

In the load-frequency control function it is necessary to keep the system frequency and the interarea tie-line
power as near to the scheduled values as possible through control action. The important requirement for
system stability may be conveniently met by adopting a global policy for design, based, for example, on
well-established principles of pole placement or optimal control by state feedback. Where such an approach
is to be used with decentralised control, the state vector for the entire system should be made available for
the generation of local feedback control signals in all areas. This requirement may be met if a reconstruction
of the whole system state vector is made within each area only, i.e., if the system state vector is observable
from area measurements. However, even if the observability condition is satisfied, the resulting controllers
with appropriately designed observers are normally quite complicated and this approach is not suitable for
a large power system where the total number of the state variables is large.

In the dynamical operation of power systems it is usually important to aim for decentralisation of
control action to individual areas. This aim should coincide with the requirements for stability and load-
frequency scheduling within the overall system. In a completely decentralised control scheme, the feedback
controls in each area are computed on the basis of measurements taken in that area only. This implies that
no interchange of information among areas is necessary for the purpose of load-frequency control (LFC). The
advantages of this operating philosophy are apparent in providing cost savings in data communications and
in reducing the scope of the monitoring network.

Another important issue in the load-frequency controller design is robustness. An industrial plant such
as a power system always contains some uncertainties. Several authors [1-4] applied the concept of a variable-

structure system (VSS) to the design of load-frequency controllers. Various adaptive control techniques [5-7]
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were proposed for dealing with parameter variations. Recently, there are also publications in which a Riccati
equation approach is applied to the stabilisation of an uncertain linear system [5, 8] in the LFC design. All
the proposed methods with consideration of robustness are based on the state-space approach. It is known
that although the load frequency control for multi-area power systems can be naturally formulated as a large-
scale system decentralised control problem, it can be translated into an equivalent problem of decentralised
controller design for a multi-input multi-output (MIMO) control system [9]. The frequency response based
robust controller design methods, for example H∞ or other design techniques, may be applied to such a
MIMO system. However, applying these methods in general leads to a centralised controller.

In this paper, structured singular values are used in a different way from those commonly used in
the literature [10-14 ]. It is shown that subject to a condition based on structured singular values, each
local area controller can be designed independently. The stability condition for power systems with local
area controllers can be stated as to achieve a sufficient interaction margin proposed in [9, 15], and sufficient
gain and phase margins defined in classical feedback theory during each independent design. It is shown
that within this framework it is possible to design H∞ local area controllers to achieve satisfactory system
performances.

2. Sample System

Figure 1 is a block diagram for the load-frequency control of a two-area power system. The nomenclature
used and the nominal parameter values, in per unit (pu), are given in the Appendix.

A state-space model for the system of Figure 1 can be constructed as

x = Ax + Bu
y = Cx (1)

where ;

u = [u1 u2]T ; y = [y1 y2]T = [∆f1 ∆f2]T

x = [∆f1 ∆PT1 ∆PG1 ∆Pcl ∆Ptie ∆f2 ∆PT2 ∆PG2 ∆Pc2]T
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Figure 1. Block diagram of two-area system
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B =
[
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0 0 0 0 0 1 0 0 0

]T
The system is stable and the control task is to minimise the system frequency deviation ∆f1 in

area 1, ∆f2 in area 2 and the deviation in the tie-line power flow ∆Ptie between the two areas under the
load disturbances ∆PD1 and ∆PD2 in the two areas. Since the system parameters for the two areas are
identical and the ∆ Ptie is caused by ∆f1−∆f2 , the system performance can be mainly tested by applying
a disturbance ∆PD1 to the system and observing the time response of ∆f1 . Some simulation results for
∆f1 when a step disturbance of ∆PD1=0.01pu is applied to the system are plotted in Figures 7, 8 and 9 as
dashed lines.

3. Transform into equivalent design problem

In general, an m-area power system load-frequency control problem can be modelled as a large-scale system
consisting of m subsystems

x = Amx + Bmu
y = Cm

(2)

where u =[u1, . . . , um]T , y =[y1, . . . ym]T = [∆f1, . . . , ∆fm]Tx =[x1, . . . , xm]T and xi are the state variables

for i th area (i th subsystem). The sample system used here is a special case of m=2. An mxm transfer

function matrix G(s) linking U(s)=[u1 (s), . . ., um (s)]T and Y(s)= [y1(s),, ym (s)]T :

Y(s) = G(s)U(s)G(s) = [gij(s)i,j=1,...,m] (3)

can be calculated as

G(s) = Cm(sI −Am)−1Bm (4)

The design of m decentralised local controllers now becomes the design of a mXm diagonal matrix
K(s) = diag [ki(s)]i=1,...,m as shown in Figure 2. If all gij(s)(i 6= j) in G(s) were equal to zero, each controller
could be designed independently just as if it were in a SISO system as shown in Figure 3. However, since
gij(s)(i 6= j) are not zero, the following question must be resolved, i.e., if each ki(s)(i = 1, . . . , m) is
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designed to form a stable closed-loop system as shown in Figure 3, what are the additional conditions which
can guarantee that the global system of Figure 2 is stable? The answer to this question is discussed in the
following section based on the theorem given in [16].

-

K(s) G(s)

-

ki(s) Gii(s)

Figure 2. Equivalent MIMO system Figure 3. Independent SISO system design

4. Decentralised Controller Design for MIMO systems

In [16], a transfer function G(s) = [gij(s)]i,j=1,2,...m for a mxm MIMO plant is composed into

G(s) = G̃(s) + Ĝ(s) (5)

where G(s) = diag[gii(s)]i=1,2,...m is a diagonal matrix; all diagonal elements in Ĝ(s) are zero and off-

diagonal elements in are equal to those in G(s). Using the notations

E(s) = Ĝ(s)G̃−1(s) (6)

H̃(s) = G̃(s)(I + G̃(s)K(s))−1 = diag[h1(s)] (7)

H(s) = G(s)K(s)(I + G(s)K(s))−1 (8)

where K(s) = diag[ki(s)]i=1,2,...m is a diagonal transfer function for a decentralised controller in Figure 2;

H̃(s) or H (s) is a closed-loop transfer function matrix for a feedback system consisting of K(s) and G̃(s),

or K(s) and G(s), respectively. The following theorem is proved in [16]:

Theorem: The closed-loop system H(s) is stable if

(c-1) G(s) and H̃(s) have the same number of right half plane poles

(c-2) H̃(s) is stable, and

(c-3) |hi(jw)| < µ−1(E(jw))∀w(i = 1, 2, . . .m)

where ‖ denotes magnitude and µ denotes Doyle’s structured singular value with respect to the decentralised

controller structure of K(s).

Remark: In [16], the more general block-diagonal structure is considered, condition (c-3) is in the

more general form of (c-3)*, σmax(H̃(jw)) < µ−1(E(jw))∀w , where σmax denotes the maximum singular
value.

This theorem gives sufficient conditions for the system H(s) to be stable if the controller design

is based on the fully non-interactive model G̃(s), i.e., each ki(s) is designed independently, based on an

SISO model gii(s). In particular, condition (c-3) states that the magnitude of the frequency response of

SISO closed-loop transfer function hi(s) = ki(s)gii(s)/(1 + ki(s)gii(s) must be less than the value of a

scalar frequency-dependent function µ−1 (E(jw)). It is also proved [16] that, although (c-3) is a sufficient
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condition and therefore may have some conservativeness, compared with the other conditions developed for
the independent decoupled design, for example, the diagonal dominant condition and the generalised diagonal
dominant condition, (c-3) gives the tightest restrictive band and is the least conservative. However, since

the same restriction µ−1(E(jw)) is applied to all hi(s) in condition (c-3), a modification to this condition

[16] can be made to provide more flexibility and to reduce further the possible conservativeness caused by

the inflexibility in condition (c-3):

(c-4) |hi(jw)w−1
i (jw)| < µ−1(E(jw)(W(jw))∀w(i = 1, 2 . . .m)

where W(s) = diag[wi(s)]i=1,2,...m is a properly chosen diagonal weighting function matrix. Due to w−1
i (jw)

in (c-4), although µ−1(E(jw)(W(jw)) is still the same for all SISO loops, the restrictions on |hi(jw) are

different. In fact, (c-3) is a special case of (c-4). For this reason, we specify the stability conditions [17] as:

(r-1) Condition (c-4) is satisfied with a sufficient margin. This can be checked by plotting |hi(jw)|
and µ−1E(jw)(W (jw)wi(jw)| on the same graph and an interaction margin for loop i can be defined as
the shortest vertical distance between the two curves.

(r-2) There are sufficient gain and phase margins in each SISO loop for the stability. This can also be

checked by a Bode or Nyquist plot of ki(jw)gii(jw).

Remark: For most systems, a satisfactory disturbance-rejection performance can be achieved if there
are sufficient stability margins.

For the given sample system, m=2 and the equivalent MIMO system can be represented by Figure 4.
Since the plant parameters in the two subsystems are identical, W can be chosen as I and neglected. The

interaction margin is therefore checked by the frequency responses of µ−1(E(jw)) and |hi(jw)| . A plot of

µ−1(E(jw)) for plant G(s) is given in Figure 5 as a solid line.
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Figure 4. A two-input two-output system Figure 5. Bode plot of µ−1(E(jw))(-) and h1 (–)

5. H∞ Controller Design Based on Normalised Coprime Factori-

sation

Glover et al proposed normalised coprime factors as a tool for obtaining robust stability using H∞ theory
[18]. This is a particularly nice problem because it does not require λ-iteration for its solution, and explicit
formulas for the corresponding controllers are available.
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The problem was stated as [18]:

Let (Ml, Nl) be a normalised left coprime factorisation of G, then

1- Find a largest positive number εmax , called the maximum stability margin, such that (Ml, Nl, εmax)
is robustly stabilizable.

2- For a particular value ε ≤ εmax , synthesise a feedback controller, K, such that (Nl, Ml, K, ε) is
robustly stable.

The main results will now be stated for a system, G, with normalised left coprime factor (Ml, Nl).
We need to find the controller K which stabilises the nominal closed-loop system and which minimises γ

where

γ =
∣∣∣∣∣∣∣∣[ K

I

]
(I −GK)−1M−1

l

∣∣∣∣∣∣∣∣
α

≤ 1
ε

(9)

This is the problem of robust stabilisation of normalised coprime factor plant descriptions. The lowest
achievable value of γ and the corresponding maximum stability margin ε are given as [18],

γmin = (1 + λmax(ZX))1/2 (10)

where λmax (.) represents the maximum eigenvalue, and for state-space realisation (A,B,C,D) of G, the
matrix Z ≥ 0 is the unique stabilising solution to the Riccati equation.

(A −BS−1DTC)Z + Z(A −BS−1DTC)T − ZCTR−1CZ + BS−1BT = 0 (11)

where R = I+DDT , S = I+DTD , and X is the unique stabilising solution of the following Riccati equation

(A− BS−1DTC)TX + X(A −BS−1DTC)−XBS−1BTX + CTR−1C = 0 (12)

A controller which guarantees that

∣∣∣∣∣∣∣∣[ K
I

]
(I −GK)−1M−1

l

∣∣∣∣∣∣∣∣
∞
≤ γ (13)

for a specified γ > γmin , is given by

K =
[

A + BF + T (C + DF ) T
BTX −DT

]
(14)

where

T = γ2(LT )−1ZCT (15)

F = S−1(DTC + BTX) (16)

L = (1− γ2)I + XZ (17)

The controller K(s) has the same number of poles (states) as G , and its minimal state-space realisation

is given (14).
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6. Local Controller Design

Now consider a system enclosed by a block with broken lines in Figure 1, the system has an input u1 and
output y1 . As before, since the plant parameters in the two areas are identical, we only need to consider a
decentralised local controller for area 1. To design a local controller based on the assumed nominal model

of g0
11(s) it is necessary to obtain sufficient stability margins as stated in (r-1) and (r-2) given in section 4,

in order to have a robust performance for the global system represented by Figure 1. This is also because

the g0
11(s) is an approximation of the plant model g11(s) given in Figure 4.

g0
11(s) here is the plant model G. A state-space realisation A, B, C, D for G can be easily obtained.

By solving the Riccati equations (11), and (12), Z and X are obtained as:

Z =


3.0654 0.8086 −0.5363 0.0
0.8086 1.1670 1.2651 0.1303
−0.5363 1.2651 6.6541 0.1921

0.0 0.1303 0.1921 0.1821



X =


0.3542 0.2930 0.0560 −0.2129
0.2930 0.3675 0.0826 −0.0736
0.056 0.0826 0.0196 0.0
−0.2129 −0.0736 0.0 2.7866


From (10), γmin = 1.2, we choose γ = 1.75; substituting this value and other known matrices into

(15), (16) and (17) gives:

F =
[
−0.6999 −1.0324 −0.2452 0.00]

]

L =


−2.1274 0.6714 0.5123 0.0103
1.1509 −2.6594 0.8432 0.0504
0.2279 0.1665 −3.2151 0.0145
−0.7122 0.105 0.5565 −2.9275


T =

[
−8.4374 −3.5758 −1.5622 −0.0992]T

]
From (14), the transfer function for the local output feedback controller can be obtained as:

k̂1 =
9.9803s3 + 151.0511s2 + 242.436s− 113.6777

s4 + 27.4s3 + 276.8s2 + 1449.8s + 88.6

This k1(s) is normally of high order. A low order k1(s)

k1(s) =
b2s

2 + b1s + b0

s2 + a1s + a0

can be used to approximate k1(s) based on the minimisation of the frequency response errors between k̂1(jw)

and k1(jw). This is carried out as follows:

(1) obtain the frequency of k1(jw) over the relevant frequency range, in our case from

w = 0.01 rad/sec to w = 100 rad/sec .
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(2) using the Matlab function invfreqs in the Signal Processing toolbox to find the values b2, b1, b0

and a0 in k1(s) which can give the best fit between the frequency response of k1(jw) (from w = 0.01 rad/sec

to w = 100 rad/sec) and that obtained in the first step.

The result is

k1(s) =
9.9687s2 + 6.7076s + 0.2316

s3 + 12.7752s2 + 81.832s− 0.1569

h1(s) can be obtained by first connecting the above transfer function k1(s) to the state-space model used

to calculate g11 (s), (the A matrix, the first column of the B matrix and the first row of the C matrix in

equation (1)), then finding the resulting closed-loop system transfer function. The frequency response of

|h1(jw)| is plotted in Figure 5 as a dotted-dashed line. The interaction margin obtained is 4.264 db at a

frequency of w ≈ 2.95 rad/sec.

7. Simulation Results

To test system performance, a step load disturbance of ∆PD1=0.01pu is applied to area 1 and the system
output of ∆f1 is observed. An integration-absolute-error-time (IAET) criteria of the following form is also
used:

Jfre = 1000
∫ 20

0

|∆f(t)|tdt (18)

In the simulation study, the linear model of a nonreheating turbine ∆PT/∆PG in Figure 1 is replaced by a
nonlinear model of Figure 6 with δ = 0.015. This is to take into account the generating rate constrain, i.e.,
the practical limit on the response speed of a turbine, which was not considered in some early publications
[19, 20].

+
-

1

TT

1

s

δ

δ

∆Pv
∆PT ∆PT

.

Figure 6. Nonlinear turbine model with GRC

A number of simulations, using the nominal plant parameters and those with all plant parameters
changed by some percentage, were carried out for three different cases. The Jfre values obtained are listed

in Table 1, where

(1) Case A: two identical compensators designed in section 4 based on the H∞ design are added to
the system of Figure 1,

(2) Case B: two identical controllers designed with the Riccati equation approach given in [8] applied
for comparison, are added to the system of Figure 1,

(3) Case C: no additional controller is connected to the system represented by Figure 1.

Some selected time response plots are given in Figures 7, 8 and 9; solid lines are for Case A and
dotted-dashed lines are for Case B and dashed lines are for Case C.
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Similarly, deviation in the tie-line power flow ∆Ptie between the two areas under the load disturbances
∆PD1=0.01pu is also checked.

Table 1. Jfre values

Test Parameter Case A Case B Case C
Changes %

0 0 3.5 15.9 11.6
1 +5 3.1 15.2 16.3
2 -5 3.6 16.8 8.4
3 +10 3.1 14.6 23.4
4 -10 3.5 17.6 6.5
5 +15 2.9 14.0 32.8
6 -15 3.9 18.5 4.9
7 +20 3.3 13.5 45.7
8 -20 4.1 19.7 4.4
9 +25 3.3 13.1 64.9
10 -25 4.5 21.1 4.9
11 +30 3.5 12.7 89.1
12 -30 4.7 22.8 5.4

An IAET criteria of the following form is used:

Jtie = 1000
∫ 20

0

|∆Ptie1(t)|tdt (19)

The results for the two cases are given in Table 2. The results in Tables 1 and 2 show that, in comparison
with both no additional controller and with the controllers designed by the method given in [8], the system
performance significantly improved and that this performance is robust against the plant parameter changes.

Table 2. Jtie values

Test Parameter Case A Case B Case C
Changes %

0 0 2.0 6.6 4.2
1 +5 1.8 6.3 5.5
2 -5 2.0 6.9 3.3
3 +10 1.8 6.1 7.7
4 -10 1.9 7.2 2.8
5 +15 1.7 5.9 11.1
6 -15 2.1 7.6 2.5
7 +20 1.8 5.7 15.8
8 -20 2.1 8.0 2.3
9 +25 1.8 5.5 22.4
10 -25 2.3 8.5 2.3
11 +30 1.7 5.4 30.6
12 -30 2.2 9.1 2.4

8. Conclusion

A robust decentralised power system load-frequency controller design approach has been proposed in this
paper. An output feedback local area H∞ controller design technique based on general framework proposed
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in section 4 is applied to the problem of decentralised load frequency controller design. Most researchers use
a two-area power system for the study of a multi-area system load frequency control problem and assume
that the results can be extended to power systems consisting of more than two areas. The same approach
is adopted in this study. Extention to four-area power system for phase-lead compensator is also shown in
[21]. Due to the nature of the independent design, subject to some conditions, the proposed design approach
can be applied to a general m-area power system. These and other possible designs are currently under
investigation.

9. Appendix

System Parameters [19]

TT turbine time constant, TT1 = TT2 = 0.3 s; TG governor time constant, TG1 = TG2 = 0.08s.; TP

power system time constant TP1 = TP2 = 20s; R regulation parameter, R1 = R2 =2.4Hz/puMW; Kp power

system gain, Kp1 = Kp2 = 120Hz/puMW; T12 synchronising coefficient, T12 = 0.545puMW; B frequency

bias parameter, B1 = B2 = 0.425puMW/Hz; PD load disturbance; K integration gain, K1 = K2 =0.6; a12

ratio between the base values of two area, a12=-1
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