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Abstract

In this paper, two mathematical ways of building a fuzzy model of both linear and nonlinear systems are

presented and compared. In order to determine a model for a nonlinear system, the phase plane is divided

into sub-regions and a linear model is assigned for each of these regions. This linear model is represented

either in state-space or ARX model form. To determine the pre-selected parameters of the linear system

model under study, least-square identification method is used. Then these linear models are arranged in a

fuzzy manner to characterize the overall system behavior. The results show that this method can identify

linear systems exactly and nonlinear ones quite satisfactorily with both system representations, assuming

that the input-output data is not corrupted by noise.

1. Introduction

Fuzzy models become useful when a system cannot be defined in precise mathematical terms. The non-fuzzy
or traditional representations require a well structured model and well defined model parameters. Even
if the structure is known, numerical model representations usually become irrelevant and computationally
inefficient as the complexity increases. Moreover, there may be a lot of uncertainties, unpredictable dynamics
and other unknown phenomena that cannot be mathematically modeled at all. Therefore, when a system
cannot be modeled with traditional methods for the reasons stated above, then fuzzy logic offers an efficient
mathematical tool in handling many practical problems. The main contribution of fuzzy control theory is
its ability to handle many practical problems that cannot be adequately handled by conventional control
methods.

Fuzzy modeling of the systems have been observed in many scientific researches. Takagi and Sugeno
have proposed a search algorithm for a fuzzy controller and generalized their research to fuzzy identification
[1]. Sun has observed a modeling scheme for an adaptive-network-based fuzzy inference system [2]. Chen,
Pham and Weiss have shown that state space model of a linear system can be modeled fuzzily and extended
their study on nonlinear systems [3]. Eksin and Ayday have proposed an approach for fuzzy identification

of nonlinear systems [4], Mouzouris and Mendel have implemented a search algorithm for dynamical non-

singleton fuzzy control systems [5].

In the studies listed above, except the one by Takagi and Sugeno, the models require some human
knowledge and experience. The operator’s experience in the system is involved in the mathematics of fuzzy
control theory as a collection of “if...then” rules, known as “heuristic rules”. The main goal of this paper is to
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present a mathematical way of defining a fuzzy model of a nonlinear system without necessitating any human
knowledge. Instead of heuristic rules that many fuzzy models or controllers use, the presented method uses
the state values or the input-output data pairs. The system either starts from an initial condition and is
expected to reach an equilibrium point, or tries to follow a trajectory under some control. The state values
or input/output data are collected during these runs of the system for use at the identification stage. It is
clear that the more data is collected during various free runs, the more precise the model becomes. In this
paper, the initial conditions are chosen in such a way that the data covers all the dynamical input/output
range of the system.

2. Basic concepts and formulations

Linear systems can be represented in various structural forms such as state-space or auto-regressive moving
average models. In this study, basically these two structural models are used in identifying the systems. The

state space model of an nth order linear system with m inputs and l outputs can be written as

ẋ = Ax +Bu

y = Hx (1)

where x is an (n× 1) vector which represents the “states” of the system, y is an ( l×1 ) output vector, u is

an (m×1) input vector, and A is an (n× n), B is an (n ×m), and H is an ( l× n) matrix. When there is
no control signal, then u=0, and hence this system is called “free”.

The phase plot is a diagram which shows the trajectories of the states as t → ∞ . A free system model
without output equality can be written as

ẋ = Ax (2)

The solution point of a stable system given by (2) with the initial state vector x(0) as t approaches
infinity is x = 0. This means that all states of a stable linear system must converge to 0. The discrete-time
free model of (2) is

x(k + 1) = Adx(k) (3)

where k denotes the steps of the iteration.

Any nonlinear system can be considered as piecewise linear and be modeled by using the linear state
space equations given in (3). However, the equilibrium or the solution point as t approaches infinity must

also be added in (3). When the system is not linear, then the equilibrium point can be different from 0. A
linear shift of the states yields

x(k + 1) = A(x(k) − S) (4)

where S is a (n × 1) vector which holds the equilibrium coordinates of the nonlinear system. Leaving the

constant values apart, (4) becomes

x(k + 1) = Ax(k) + p (5)

where
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p = −AS (6)

A LTI discrete-time system can also be modeled by using autoregressive average (AR) or autoregressive

average exogenous (ARX) difference equations, [6]. This model representation is useful when all the system

states are not accessible or only the input/output data is available. Let n denotes the order of the ARX
model, the model structure can be written as

y(k) =
n∑

i=1

(aiy(k − i) + biu(k − i)) (7)

where y(k) is the output of the model at kth iteration, ai and bi are the weighting factors. With the
assumption that u = 0, a free system model or AR model can be obtained as

y(k) =
n∑

i=1

aiy(k − i) (8)

Let us assume that the equilibrium point of (8) is achieved after lth step. Then for all k > 1,

y(k) = y(k − 1) = . . . = y(k − n) = y (9)

n∑
i=1

ai = 1 (10)

In (7), the dependence on the past output (and/or past input) values is due to finite time response of
the system. When the system output reaches a steady equilibrium point different from zero in the nonlinear
system case, then according to (9), all the output values become equal, and so the sum of the weighting

factors is equal to unity as in (10). Therefore, (10) poses an extra condition in the calculation of the ai

coefficients. In order to get rid of this linear dependency and to have a nonzero equilibrium point in a
nonlinear system, we can add a constant term p to (7) and obtain

y(k) =
n∑

i=1

(aiy(k − i) + biu(k − i) + p) (11)

The role of p in (11) is different from the one in (5). The model given in (7) is still capable of modeling
nonlinear systems, but the addition of p improves the model response.

To characterize a nonlinear system better, the dynamic range is divided into a quantity of sub-
ranges and a linear model is assigned for each range. The passage from one model to another has been
smoothened using fuzziness to prevent sudden changes in the model. The selection of the number or type
of the segmentation is done a priori. Increasing the number of partitions will give better results, but will in
turn increase the number of calculations. Before giving details on how to implement models (5) and (11) to
form a single fuzzy model, it is useful to explain the terms that are used in fuzzy language. The method will
then be explained in detail in Section 3.

Fuzzy sets and membership functions In non-fuzzy control applications, the states x, control
input u and the model output y receive crisp values. In fuzzy modeling, these variables are assumed to have
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fuzzy values. Each variable is assigned a value called a “membership value” in the set [0,1], according to a
certain number of “membership functions”. Throughout this paper, the membership values are denoted by
the letter W and membership functions by S.

Fuzzy interval partitioning For an input variable x, the input space is divided into N intervals,
and a unique membership function is assigned to each of these intervals. The intervals can be chosen to be
distinct from one another but they can overlap as well. According to the crisp value that x takes, it receives
N membership values, but only two of them belonging to two adjacent intervals are nonzero.

If. . . then rules The dynamics of a system can be summarized by “if. . . then” statements, called
heuristic rules. Any rule is composed of an antecedent and a consequence. The antecedent may receive more
than one preposition. In mathematical terms, a “relation” or “if. . . then” rule can be expressed as
R: IF x1 ∈ S1 AND x2 ∈ S2 AND . . . xn ∈ Sn THEN y ∈ S3

where x1, x2, . . . xn are the crisp input variables, and y is the consequence or output of the relation R. For
each antecedent, a unique membership value W is calculated as the minimum of the membership values Wi

of each preposition, say “xi is Si”, i = 0, . . . , n.

W = min(Wi), i = 0, . . . , n (12)

Sun (1994) has proposed a multiplication operation instead of taking the minimum as

W =
∏

i

Wi (13)

for his network based identification algorithm.
Defuzzification Since the output of the model must be a non-fuzzy value, the output of the above

relation must be “defuzzified”. If there exist r relations, and W i, i = 1 . . . , r being the membership value

and yi the output of each relation, and ym the output of the model, then the defuzzified output is the
weighted sum of the r fuzzy outputs and is expressed as

ym =
∑r

i=1 W iyi∑r
i=1 W i

(14)

3. The algorithm of identification

Any state variation from an initial condition towards the equilibrium point or input-output data from a
running system is recorded. Then by using these data, the model parameters are calculated using the least
squares identification algorithm.

 SYSTEM FUZZY

MODEL

LEAST SQUARE IDENTIFICATION

ALGORITHM

System output
Model output

 input

Model parameters

Figure 1. Outline of the identification algorithm
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Having m number of different input and output data, the least square identification method searches
the optimum fuzzy model parameters in order to minimize the sum of the squared errors between system
and model outputs for k = 1, . . . , m . The outline of the identification algorithm is given in Figure 1.

During the fuzzification stage for the fuzzy model, each crisp input data x is assigned a membership
value W according to its negative, zero or positive value by using the membership function chosen as

W (xi(k)) =
1

1 + ((xi(k)− a)/2)4
i = 1, . . . , n (15)

In (15), the values of a are chosen with respect to a pre-selected dynamic range and should be scaled in
accordance with the system dynamics. With these three membership functions, the input space is partitioned
into three overlapping intervals.
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Figure 2. Fuzzy partitioning of the input space

As an example, the zero membership function will assign 1, the highest possible value to the input
xi(k) if xi(k) = 0 and decreasing values as xi(k), i = 1, . . . , n is located on each side of 0. The symmetrical

nature of the function used in (15) improves noise immunity since the average value of the noise is zero. The
fuzzy input space partitioning is given in Figure 2.

If. . . then rules used for model approximation require no knowledge of the system behavior. The
number of rules required to model the system in state-space representation is r = o(Nn) and this number

becomes r = o(N) in the case of ARX model representation.

3.1. Fuzzy state-space model structure

Fuzzy state-space modeling of a second order system with N = 3 can be summarized as follows:

R1 : IF x1(k) is negative AND x2(k) is negative THEN y1(k) = A1x̂(k−1)+p1(k−1) with the membership

value W 1

R2 : IF x1(k) is negative AND x2(k) is zero THEN y2(k) = A2x̂(k − 1) + p2(k − 1) with the membership

value W 2

. . .
R9 : IF x1(k) is positive AND x2(k) is positive THEN y9(k) = A9x̂(k−1)+p9(k−1) with the membership

value W 9

To carry out the identification algorithm in the MATLAB environment, it is required to rewrite the system
equations so that they conform with the least squares identification (LSI) method. The LSI structure is
given below:
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ϑα1 = ϕ1 (16)

and

ϑα2 = ϕ2 (17)

where

ϑ =


 K1(1)x1(1) K1(1)x2(1) K1(1) . . . K9(1)x1(1) K9(1)x2(1) K9(1)

. . . . . . . . .
K1(m− 1)x1(m − 1) . . . . . . . K9(m− 1)


 (18)

ϑ1 = [x1(2)x1(3) . . . x1(m)]T (19)

ϑ2 = [x2(2)x2(3) . . . x2(m)]T (20)

Ki(k) =
W i(k)∑9
l=1 W l

(21)

The solution vectors α1 and α2 of the algorithm will be

α1 = [a1
11a

1
12p

1
1 . . . a9

11a
9
12p

9
1]T (22)

α2 = [a1
21a

1
22p

1
2 . . . a9

21a
9
22p

9
2]

T (23)

ai,j are the elements of the matrix A in (5).

When the system is running with a controller, the model will not be free; hence, the relation set
becomes i = 1, . . . , 9

Ri : IF x1(k) is positive AND x2(k) is positive THEN

yi(k) =Aix(k − 1) + pi(k − 1) +Bu(k − 1), with the membership value W i .

3.2. Autoregressive model structure

On the other hand, if an AR model (11) is chosen with N = 3, n = 4, then the rule set and MATLAB
implementation for one input and one output variable case can be written as follows:

R1 : IF ym(k − 1) is negative THEN y1(k) =
∑4

j=1 a1
jym(k − j) + p1(k) with the membership value W 1

R2 : IF ym(k − 1) is zero THEN y2(k) =
∑4

j=1 a2
jym(k − j) + p2(k) with the membership value W 2

R3 : IF ym(k − 1) is positive THEN y3(k) =
∑4

j=1 a3
jym(k − j) + p3(k) with the membership value W 3

The ϑ, ϕ , matrices are

ϑ =

[
. . . Ki(4)x1(4) Ki(4)x1(3) Ki(4)x1(2) Ki(4)x1(1) Ki(4) . . .
. . . .

. . . Ki(m − 1)x1(m− 1) Ki(m− 1)x1(m − 2) Ki(m − 1)x1(m− 3) Ki(m − 1)x1(m − 4) Ki(m − 1) . . .

]
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i = 1, 2, 3 (24)

ϕ = [x1(5)x1(6)..x1(m)]T (25)

Ki(k) =
W i(k)∑3
l=1 W l

(26)

The solution vector α 1 of the algorithm will be

α1 = [a1
1 a2

1 a3
1 a4

1 p1 . . . a3
1 a3

2 a3
3 a3

4 p3]T (27)

Similar calculations can be carried out to compute the solution vector α2 . The mean square fitness
is calculated according to the following equation:

fit =

√∑m
k=1(x1(k)− xm1(k))2 + (x2(k)− xm2(k))2

m
(28)

and the steady-state error for phase-plane plots is given as

ess =‖ x(m)− xm(m) ‖2 (29)

It is to be noted that “modeling can be done by separating the premise identification from the
consequence identification and estimating the parameters of these linear equations using an orthogonal
estimator [7].

4. Simulations

Simulation 1

Let us consider a nonlinear system model chosen a priori as:

x1(k) = 0.9x1(k − 1)− 0.2 sin(x2(k − 1))

x2(k) = 0.2 cos(x1(k − 1)) + 0.9x2(k − 1)

For each unique initial condition, 200 (xi(k), xi(k − 1)) i = 1, 2 data pairs are obtained from this
nonlinear system. The entire phase-plane is tried to be covered by starting from 20 randomly selected initial
conditions. The resulting phase-plane plot for one of these initial conditions is given in Figure 3.

The matrices found by using LSI algorithm are given below:

A1 =
[

0.8801 0.1458
−0.1905 1.0023

]
,p1 =

[
0.2448
−0.5632

]

A2 =
[

0.8956 0.1474
−0.1032 0.9717

]
,p2 =

[
0.3035
0.6386

]
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A3 =
[
0.9017 0.1004
0.0363 0.6885

]
,p3 =

[
0.1482
−1.2454

]

A4 =
[

0.8928 −0.1851
−0.2281 1.0189

]
,p4 =

[
−0.0172
−1.0262

]

A5 =
[
0.9048 −0.2213
0.0450 0.9085

]
,p5 =

[
−0.0076
0.4392

]

A6 =
[
0.8779 −0.1718
0.3575 0.5893

]
,p6 =

[
0.1060
−1.6054

]

A7 =
[
0.9733 0.1789
0.1093 1.1513

]
,p7 =

[
−0.1681
−0.7456

]

A8 =
[
0.8881 0.1292
0.1100 0.8631

]
,p8 =

[
−0.2743
0.5869

]

A9 =
[
0.8664 0.1836
0.1785 0.6764

]
,p9 =

[
−0.3406
−0.0553

]

The mean square fitness and steady-state error values given in (28) and (29), respectively, are obtained

as follows for (x1(1), x2(1)) = (4, 4)

Real system

Model

4

3.5

3

2.5

2

1.5

1

0.5
-2 -1 0 1 2 3 4

Figure 3. Phase-plane portrait for x1(0) = x2(0) = (4,4)

fit = 0.0204

ess = 0.0039
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Simulation 2

The same system in Simulation 1 is taken into consideration with the same initial conditions. In this case,
the AR model is used and the following results are obtained.

System+model
output
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3.5
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2.5

2

1.5

1

0.5
-2 -1 0 1 2 3 4

Figure 4. AR model performance for x1(1) = x2(1) = (4,4)

fit = 8.4509× 10−4

ess = 2.7944× 10−4

It is obvious that the results are much better when compared to state-space model representation. In
fact, the system output and the model output coincide, which means that the model perfectly matches the
system.

Simulation 3

In this case, a linear system with the state equations

x1(k + 1) = x1(k) + 0.1x2(k)

x2(k + 1) = −0.1x1(k) + 0.8x2(k)

is considered.
With the same starting points and equal number of iterations, the simulation has produced a perfect

match between the model and the system. The phase-plane portrait, the fitness and the steady-state error
values are given below:
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Figure 5. Phase-plane portrait of the a linear system for x1(0) = x2(0) = (4,4)

fit = 5.0839× 10−14

ess = 4.7876× 10−15

The model parameters are all found to be identical for 9 sub-regions, as expected. The term p is,
quite naturally, calculated to be zero.

A =
[

1 0.1
−0.1 0.8

]
,p =

[
0
0

]

Simulation 4

In this simulation, data have been collected from a laboratory scale process (Feedback’s Process Trainer

PT326). The process operates much like a common hand-held dryer. Air is blown through a tube after
being heated. The input to the process is the voltage applied to a mesh of resistor wires that constitute the
heating device. The output of the process is the air temperature measured in volts by a thermocouple sensor
at the outlet.

One thousand input-output data points were collected from the process as the input was changed
in a random fashion between two levels. The sampling interval is 80 ms. These data are available in the
MATLAB identification toolbox.

The first 500 data are used for training. Then the outputs of the MATLAB’s arx441 format model
are compared to those of the presented “ model in Table 1. The mean square error is expressed as

MSE =

√√√√ 1
500

500∑
i=1

(ym(i) − ys(i))2

Table 1. Fitness values

“ model with p 0.2710

“ model without p 0.5007

Non-“ ARX441 model 0.5168

As can be seen in Table1, the identification by using “ model gives much better results.

134
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5. Conclusion

It is well known that the identification of nonlinear systems by traditional means is very cumbersome [8].

For this reason, neural network or other intelligent function approximation approaches (such as radial basis

functions) are devised or used [9].

The proposed system identification method offers a new approach and tool for building a mathematical
model for nonlinear systems. When there is a lack of human knowledge or there are difficulties in obtaining
crisp model parameters, the method described above can be used quite satisfactorily. The basic idea of the
method is that phase-plane or input/output space is divided into sub-regions and a linear model is assigned
to each region and then these models are composed together using “ theory to describe the overall nonlinear
system dynamics. The model obtained by using this method shows some discrepancies at the beginning, but
it converges to the real system within a few iterations.

To apply this method with state-space representation, all the system states must be accessible. This
also means that the order of the system must be known a priori. The identification by deduction of non-
observable states through the use of derivative functions require a perfect model order known a priori. If
this is not the case, the model will not be stable.

On the other hand, there is no need to know the order of the system nor all the states when using an
AR or ARX structure based model. Only input/output data pairs are enough to identify the system. From
the simulations, it is clear that the ARX model converges much faster and better than state-space model
because it requires a lower number of “ relations.
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