Turk J Elec Engin, VOL.12, NO.2 2004, © TUBITAK

A Platform for Software Engineering Course Projects

Birol AYGUN
Yeditepe University, School of Engineering and Architecture, Dept. of Computer Engineering,
34755 Kaysdag, Istanbul-TURKEY
e-mail: baygun@cse.yeditepe. edu.tr

Abstract

The importance of projects in software engineering courses is well known. Both synthetic and real-life
projects have various advantages and disadvantages. Our aim was to create a framework where students
can develop projects which reflect some of the complexities of real-life, involving many concurrent, inter-
acting, asynchronous processes, each in a different stage of development, with wide temporal differences
among them - some occurring within millisconds of each other and others executing sporadically over
much longer periods. In this project, which was carried out in different arrangements in several soft-
ware engineering courses in three universities, the students developed both the sub- and super-structures
required, with varying degrees of success. The projects were performed in parallel with and subsequent
to one-semester courses in software engineering. The development was performed in accordance with
the principles established in the lectures. The sub-structure consists of a discrete-time event simulator
and a message passing mechanism. It can support many different super-structures. The super-structure
we created was an e-business community simulator where a manufacturer, its trading partners and the
transactions among them were simulated. In this paper we summarize the project and our experiences
during the development. A literature search for similar projects for software engineering education did
not yield any hits. However several reported industrial projects for virtual supply chain management
were examined. Our project on the other hand was tailored for implementation by student groups in one
semester with the primary purpose of getting experience in complex, multi-group software development

rather than immediate industrial use of the software.

1. Introduction

The primary audience of this paper is software engineering educators. The primary emphasis is on a particular
education technology, not advanced technology or research in e-business systems per se.

Given the importance of project-based work in introductory software engineering courses, we are often
inclined to believe that real-life projects, i.e. those which come from an actual user community, such as a
company or public organization, would be preferable to synthetic projects, developed expressly for the course.
As is well known by software engineering instructors however, real-life projects offer several difficulties which

make them less advantageous than they seem. Some of these are:

e The organization owning the project may not be able to designate an official to work with the academic

project who can devote sufficient time and effort to it,

107

Turk J Elec Engin, VOL.12, NO.2, 2004

e The project may be too complex or too routine to be used in the course,

The project may not be sufficiently defined as yet by the owner organization for students to start work

on it immediately,

The hardware and software requirements of the project may not be available in the university,

Meetings may be difficult to arrange, which will hinder project’s progress.

A synthetic project on the other hand, can be a real-life project adapted to the conditions of the course
such as complexity, number of workers, hardware requirements, length of development and other attributes.
It might be argued that students will take a real-life project more seriously. However an instructor with
sufficient real-life experience can add the required realism to the definition of the project and the development
process to make it feel life-like.

The projects we developed were based on a real-life like scenario adapted to numbers of students
in each class, the length of the term, the level of experience of the students and the software platforms
available. A number of features that go beyond those used in the industry were incorporated and some
feature details which would be required in a real-life project but would not contribute to the experience
gained by the students were excluded. In the development process, our priority was for the students to gain
the experience of working in a group, in fact, a multi-group project. Thus strong inter-group communication
and coordination were required. We also wanted the students to use relatively state-of-the-art tools to gain
an additional benefit for working on the project. To clarify some terminology, by “project” we mean a
typical one of the several similar projects developed by independent student groups, having some variations
such as the platform or implementation techniques. Each organizational unit (a company or a department)
simulated in the project is called a “sub-project” and assigned to a specific group of 3-6 members. As a
result there were nine sub-projects in each project, one being the Master Process which implemented the
sub-structure described below, the others being application programs representing the various organizations

included in the simulation.
In the literature, we did not find any reports of projects using a similar approach in software

engineering education. However, there are reports of discrete-event simulation being used in real-world

applications [3,4].

2. General Description of the Project

The central idea in the project, as title states, was to create a framework in which the interactions among
various organizational units can be simulated based on a distributed process model with possibly very
different scales of time, some interactions taking milliseconds, others hours or days. This subject may be
considered an adaptation of the author’s earlier work related to dynamic analysis of program behaviour by
simulation of the machine and programs’ execution on the machine. Details can be found in [1,2]. A literature
search of undergraduate software engineering course project reports yielded no projects of a similar nature.
However a number of industry projects on the subjects of virtual supply chains and virtual enterprises using
discrete-event simulation have been reported ([3,4]). The latter includes a long list of other references. Our
approach was tailored for a one-semester undergraduate course where the load can be distributed relatively
evenly across groups. Therefore we examined the industrial project reports for ideas but decided to create

our own optimized approach.

108

AYGUN: A Platform for Software Engineering Course Projects,

This type of simulation requires a time-grain independent scheduler and a discrete time-simulator
which can activate a process anywhere in a network at a desired time. We also required that processes
communicate by a standard interface. We chose to use XML formats agreed upon by the communicating
parties for messages between themselves. Given such a sub-structure, super-structures simulating different
organizations or scenarios could be developed. The super-structure we created for the project is illustrated

in Figure 1.

o , E-business Community Being Simulated
Distributors

Suppliers’
Customers PP

Suppliers

Supplier%

- BANK — -

MANUFACTURER

o ACCOUNTING

|| Sales & Mfg. Purchas
CRM Planning ing 0

°
a
°
°
a

-
°
°
a
°
<

Va

Manufac
turing

:
:
‘.’
.O

© 06 00049 9 6 ¢ 90 © 4 4 b DO A 4 DO A D DO ABD DO A 4 BIO A 4 DO
CAE AR 2R 2 RE UK SRR N 2 I R N A A BRI A A I 2 2 2 T 2 2 TR Y N A R Y A

Lerofo o e

_—
~—V¥

NOTE: “Distributors’ Customers” and “Suppliers’ Suppliers”
are excluded from the simulation.

Figure 1. The super-structure of the project.

In the super-structure developed, a simulation of an e-business community has been created. The
community consists of a manufacturing company (in the actual project it was a manufacturer of hard-disks),
its suppliers of parts and customers (i.e. distributors of harddisks) and a bank in which all the companies
have an account. The bank pays the customers’ bills automatically from their accounts. Detailed provisions
are provided in case where there are insufficient funds in the buyer’s account. Other business-related features
include rating of suppliers based on observed (simulated) failures of parts purchased from them, awarding
premiums to distributors who surpassed their sales quotas, etc. In short, quite a bit of detail is included in
every application to make them life-like, indeed more like a vision of how e-business firms might operate in
the near future. It is possible that if the simulation component were removed, the application programs can
be expanded to become the nucleus of a real-life e-business software. Documents exchanged between every
pair of stakeholders is has a unique type code and serial number. Every document is acknowledged by its
receiver. Thus it is possible to check if there were any missing links in the document chains.

109

Turk J Elec Engin, VOL.12, NO.2, 2004

The application sub-projects were described rather generally in the initial project description docu-
ment handed out to the development groups. The students were then required to augment their respective
sub-project descriptions through their own research and group discusssion. The groups were then required
to submit a Project Plan followed by a Software Requirement Specifications (SRS) for their sub-projects
using a format handed out in the lectures, and present them to the class. A part of the SRS describes the
content of the interfaces with other groups. Often there was a lot of feedback from the audience and the
SRSs had to be revised multiple times. Similarly, at the end of the design phase, each group had to submit
and present a Design Document, which went through a design review in class. This document included a
detailed description of the group interfaces in XML format. The groups also presented their test plan and
test results documents in their unit test phase. An effort was made to dovetail these presentations with the
coverage of the subject in the lectures.

An important point about testing in multi-group projects is that some of the groups with which a
particular group interfaces may not yet be ready to provide the interface required for the test. Therefore the
groups were required to simulate arrival of documents from other groups based on the interface descriptions
provided in the SRS and Design Documents by creating those documents manually. This way each group
could proceed with development until the sub-structure was ready to be used by sub-projects.

The project has been implemented by three different groups: one in Windows .NET and two different
implementations in Linux.

3. The Sub-Structure of the Project

The sub-structure of the project is illustrated below in Figure 2. As can be seen, it consists of three concentric
layers. Proceeding from inside out, these are:

1. The Time-based Simulation Layer,
2. The Messaging Layer,

3. The Application Programs Layer.

The innermost two layers are implemented by the Master Process (MP) sub-project. The third layer

is implemented by the application program sub-projects.

3.1. The time-based simulation layer

This layer receives event notices from the application programs indicating when they would like to be
awakened in the timestamp field of the event notice. The time is of course simulated time; it could be thirty
seconds, or one day later, or 8:00 A.M. next Friday. The event notice is described in more detail below.
The Master Process keeps track of legal holidays so that erroneous event notices falling on those days can
be returned. It does not keep track of the beginning and ending times of shifts; it leaves that up to the
application programs.

110

AYGUN: A Platform for Software Engineering Course Projects,

Bank

Accounting

Application Programs Laye

Messaging Laye

Distributors Suppliers

Time-based
Simulation Layer

Purchasing
Sales & CRM

Production Planning Production

Figure 2. The sub-structure of the project.

3.1.1. Activation and synchronization of processes

All the processes may be on different machines or some may be on one machine. They communicate with
each other using XML messages representing business documents such as orders, invoices, bank account
statements, payment overdue notices etc. Timestamps may be in “relative time” format (e.g. 1 day, 12
hours and 5 minutes from now) or “absolute time” format (e.g. “10/9/2003 0805”).

When the Master Process (MP) wants to activate a process as a result of an event notice, it does the

following;:

1. Locate the earliest event notice.

2. Check if all processes are idle.

If there is an active process, it is possible that it can issue an earlier event notice than the current
event notice selected. Therefore MP sends a poll to see if they have an event notice to posts with a pre-set
time-out period for response. If it does not get a reply in the allowed time, it tries this two more times. If
it still doesn’t get a reply, the process is assumed to be dead or malfunctioning. The MP writes a message
to the Event Log. That process is ignored and the MP checks for other active other processes, handling
each one as described above. When the MP is convinced that no other processes can send an event notice

111

Turk J Elec Engin, VOL.12, NO.2, 2004

for an earlier time than the earliest event notice in the schedule, it awakens the target process indicated in
the event notice and gives the event notice to it. Thus a sending process can communicate with the receiver
in two ways: the XML file being sent and the parameters in the event notice. The timestamp is present in
the event notice; however the processes can also ask for the current time from MP.

All the event notices and error messages are written to an Event Log which can be queried for
debugging or reporting purposes. In some cases the Event Log has been implemented a database file, in
others a sequential XML file. If a process is presumed dead, as mentioned above, all processes sooner or
later run out of things to do since orders can not be completed and that tends to prevent new orders from

being generated, and thus the schedule becomes empty and the simulation ends.

Issuing Target Synchroni Time | Parameters
Process ID | Process ID | zation Code | stamp

Figure 3. The format of an event notice.

3.1.2. The event notice

The format of an Event Notice is given below.
Issuing Process ID: The ID of the process issuing the Event Notice,
Target Process ID: The ID of the process to be awakened at the time indicated in the Timestamp

field. This could be the same process as the Issuing Process.

Synchronization Code: “B” = Busy, “I” = Idle. If this code is “B”, the issuing process will be

Y

marked “Busy” after the event notice is put in the schedule, indicating it has other work to do and that it
may issue more event notices before it goes idle. If the code is “I”, the process is marked “Idle”, meaning it
has no other work to do at this time.

Timestamp: The time at which the Target Process should be awakened, in absolute or relative time
format

Parameters: Additional information that needs to be passed to the target process.

3.2. The messaging layer

This layer provides for transfer of XML files among application processes. Each application process has an
input box and an output box. It also has a Listener Process, a Main process and an Output process. The
Listener Process constantly monitors the input box looking for messages. When it finds one or more, it
sends a confirmation for each one, and passes the messages on to the Main Process, which performs all the
processing required by the messages, possibly using multiple threads for independent activities, and creates
output XML files to be sent to the next process, if any. It then sends one or more event notices to MP to be
awakened again at certain times to send out those messages. The time whose passage is simulated by two
successive event notices corresponds to the time it would take in real life to perform the associated task(s)
and it is usually randomized around an average time. For example, if the incoming message was an order for
goods sent by a distributor to the Sales and Customer Relations Management department, the time passage
to be simulated would correspond to the time it would take in real life to the processing of the order in that
department before the order is posted in a daily order list or sent to Manufacturing Planning, depending on
how the department operates. In the latter case, the department would create an XML document passing
the order on to Manufacturing Planning. When the Main Process of the Sales and CRM department is

112

AYGUN: A Platform for Software Engineering Course Projects,

re-awakened as a result of its event notice, it calls its Output Process to send the XML files created as a
result of the task to the receiver processes’ input boxes.

3.3. The application programs layer

This layer contains the code for all the organizational units taking part in the simulation. These programs
have been written in Java for Linux and C# for NET. These programs communicate with each other by
sending business documents in XML format and with the MP through event notices and error messages
when the latter arise. The structure of a typical application program is shown below in Figure 4.

Main Process of the Application

Listener Process|

Input XML file

Output Procesg

Output XML file

v
Figure 4. Structure of a typical application.

4. System Testing

It is generally difficult to test time-based simulations thoroughly due to the complexity presented by the
temporal relationships of the random interactions among the many asynchronous processes. The same is
true in this case, compounded by the fact that many different scenarios are needed to cover all the business
cases which can arise. Some of these are as follows:

The distributors, who sell goods to dealers, keep a certain amount of stock of their own. If new orders
can be met from this stock, the distributor has the choice of doing so or ordering new stock at current prices,

To meet demand for goods, the Manufacturing Planning department can use a number of different
policies involving amount of stock on hand, minimum order levels and average order delivery period of
various suppliers, the current workload on manufacturing, and possibly other criteria.

A large number of test cases were designed to cover some of these possibilities, but only a few could
be tested due to academic time constraints.

The simulation was designed to run automatically to completion with pre-specified initial customer
order inputs. However, for testing purposes members of all groups were present to monitor their application’s
execution and to intervene if needed, e.g. when there is a system problem in the network or one of the

machines. We should point out that overall (black-box) system test plan design is an important area which

113

Turk J Elec Engin, VOL.12, NO.2, 2004

should be carefully planned due to the complicating factors mentioned above in a time-based simulation
approach to group projects. The test case design itself becomes an important learning tool for the students.

5. Composition, Operation and Grading of Development Groups

Members of groups were chosen at random in principle. The reason for this was to minimize complaints
later that particular group was favored or biased against, and to reflect the fact that in real life you often
can not select the teammates you have to work with. Once the initial groups were formed, exchanging
members between groups to facilitate collaboration, such as arranging meetings, was permitted. Only the
Master Process group was hand-picked due to the higher technical complexity of that sub-project and its
importance to get the simulation to run. That proved to be a good decision. However, it did not go far
enough. It would have been better if we could get the Master Process group start work, say three weeks,
ahead of the other groups.

There were other difficulties, as is common in group projects, to get the groups to work together and in
assigning grades. The approach to handling the first problem was to make some class time in addition to lab
time,as well as group mail and a web site available for communication. The second problem was handled by,
in principle, giving the same grade to all members and enforcing division of labor as much as possible in all
phases of the project, including the requirements analysis, design, development testing and documentation.
Each of these phases were graded seperately. Members who grossly violated this arrangement were given
lower and sometimes failing grades. It was felt that trying to assess the individual contributions of all the

members in detail would create more heat than light.

6. Development Platforms

As mentioned, two different platforms were used: Linux and .NET. In the Linux platform, the project was
developed using the Jakarta/Tomcat server, Java, MySQL, SOAP and XMLRPC. One group tried using
PHP for its application program but although the program was developed without much problem, there
were difficuities in getting the process to be awakened by the MP which is coded in Java, and in using the
Java-based parsers to parse the XML files.

In the case of .NET, after much investigation, it was decided to assign a Web server to each application
program as well as the MP, and to use the Web Service approach to invoke their services. On hindsight
this does not seem unreasonable since each application program represents an independent set of threads
possibly running on different servers in real life.

Almost 200 project documents were produced and 200KLOC were produced over four semesters and

three different versions of the project.

7. Evaluations and The Learning Experience Achieved

Sevaral evaluation mechanisms were used to evaluate the effectiveness of this approach in the software
engineering project course.

One is the traditional course evaluation mechanism used by the universities. Another is a specific
student feedback session used in place of the final exam in one of the sections.

The responses in these two types of evaluation fell in three categories: Some students wanted more
technical instruction on the tools used. Indeed this was a fair criticism since a number of new tools were used

114

AYGUN: A Platform for Software Engineering Course Projects,

on which not all the students had used before. This included the Java parsers, Java itself, SQL database,
XML and of course SOAP on Linux, and on the .NET side, C#, Web service and XML. Of course the upside
of this is that if it weren’t for this project, they might not have had a chance to use these tools.

A second category of criticisms were related to difficulties in intra- and inter-group communication
and collaboration. We tried not to interfere in this area during development but provided class-time and
resources to accomplish these. We feel that this too was a good lesson for them to learn about working in
group and multi-group projects.

The third category was one of high applaudit - where the students said this was the best and most
life-like project they had worked on and that they believed it gave them a good feel for what to expect when
they go to work. Our feeling is that the project went beyond what most will probably face in their initial
assignments at work, and that it gave them a vision which will be helpful for quite a while to come for many
of them—which in fact was the aim of the project.

There are two other ways in which the educational effectiveness of this approach in teaching of a
software engineering project course can be evaluated:

1- The guidance and help it provides graduates in, especially the beginning part of, their careers,

2— Comparison of the achievement of students who took this course using this approach, and those
that didn’t.

We are unable to make the first evaluation on a systematic basis. However, some feedback from
graduates indicates that they got a very good exposure to project development from this course. In fact,
some felt that the project environments they worked in was much more informal and less rigorous than what
they experienced in our project.

The latter kind of evaluation is done by comparing the understanding of the students who took part
in this project with regard to how to approach development of such an information system as opposed to
those who did not use simulation-based approach, based on other similar projects, indicates that the former

group in fact got a better understanding of the overall process.

8. Future Work

We conjecture that this project possibly provides another software development process model for top-
down development of distributed sets of applications where there are very diverse lengths of time between
executions of processes — e.g. where some execute constantly, some are user-initiated, some are periodical
and some are quite asynchronous, executing only when conditions warrant. Our event-notice and time-based
simulation-based approach with well-defined process interfaces provides a method where interaction of these
application processes, each of which may be in a different stage of development, can be observed, tested and
debugged.

Future work associated with this project will proceed in two directions:

1- Training new software engineering students to use the framework to develop new applications
suitable for time-based simulation and to implement software engineering tools for testing, performance
measurement, debugging and case analysis.

2— To cooperate with other departments or schools in the universities to find new application areas
in their curricula which can be modelled using this approach. Obviously, due to the first application area
we developed, business information systems would be a likely candidate. Other groups which have processes
which interact over differing periods of time may find this framework useful since we are able to accomodate
such processes and provide a standard way of communication among them regardless of the length of time

115

Turk J Elec Engin, VOL.12, NO.2, 2004

between their interactions.

Acknowledgements

The real heroes of the projects are, of course, the students. I thank my students in all three universities

and my graduate assistants Sadi Seker Evren (Yeditepe University), Zerrin Isik and Murat Geng (Sabanci
University) and Cogkun Giindiiz (istanbul Bilgi University) for their contributions to the project.

References

[1] B.O. Aygun, Dynamic Analysis of Execution: Techniques and Problems, Ph.D. thesis, Carnegie-Mellon Univer-
sity, Department of Computer Science, 1973.

[2] B.O. Aygun, “Environments for Dynamic Analysis of Program Behaviour”, Proceedings of Conference on

Simulation of Computer Systems, 1973.

[3] J.A. Joines, R.R. Barton, K. Kang, and P.A. Fishwick, eds. Proceedings of the 2000 Winter Simulation

Conference: Distributed Supply Chain Simulation Across Enterprise Boundaries.

[4] S. Umeda, A. Jones, Virtual Supply Chain Management : A Re-engineering Approach Using Discrete Event
Simulation, National Inst.of Standards, Maryland, USA.

116

