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Abstract

Integration of distributed generation is continually and gradually affecting the stability of intercon-

nected power systems. In this paper, the impacts of distributed synchronous generators on oscillatory

stability are studied. In various parameter sub-spaces of interest, feasibility regions can be calculated to

determine the conditions to sustain the stable operation of an interconnected power system. Through com-

putations of the feasibility boundaries corresponding to Hopf bifurcations of electromechanical oscillatory

modes, we determine the operating limits for a stable operation of the system under small and contin-

ual disturbances such as predictable changes in loading conditions of generators. Thus, with the case

studies given in the paper, under different operating conditions, we investigate the effects of distributed

synchronous generators on the oscillatory small-signal stability. It has been shown that penetrations of

these generators can cause local or inter-area oscillatory instabilities depending on the system’s topology,

operating point and control parameters.
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1. Introduction

Deregulation in the power market has encouraged the move towards distributed generation, where many
smaller generating plants located close to major loads, as opposed to a few large centrally located power
stations, are penetrating into interconnected power systems. For many years, electric power systems have
been operated within the boundaries defined by conservative reliability criteria. On the other hand, as
higher efficiency is desired, especially as deregulation is encouraged, the operators are forced to operate
these systems very close to their operating limits.

With the new trend in the power market, intra-area (local) and inter-area transactions of electricity
have been greatly proliferated. Typically, these transactions are of considerable duration and larger variety
than those in vertically integrated utility structures [1]. Naturally, this leads to frequently changing operating
points and load flow patterns that may cause stability problems. Therefore, stability analysis of a system
under such transformation becomes more critical and difficult than it was before.

Among many stability problems in power systems such as transient stability, where the stability under
large disturbances are concerned, small signal stability analysis has also become an emerging problem. Stable
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operation of an interconnected power system under small disturbances, such as predictable changes that are
continually occurring in loading conditions and power transfers, involves small-signal stability analysis over
a region or a set of changing operating points. Following such changes, the characteristics of the oscillatory
behavior of the system depend on the local stability of the operating points. In this paper, oscillatory
stability of power systems including distributed generation units is studied within this frame.

Oscillatory instability in nonlinear systems, such as power systems, is often related to Hopf bifurca-
tions. Hopf bifurcation related instabilities in power systems have been studied for more than two decades.
Early work on the Hopf bifurcation related instability in power systems can be found in [2], [3]. A funda-
mental platform for solving practical problems in large constrained nonlinear systems, mainly emphasizing
power systems was developed in [4]. Specifically, voltage stability problems associated with bifurcations have

been widely explored in the literature, e.g. [5]. In our work, we study stability problems related to Hopf
bifurcations of the electromechanical modes involved in real-power-angle dynamics of power systems.

With the increase in distributed generation, impacts of the distributed generators, such as fuel-cells,
micro-turbines, wind generators and solar panels, on the stability have become an emerging problem. Some
examples of the studies in impacts of the distributed generation on dynamics and stability of power systems
exist, for example, [6], [7]. The impacts of the distributed generation with different types of generation units

including synchronous generators, on transient and voltage stability have been studied, e.g. [8], [9]. In this
paper, the impacts of distributed synchronous generators on oscillatory stability are our main interest. Unlike
the previous work on the stability problems related to distributed generation, we use the calculation of the
feasibility boundaries associated with Hopf bifurcations, to determine and to study the conditions for a stable
operation of distributed generators in accordance with the rest of the power system. However, this work does
not include the stability problems related to the generation units other than synchronous generators. Since
some of the distributed generation units, such as fuel cells and solar panels, are connected to the network
through power electronics equipment, they have totally different dynamic and control characteristics and
their stability problems, therefore, require another research effort.

The organization of the paper is as follows: In Section 2, we give some background information about
the feasibility region defined for a differential-algebraic system and explain the use of feasibility boundary
calculations in determining the oscillatory instabilities. In Section 3, the impacts of the distributed generators
on the oscillatory stability and the methods of our analysis are summarized. In Section 4, simulations of
selected case studies demonstrating the nature of inter-area or intra-area (local) oscillatory instabilities
caused by the penetration and operation of distributed generators are given.

2. Oscillatory Stability and Feasibility Boundaries

The quasi-stationary dynamics of large electric power systems can be modeled by parameter dependent
differential-algebraic equations (DAE) of the form

Σ : ẋ = f(x, y, p) f : <n+m+p → <n,

0 = g(x, y, p) g : <n+m+p → <m,

x ∈ X ⊆ <n, y ∈ Y ⊆ <m, p ∈ P ⊆ <p,

(1)

where in the state space X × Y , dynamic state variables, x , and instantaneous state variables, y , are
distinguished. The parameter space and its variables are denoted by P and p , respectively [10]. The
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reduced Jacobian (system matrix) A at nonsingular points for this system is calculated as

A = Dxf −Dyf(Dyg)−1Dxg, (2)

where Dxf denotes the partial derivatives ∂f/∂x , and so on.

The feasibility region for the differential-algebraic model of a power system has been introduced in
[11] to distinguish the operating points of the system at which the system can be operated without loss of
local stability. Within this region, the system operates at a locally stable equilibrium and can be driven to
any point in the region by slow parametric variations without losing local stability. Feasibility region and
boundary [11] calculations are crucial to determine preventive measures against an occurrence of instability.
Designing control schemes and determining operating conditions require careful assessments of the feasibility
regions. The feasibility boundary has been analyzed in Theorem 1 in [11] and it was shown that it corresponds
to three zero-sets of functions which are related to the principal codimension one bifurcations, the saddle-
node and Hopf-bifurcations, in case of a smooth induced dynamics and the singularity induced bifurcation
in case of loss of stability along the singular set.

Oscillatory stability problem in power systems arises as a small signal stability problem of large in-
terconnected systems, which are subject to disturbances such as changes in the system loading. Oscillatory
instabilities observed in the real-power-angle dynamics of a power system are quite often related to Hopf
bifurcations of electromechanical oscillatory modes. Essentially, Hopf bifurcation occurs as a simple pair of
complex eigenvalues of the system operating at an equilibrium (operating point) transversally crosses in com-

plex plane from the negative to the positive half-plane [12]. This process is connected to oscillatory stability

since it generates (or diminishes) periodic orbits (limit cycles) around the operating point. Depending on the
system parameters, the operating point and the structure of the system, two types of Hopf bifurcations can
be experienced: supercritical and subcritical Hopf bifurcations. To study the possible nature of these kinds
of oscillatory instabilities in power systems, examples of both supercritical and subcritical Hopf bifurcations
on small power system models, for which explicit calculations of center manifold and curvature coefficients
are feasible, are studied in [13].

An algorithm that calculates the feasibility boundary segments has, for example, been considered in
[14]. This algorithm involves a procedure to find the equilibria which have eigenvalues on the imaginary
axis. Basically, it has two stages: the calculation of a single point on the feasibility boundary and then the
calculation of the feasibility boundary segment which is near the point calculated (“continuation” techniques).

As the algorithm in [14] is used in this paper, during the calculation of the points on the feasibility boundary,
eigenvalue sensitivities with respect to selected system parameters are computed. If λ is an algebraically
simple eigenvalue of the system matrix A (see Eq. (2)), the sensitivity of the eigenvalue to the parameter p

at an operating point (x0, y0, p0) can be calculated as

dλ

dp
(p0) =

w(p0)T
(
dA
dp (x0, y0, p0)

)
v(p0)

w(p0)T v(p0)
, (3)

where w and v are the left and right eigenvectors of A , respectively. The derivative dA/dp for the system

given in Eq. (1) can be given as
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dA

dp
=

n∑
i=1

∂A

∂xi

dxi
dp

+
m∑
j=1

∂A

∂yj

dyj
dp

+
∂A

∂p
. (4)

Since we study Hopf bifurcation related oscillatory instabilities, the feasibility boundary segments that
are calculated in this paper correspond to the points where Hopf bifurcations occur. In our calculations, as
we calculate the feasibility boundary segment corresponding to a selected oscillatory mode, by changing the
parameters of interest, the eigenvalue pair is driven to the imaginary axis regardless of the trace of the other
eigenvalues of the system which is initially operating at a stable operating point. Thus, after observing all
the eigenvalues, we may be able to draw and define the complete feasibility boundary consisting of computed
segments on a selected parameter space.

3. Impacts of Distributed Generators on Oscillatory Stability

Penetrations of distributed synchronous generators can change the oscillatory stability of the whole system,
depending on how they change the structure or the topology of the interconnected system and its operating
point. From a mathematical point of view, a connection of a generator to a power network results in an
expansion of the degrees of the parameter and state spaces, see Eq. (1). A new operating point is established
and the stability of this point should be studied through the calculation of the feasibility boundaries.

Computation of the feasibility regions and their boundaries gives us important clues how the system
must be operated without leading it to instability. In this work, we select the parameter sub-spaces of load
reference set points [15] and speed droops of the governors to illustrate the feasibility regions. The calculation
of the feasibility regions on the parameter sub-spaces of load reference set points directly shows the constraints
on the real power transfers between the generator units and the other regions of the interconnected system.

The impact of distributed synchronous generators on the system stability will be studied in two
different types of parallel operation with the utility power network:

i. Parallel operation without any power transfer

ii. Parallel operation with a power transfer

i. Parallel operation without any power transfer between the distributed generator and the rest of the
system: Thinking of a situation in which no power transfer exists, could be considered that the operating
points separately defined for the distributed generation and the rest of the system remain the same. But this
does not necessarily mean that the stability of the whole system does not change, because the additional new
parameters and states establish a new operating point for the interconnected system and certainly change
the stability of the operating point. This implies that the interconnected system might also lose its stability
after a connection of a distributed generator even if there doesn’t exist any power transfer between the
generator and the rest of the system.

ii. Parallel operation with a power transfer between the distributed generator and the rest of the system:
The operating point can be continuously changing as it is adjusted in order to adapt to the new constraints,
for example economical considerations. To assess the oscillatory stability for changing conditions, we can
determine the oscillatory stability limits under different power transfer conditions through computations of
feasibility boundaries calculated in parameter sub-spaces of load reference set points.
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Both of the situations above, depending on the new operating point established and the control
parameters selected or control actions taken, may have a degrading or a rewarding impact on the local or
inter-area stability of the interconnected system. In the next section, we investigate the possible changes in
the oscillatory stability of the system through calculations of feasibility regions and simulations for several
case studies.

Clustering methods based on coherency and modal analysis, for example [16], [17], can be utilized for

identifying the areas and thus distinguishing the local and inter-area modes. By the clustering approach [17]
we use, the coherent groups of generators and the buses that are participating in different oscillatory modes
can easily be determined. Hence, in a systematic way, integrating the clustering method which determines the
areas that are playing role in the oscillatory stabilities associated with selected modes into the calculations
of the feasibility boundary segments corresponding to those modes, we can approach the oscillatory stability
problem caused by the penetration of distributed synchronous generators. As it will be observed in the
case studies given in the next section, interconnection of a distributed generator can cause local oscillatory
instabilities within the area to which it is connected or it can also cause inter-area oscillatory instabilities
occurring between the areas of an interconnected power system. The oscillatory instabilities are related to
Hopf bifurcations of electromechanical oscillatory modes. Depending on the type of the Hopf bifurcations,
these instabilities can be experienced through sustained oscillations within the system where we can drive
the system back to normal locally stable operating points or diverging oscillations as the system’s stability
cannot be regained without disconnection of some part of the system. Both local and inter-area oscillatory
instabilities caused by the connection of a distributed synchronous generator can be remedied or avoided by
the local or system-wide control actions or selecting and establishing different operating points.

4. Simulation of Case Studies

As the interest in distributed generation grows, to supply the growing demand, multiple smaller generators
are connected to the distribution system. We consider a system of two weakly connected areas to show the
effect of penetrations of distributed synchronous generators on the local and inter-area oscillatory stability
of the system. In Figure 1, a synchronous generator (generator 6) with a size quite smaller than the other

generators is connected to the network with its local load. Here, the additional distributed generator (DG)
can be considered as either an aggregate model for a group of multiple smaller generators that are connected
to the system through a distribution system or a generator connected to the distribution system that is
relatively small compared to the other generators within the transmission network.

Since electromechanical oscillations and the stability associated with these oscillations are of our main
interest, the system is represented by a model that involves decoupled real-power/angle (real-power/frequency)

dynamics [10]. In the models chosen for the case studies in this work, each generator is assumed to be a

steam-turbine-generator modeled as in [1] where the generators are represented with a small number of state
variables so that the interconnected system models will not be overly complex. Also, all the generators are
considered to be connected to the system with their constant local loads. Since we study the small-signal
stability problems, the linearized generator models around an operating point are used, whereas the nonlin-
earities come from the power-flow equations. More detailed description for the modeling and the parameters
for the model are given in the Appendix.

A connection of a synchronous generator to Area 1 increases the number of local oscillatory modes of
the area by one. The electromechanical modes (modes 1-4) inherent to the system before the generator is

connected and the additional mode (mode 5) caused by the interconnection are listed in Table. By modal
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analysis, modes 2, 3 and 5 are determined as the local modes of Area 1, and mode 4 is the local mode of
Area 2, whereas mode 1, which has the lowest oscillation frequency, is distinguished as the inter-area mode.

The distributed generator can participate in some of the oscillatory modes at some extent. By
coherency and modal analysis, we can distinguish the modes in which the distributed generator participates
and the coherent groups of generators to which the generator will join with respect to these modes. In
this case, the distributed synchronous generator belongs to Area 1 with respect to the inter-area oscillatory
mode (mode 1), which has the lowest oscillation frequency. That implies, under a disturbance which excites
the inter-area mode, the distributed synchronous generator will start to oscillate coherently with the other
generators in Area 1 against the generators in Area 2, since a coherency within the areas exists with respect
to the inter-area mode.

Case study a - Parallel Operation without Power Transfer: Parallel operation of a distributed
generator with the utility network, even without a power exchange, may cause an oscillatory instability. To
show this with an example, we compute the feasibility region and its boundary in the parameter sub-space
R2×R4 , where Ri is the speed droop of the governor which belongs to the generator i , and we observe the
location of the operating point before and after the connection. The feasibility boundary consists of Hopf
bifurcation points associated with the inter-area mode and a local mode of Area 1.

As can be seen from Figure 2, the operating point OP before the connection falls in the feasible region
whereas after the connection, the same operating point falls in the infeasible region as seen in Figure 3.
The oscillatory instability in this case is associated with one of the local modes of Area 1. This instability
mainly occurs as a result of an inconsistent selection of the control parameters for the additional distributed
generator with the rest of the generators.

2

6

6

DG concented to the
system through a
distribution network

4

4

5

5

Area 2Area 1

3

2

3

1

1

Figure 1. Penetration of a distributed generator in Area 1.

Table. Electromechanical oscillatory modes.

Oscillatory Mode No. Imaginary part of the corresponding eigenvalue
1 ±4.1i
2 ±10.3i
3 ±12.8i
4 ±13.8i
5 ±34.6i
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Figure 2. Feasibility region in R2 ×R4 before the connection of the distributed generator.
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Figure 3. Feasibility region in R2 ×R4 after the connection of the distributed generator.

Case study b- Parallel Operation with a Power Transfer: We consider the impact of a distributed
generator on the oscillatory stability under the existence of a power transfer. In our case study, it is assumed
that, for a period of time, the surplus generation at the location bus no. 6 will be used for the load increase
in the region where normally fed by the generator 3 or vice versa.

In Figure 4, the feasibility region is depicted in the parameter sub-space Pref3 × Pref6 , where Prefi

is the load reference set point for the generator i . The feasibility region is bounded by the Hopf bifurcation
points associated with the local oscillatory modes of Area 1. The point OP corresponds to an operating
point where no power exchange between generator 3 and generator 6 is present. The load reference set points
are changed to increase or decrease the generations at each site. Any slow variation in the generations and
thereby in the power transfer within the feasible region do not change the stability of the system. In this
region, after small disturbances, the system returns to its stable operating point. If the operating point
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passes through the feasibility boundary, depending on the type of the Hopf bifurcation, the system is led to
an oscillatory instability. If the Hopf bifurcation is supercritical, there exist stable periodic solutions around
the operating point and the solution approaches these limit cycles, thus resulting sustained oscillations.
The amplitude of these oscillations depends on the closeness of the new operating point to the feasibility
boundary [13]. Under these circumstances, the stability and the normal operation of the system can be
regained by driving the operating point back to the feasible region. If the Hopf bifurcation is subcritical, the
system looses its stability and it will be impossible to drive the operating point back to the feasible region
after the region of attraction of a new properly selected operating point has been left.
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Figure 4. Feasibility region in Pref3 × Pref6 bounded by Hopf bifurcations of local oscillatory modes.

As another possibility, an example of an operating condition for which the feasibility region is
constrained by an inter-area oscillatory mode is given in Figure 5. A loading condition that changes and moves
the operating point OPA in the feasible region to the point OPB in the infeasible region generates an inter-
area oscillatory instability, since the crossing occurs through the feasibility boundary segment corresponding
to the inter-area mode.

In our case study, the type of Hopf bifurcation during the displacement of the operating point is
supercritical. This conclusion has been reached after making repeated time-domain simulations around the
Hopf bifurcation point and it is observed that the amplitudes of the oscillations go to zero as the operating
point approaches to the Hopf bifurcation point. Therefore, sustained oscillations with a frequency close
to the oscillation frequency of the inter-area mode will exist throughout the interconnected system. Since
the generators within the areas are coherent with respect to the inter-area mode, these oscillations will
be dominantly observed between the two areas, while they will be observed weakly within the areas. For
example, sustained oscillations between the angles of the generators 1 and 4, δ4− δ1 are given after crossing
the feasibility boundary as seen in Figure 6. For a demonstration of how the generators within the areas
oscillate coherently at the frequency of the inter-area mode against the generators of the opposing area after
all the other modes are damped, time-domain simulations of δ4,1 , δ5,1 , and δ3,1 , where δi,j = δi − δj , are

given in Figure 7. The generators of Area 1 (generators 4 and 5) are oscillating coherently with respect to
the generator 1, which belongs to Area 1. Between the generators 1 and 3, the inter-area oscillatory mode
is observed much less in magnitude since the two generators belong to the same area.
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Figure 5. Feasibility region in Pref3 × Pref6 bounded by Hopf bifurcations of the inter-area oscillatory mode.
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Figure 6. Generation of sustained oscillations as the solution of the system converges to a stable periodic orbit.

As a final remark, it should be noted that in our all case studies we have considered the possibilities of
the impacts of small distributed generators on the oscillatory stability. We have not attempted to calculate
the extent of the impact versus the penetration levels of the distributed generation, since this would be a
research area for a specific power system. Therefore, it should not be concluded that the penetration of
small distributed generation will always cause oscillatory instabilities, but instead it should be concluded
that depending on the location or the closeness of the operating point to the feasibility boundary for the
currently stable system, large or small penetration levels of distributed generation can cause local or inter-
area oscillatory instabilities.
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Figure 7. Coherent inter-area oscillations and the oscillations in Area 1.

5. Conclusion

In this paper, the impacts of distributed synchronous generators on the oscillatory stability in intercon-
nected power systems are analyzed. The proposed method for the analysis is involved with the calculation
of feasibility regions and their boundaries that are defined by the constraints due to Hopf bifurcations of
electromechanical oscillatory modes. As expected, penetrations of distributed generations change the oper-
ating point and the topology of the power system. A connection of a distributed generator may cause local
or inter-area instabilities depending on many factors including the operating point intended, the location
of the interconnection and the control parameters chosen. In the paper, through calculations of feasibility
regions and boundaries, several case studies are given to demonstrate how the integration of the distributed
synchronous generators can cause oscillatory instabilities. The case studies include parallel operation of
the distributed generator with or without power transfer with the utility power network. The oscillatory
instabilities can be experienced as either sustained oscillations (due to supercritical Hopf bifurcations) where

the system’s stability can regained by proper control actions or as diverging unstable oscillations (due to

subcritical Hopf bifurcations) where the system’s stability cannot be recovered without disconnection of
some parts of the network. These results indicate that for a safe and reliable operation in agreement with
the integration of distributed generators, careful assessments of the feasibility regions and their boundaries
that also include the possibilities of oscillatory instabilities due to distributed generation are crucial.

Appendix

The power system example in the paper has been modelled by the differential algebraic equations (1) involving

real-power-angle dynamics decoupled from voltage dynamics [10], [15]. In (1), the dynamic state vector x
consists of the states relevant to the generator units:

x =
[
x1 x2 . . . xm

]T
, (5)
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where m is the number of generator units in the system. For each generator unit consisting of a generator,
turbine, and governor, the local state vector xi is defined as xi = [δi, ωi, pmi, yvi] , where δi, ωi, pmi, yvi are

the generator angle, generator’s per-unit (pu) angular speed, per-unit deviations in the mechanical input
and in the valve opening regulated by the governor, respectively. The instantaneous state vector y is formed
by the load bus angles:

y =
[
δm+1 δm+2 . . . δn

]T
, (6)

where n is the number of buses in the system. The set of differential equations, ẋ = f(x, y), is formed by
the swing equations written for each generator and the primary control dynamics associated with turbine
and governor:

ẋi = fi(x, y) i = 1, . . . , m (7)

where f(.) =
[
f1(.) . . . fm(.)

]T . The swing equations are

δ̇i = ωs(ωi − 1), (8)

ω̇i =
1

2Hi
(−Diωi + pmi − PLi − Pei) , (9)

where pmi , PLi and Pei (in pu) are the mechanical power input to the generator, real power flowing though
the local load of the bus and the real power injected to the network at the bus, respectively and ωs is the
synchronous speed. Di is the damping coefficient and Hi represents the inertia constant for the generator
unit. The primary control dynamics is given by

ṗmi =
1
Tti

(−pmi + yvi) , (10)

ẏvi =
1
Tgi

(
Pref i −

1
Ri

(ωi − ωref) − yvi
)
, (11)

where Tti and Tgi are the time constants of the turbine and governor, respectively and Ri is the governor

speed-droop characteristic. The reference speed input to the governor is denoted by ωref = 1pu and the

load reference set point is denoted by Pref i .

The set of algebraic equations, 0 = g(x, y), is formed by the real power flow equations at each load
bus,

0 = gk(x, y) = Pe k+m + PL k+m k = 1, . . . , n−m (12)

where g(.) =
[
g1(.) . . . gn−m(.)

]T . The injected real power at each bus, Pei , is given by
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Pei =
n∑
j=1

EiEjYij cos(δi − δj − θij) i = 1, . . . , n (13)

where Ei is the bus voltage and Yij = Yij∠θij is the (i,j)-th element of the network admittance matrix.

For the power system model (Figure 1) used in the case studies, inertias and damping coefficients for
the generators are selected as follows:

H1 = 11 s, H2 = 10 s, H3 = 9 s, H4 = 8 s, H5 = 7 s, H6 = 2 s,
D1 = 1.5 pu, D2 = 1.2 pu, D3 = 1.1 pu, D4 = 1.1 pu, D5 = 1.03 pu, D6 = 1 pu.
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