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Filtrate volume and permeability of filtercake are two main properties of drilling fluids.
In this study, a new approach based on artificial neural net-

various ways for estimating of them are proposed.

During this decade,

works (ANNs) has been designed to estimate filtrate volume and permeability of filtercake using the static filtration

data.

In this speeding up approach 75% of experimental data have been used to train the neural network and the

remaining data have been applied to test the performance of the network. Finally, the estimated results of filtrate
volume and permeability of filtercake obtained from the network have been compared against the values obtained
by empirical correlations used for calculation of these parameters.
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1. Introduction

Pressure difference between the hydrostatic pressure
of the mud column and the pressure of the fluids in the
pore of the formation causes mud to invade the perme-
able formation. This phenomenon which is called as
fluid loss is an undesirable happening which drilling in-
dustry is encountered. As the mud solids are filtered
out onto the walls of the hole, they remain to make a
low permeable cake through which only filtrate can
pass. Two types of static filtration and dynamic filtra-
tion may occur in drilling an oil well.  Static filtration
takes place when the mud is not being circulated. On
the contrary, dynamic filtration happens when the mud
is being circulated. The rate of dynamic filtration is
higher than the static one because the growth of the fil-
tercake is confined by the erosive force of the mud?.

Fluid loss through this filtercake is often measured in
the laboratory. For decades, various laboratory at-
tempts under both static and dynamic filtration are ac-
complished on the investigations of mudcake buildup
and invasion rates? . The result of these experi-
ments indicated that at constant rate and pressure of cir-
culation, the filtration rate into the mudcake was at first
high, but as time passed, this rate would decrease to an
equilibrium value. Moreover, the data of these litera-
tures show the dependency of this equilibrium rate on
circulation rate, differential pressure, mud composition,
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temperature. Furthermore, it was implied that after a
period of static filtration by resuming the circulation,
the mudcake thickness would change or not.

The theory of this phenomenon was first presented
by Outmans (1963)®. Later, other works are done”™?.
However, as yet no sufficiently comprehensive theory
of mud filtration has been presented to allow prediction
of the filtration properties of drilling fluids.

The modern and recently used method for the para-
metric modeling is the artificial neural networks (ANNs).
Today, ANNs have emerged as powerful tool in model-
ing of the complex systems. In the filtration fields, not a
notable work was done based on ANNs. In this study,
a new approach has been developed to predict filtrate
volume and permeability of filtercake. The approach
is based on artificial neural net technology.

2. Neural Networks

Computerized artificial neural network model tries to
imitate simplified biological learning processes and
simulate some functions of human nervous system.
This adaptive and the most popular intelligent technique
has parallel information processing system that can de-
velop associations, transformations or mapping between
objects or data. A neural network consists of simple
processing units called neurons. It should be notified
that the neural network approach does not use a pre-de-
scribed algorithm for solving a problem. However, it
learns the solution model automatically by training on
some inputs and their expected outputs'®.
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Fig. 1 The Design of ANN

A back propagation network is multi-layered and in-
formation flows from the input to the output through at
least one hidden/middle layer. Each layer contains
neurons that are connected to all neurons in the neigh-
boring layers. The connections have numerical values
(weights) associated with them. During the training
phase, the weights are adjusted according to the gener-
alized delta rule. Training is completed when the net-
work is able to predict the given output. Although the
training process may take maximum 5 min to be fin-
ished, the simulation process is too fast. When a net-
work is trained, it can be used easily to simulate other
independent data in a higher speed. Therefore, ANN
is a method that speeds up the calculations of simula-
tion.

3. The Identification of the Network

A three-layer back propagation neural network was
used in all cases due to its success in solving other pe-
troleum engineering problems'" and its ability to gen-
eralize with good accuracy. Consequently, this neural
network was developed using three layers. The three-
layer back propagation neural network was designed
with four input, thirty hidden, and two output neurons.
The design of ANN is shown in Fig. 1. As it is shown,
the hidden layer joining the input and the output layers
is itself connected to these both layers by linkers known as
weights. The value of these weights can be varied from
zero to one. The ANN learns by repeatedly adjusting
these weights until the results produced are similar to the
correct outputs in the training set. The number of neu-
rons in the hidden layer is determined by try and error
method of solution. Applying this method, it is found
that 30 neurons is the best number that causes the best
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Table 1 Composition of Various Mud (Ghorbani, 2004)
Weight percent
Mud name
Water Bentonite Sodium chloride
A 97 3 0
B 94 6 0
C 91 9 0
D 89 9 2
E 86 9 5
F 81 9 10

convergence between the produced results and the train-
ing data. The optimum number of nodes required in
the hidden layer is problem dependent, being related to
the complexity of the input and output mapping, the
amount of noise in the data and the amount of training
data available. If the number of nodes in the hidden
layer is too small the backpropagation algorithm will fail
to converge to a minimum during training. Conversely,
too many nodes will result in the network overfitting
the training data resulting in poor generalization perfor-
mance.

Time, pressure drop, water and sodium chloride weight
percents were used as input. The output layer was
consisted of filtrate volume and permeability. This
network was trained using 154 data sets. The remain-
ing 51 data, which were not seen by the network during
training, were reserved to test the performance of the
network. A robust back propagation gradient descent-
learning algorithm was used to train the network. This
algorithm utilizes adaptable learning rates and momen-
tums that adapt themselves during learning.

4. Methodology

In this approach, ANNSs are devoted to the computa-
tion of the filtrate volume and permeability of the mud-
cake. This is accomplished by means of Matlab'¥
toolbox on Pentium 4 PC with 256 MB of RAM. A
number of sets of real static filtration data'? are used to
evaluate the effectiveness of the approach. The exper-
iments done by Ghorbani (2004) were performed in the
standard API filtration test'® which is mainly used in
static filtration.

Table 1 shows the composition of various drilling
mud used in this work. Drilling mud is a mixture of
clay minerals, and other additives that enhance proper-
ties such as density, viscosity, gelation, etc., and a fluid
which may be either water or oil.

As a result of pressure difference, the fluid portion of
the mud (the mud filtrate) filtered into the formation
ahead of the bit and into the wall of the borehole. The
penetration of the mud filtrate which happens radially
can cause the displacement of the formation fluids
ahead of it. This mud fluid invasion is investigated in
this work. In fact, the neural network is applied to es-
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Fig. 2 The ANN Training Results for Filtrate Volume
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Fig. 3 The ANN Training Results for Mud Cake Permeability

timate Filtrate volume and the permeability of the mud-
cake.

5. Results and Discussions

As mentioned above, the network using 154 data sets
is trained in such a way that it can simulate 51 data sets
accurately. The network is able to predict filtrate vol-
ume and permeability of mudcake simultaneously.
The training results are shown in Figs. 2 and 3. As
can be seen in these figures, there is a very good agree-
ment between the experimental data and the trained
ones. This illustrates that the networks trained very
well and now can be used to simulate independent data
for filtrate volume and permeability of mudcake.
Figures 4 and 5 illustrate the simulated results of these
parameters. The equations of the form y = f(x) in the
Figs. 2-5 are the equations of the regression lines.
When all the points fall exactly on the line of 45°, the
regression line is y =x. In this case, the network is
trained or simulated very well. Otherwise, the regres-
sion line has the form of y =ax + b. The regression
constants (R2-value) which are also appeared in these
figures show the agreement of trained and simulated
data with experimental data. In the ideal situation,
when these parameters are exactly similar, R* = 1.

In addition, Ghorbani (2004) suggested some corre-
lations due to his own experimental data to predict fil-
trate volume and permeability of mudcake'?:

For mud A, B, and C
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Fig. 4 The ANN Simulated Results for Filtrate Volume
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Fig. 5 The ANN Simulated Results for Mud Cake Permeability
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For mud D, E, and F

Ow = 83w . APOL . 103 R?> =0.95 3)
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In the next step, the simulated results of the network
are compared with the results of these correlations and
the experimental data. The comparisons of filtrate
volume and mudcake permeability are shown in
Tables 2 and 3 for mud A and D, respectively. These
results are represented in Figs. 6 through 9. In these
figures, simulated data are compared with the experi-
mental and correlated data. As can be seen, an excel-
lent agreement exists between simulated and experi-
mental data rather than correlated data. The error
percent of these parameters due to their experimental
values are demonstrated in Tables 4 and 5. Also, in
these tables, one can see the relationship between the
magnitude of error and variation of the parameters.
The main conclusion that can be derived from these ta-
bles is the less error percent of the ANN results in com-
parison of the correlated results. This shows the capa-
bility and precision of the network trained and used to
simulate. Therefore, ANN is a useful tool for calculat-
ing the filtration properties than empirical correlations.
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Table 2 The Comparison of Simulated Filtrate Volume with Experimental and Correlated Results

Bentonite weight ~ Sodium chloride  Pressure drop ~ Square root of  Filtrate volume  Filtrate volume  Filtrate volume

Mud percent weight percent [10° Pa] time [min'"?] [ml] Exp. [m/] Sim. [m!] Corr.
A 3 0 1 3.8 52 49182 4.4502
A 3 0 1 5.8 7.5 7.5180 6.7924
A 3 0 1 7.5 9.2 9.3254 8.7833
A 3 0 2 32 5 5.4008 4.4566
A 3 0 2 5.5 7.8 79110 7.6598
A 3 0 2 7.2 9.4 8.8924 10.0274
A 3 0 3 2.25 4 0.2449 3.4678
A 3 0 3 5 7.6 7.3640 7.7063
A 3 0 3 6.75 9.6 9.5297 10.4035
D 9 2 1 14 18 23.5972 17.2502
D 9 2 1 2.45 28 27.0248 30.1878
D 9 2 1 3.2 35 32.9553 39.4289
D 9 2 2 1.75 24 24.8103 23.1103
D 9 2 2 2.65 33 34.4689 34.9956
D 9 2 3 0 0 0.0000 0
D 9 2 3 2 27 27.3539 27.5047
D 9 2 3 2.85 36 35.7747 39.1942

Table 3 The Comparison of Simulated Permeability with Experimental and Correlated Results
Mud Bentonite weight ~ Sodium chloride Pressure drop Time Permeability Permeability Permeability
percent weight percent [10° Pa] [min] [107"> m?] Exp. [107" m?] Sim. [10~"° m?] Corr.

A 3 0 1 20 0.54 0.5973 0.4567
A 3 0 1 40 0.36 0.2489 0.3229
A 3 0 1 60 0.28 0.2962 0.2637
A 3 0 2 20 0.3 0.2197 0.2753
A 3 0 2 40 0.19 0.1814 0.1947
A 3 0 2 60 0.15 0.1306 0.159

A 3 0 3 20 0.2 0.2036 0.2048
A 3 0 3 40 0.13 0.1352 0.1448
A 3 0 3 60 0.1 0.09 0.1182
D 9 2 1 4 11 10.9404 11.2881
D 9 2 1 8 7 7.1583 7.9819
D 9 2 2 2 9 9.059 8.5548
D 9 2 2 6 4.5 4.4071 4.9391
D 9 2 2 10 32 3.6544 3.8258
D 9 2 3 4 4 4.0036 4.1996
D 9 2 3 8 2.5 2.6654 2.9696

o Experimental data Simulated data — — Correlative data | o Experimental data Simulated data — — Correlative data
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Fig. 6 The Comparison of Simulated Filtrate Volume with Fig. 7 The Comparison of Simulated Filtrate Volume with

Experimental and Correlated Results for Mud A at AP = Experimental and Correlated Results for Mud D at AP =
]xlOSPa 3)(1051)8
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Fig. 8 The Comparison of Simulated Permeability with Fig. 9 The Comparison of Simulated Permeability with
Experimental and Correlated Results for Mud A at AP = Experimental and Correlated Results for Mud D at AP =
3 x10° Pa 2 x 10° Pa
Table 4 The Comparison of the Error Percents of the Filtrate Volume Results
Pressure drop  Square root of Experimental Simulated filtrate Correlated filtrate % Error of simulated % Error of correlated
Mud s . . 1p, filtrate volume
[10° Pa] time [min""] [mi] volume [m!/] volume [m/] filtrate volume filtrate volume
A 1 3.8 52 49182 4.4502 -5.2 -14.4
A 1 5.8 7.5 7.5180 6.7924 0.24 -9.43
A 1 7.5 9.2 9.3254 8.7833 1.36 -4.53
D 3 0 0 0 0 0 0
D 3 2 27 27.3539 27.5047 1.31 1.87
D 3 2.85 36 35.7747 39.1942 -0.62 8.87

Table 5 The Comparison of the Error Percents of the Permeability Results

. Experimental Simulated Correlated % Error of
Pressure drop Time e o . . % Error of correlated
Mud [10 Pa] (min] permeability permeability permeability Slmulatfad ermeabilit
[107"° m?] [107"° m?] [107"° m?] permeability P ¥
A 3 20 0.2 0.2036 0.2048 1.8 24
A 3 40 0.13 0.1352 0.1448 4 11.4
A 3 60 0.1 0.09 0.1182 -10 18.2
D 2 2 9 9.059 8.5548 0.65 -4.95
D 2 6 4.5 4.4071 4.9391 -2.06 -34.7
D 2 10 3.2 3.6544 3.8258 14.2 19.5

6. Conclusions

Filtrate volume and permeability of mudcake are
two main parameters of filtration properties which are
investigated in this paper and a new method for calcu-
lating them is recommended. The approach presented
in this study automates the process of predicting these
parameters. This new approach is based on artificial
neural networks which not only speed up calculations
of simulating but also increase the accuracy of estimating.
In the first glance, it may seem that using the algebraic
equations is speedier than ANN method, but as it is
mentioned before, when a network is trained, simulat-
ing process may take a few minutes to be accomplished.

The consuming time of simulating in ANN is much
less than the empirical correlations. It can be trained
very well and simulate data precisely. Furthermore, it
is shown that the results of the network are in good
agreement with experimental data. Therefore, this ap-
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proach can be replacement of correlations because the
developed model provides better predictions and higher
accuracy than the empirical correlations developed spe-
cifically for these data groups.

Nomenclatures
k : permeability [md (107" m?)]
Q. :filtrate volume [m!]
AP : pressure drop [Pa]
t : time [min]
Wh : bentonite weight percent [—]
Wy : sodium chloride weight percent [—]
R’ : regression constant [—]
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