
1.　Introduction

Pressure difference between the hydrostatic pressure 
of the mud column and the pressure of the fl uids in the 
pore of the formation causes mud to invade the perme-
able formation.　This phenomenon which is called as 
fl uid loss is an undesirable happening which drilling in-
dustry is encountered.　As the mud solids are fi ltered 
out onto the walls of the hole, they remain to make a 
low permeable cake through which only filtrate can 
pass.　Two types of static fi ltration and dynamic fi ltra-
tion may occur in drilling an oil well.　Static fi ltration 
takes place when the mud is not being circulated.　On 
the contrary, dynamic fi ltration happens when the mud 
is being circulated.　The rate of dynamic filtration is 
higher than the static one because the growth of the fi l-
tercake is confi ned by the erosive force of the mud1).

Fluid loss through this fi ltercake is often measured in 
the laboratory.　For decades, various laboratory at-
tempts under both static and dynamic fi ltration are ac-
complished on the investigations of mudcake buildup 
and invasion rates2)～5).　The result of these experi-
ments indicated that at constant rate and pressure of cir-
culation, the fi ltration rate into the mudcake was at fi rst 
high, but as time passed, this rate would decrease to an 
equilibrium value.　Moreover, the data of these litera-
tures show the dependency of this equilibrium rate on 
circulation rate, differential pressure, mud composition, 

temperature.　Furthermore, it was implied that after a 
period of static filtration by resuming the circulation, 
the mudcake thickness would change or not.

The theory of this phenomenon was first presented 
by Outmans (1963)6).　Later, other works are done7)～9).　
However, as yet no sufficiently comprehensive theory 
of mud fi ltration has been presented to allow prediction 
of the fi ltration properties of drilling fl uids.

The modern and recently used method for the para-
metric modeling is the artifi cial neural networks (ANNs).　
Today, ANNs have emerged as powerful tool in model-
ing of the complex systems.　In the fi ltration fi elds, not a 
notable work was done based on ANNs.　In this study, 
a new approach has been developed to predict filtrate 
volume and permeability of fi ltercake.　The approach 
is based on artifi cial neural net technology.

2.　Neural Networks

Computerized artifi cial neural network model tries to 
imitate simplified biological learning processes and 
simulate some functions of human nervous system.　
This adaptive and the most popular intelligent technique 
has parallel information processing system that can de-
velop associations, transformations or mapping between 
objects or data.　A neural network consists of simple 
processing units called neurons.　It should be notifi ed 
that the neural network approach does not use a pre-de-
scribed algorithm for solving a problem.　However, it 
learns the solution model automatically by training on 
some inputs and their expected outputs10).
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A back propagation network is multi-layered and in-
formation fl ows from the input to the output through at 
least one hidden/middle layer.　Each layer contains 
neurons that are connected to all neurons in the neigh-
boring layers.　The connections have numerical values 
(weights) associated with them.　During the training 
phase, the weights are adjusted according to the gener-
alized delta rule.　Training is completed when the net-
work is able to predict the given output.　Although the 
training process may take maximum 5 min to be fin-
ished, the simulation process is too fast.　When a net-
work is trained, it can be used easily to simulate other 
independent data in a higher speed.　Therefore, ANN 
is a method that speeds up the calculations of simula-
tion.

3.　The Identifi cation of the Network

A three-layer back propagation neural network was 
used in all cases due to its success in solving other pe-
troleum engineering problems11) and its ability to gen-
eralize with good accuracy.　Consequently, this neural 
network was developed using three layers.　The three-
layer back propagation neural network was designed 
with four input, thirty hidden, and two output neurons.　
The design of ANN is shown in Fig.  1.　As it is shown, 
the hidden layer joining the input and the output layers 
is itself connected to these both layers by linkers known as 
weights.　The value of these weights can be varied from 
zero to one.　The ANN learns by repeatedly adjusting 
these weights until the results produced are similar to the 
correct outputs in the training set.　The number of neu-
rons in the hidden layer is determined by try and error 
method of solution.　Applying this method, it is found 
that 30 neurons is the best number that causes the best 

convergence between the produced results and the train-
ing data.　The optimum number of nodes required in 
the hidden layer is problem dependent, being related to 
the complexity of the input and output mapping, the 
amount of noise in the data and the amount of training 
data available.　If the number of nodes in the hidden 
layer is too small the backpropagation algorithm will fail 
to converge to a minimum during training.　Conversely, 
too many nodes will result in the network overfitting 
the training data resulting in poor generalization perfor-
mance.

Time, pressure drop, water and sodium chloride weight 
percents were used as input.　The output layer was 
consisted of filtrate volume and permeability.　This 
network was trained using 154 data sets.　The remain-
ing 51 data, which were not seen by the network during 
training, were reserved to test the performance of the 
network.　A robust back propagation gradient descent-
learning algorithm was used to train the network.　This 
algorithm utilizes adaptable learning rates and momen-
tums that adapt themselves during learning.

4.　Methodology

In this approach, ANNs are devoted to the computa-
tion of the fi ltrate volume and permeability of the mud-
cake.　This is accomplished by means of Matlab14)

toolbox on Pentium 4 PC with 256 MB of RAM.　A 
number of sets of real static fi ltration data12) are used to 
evaluate the effectiveness of the approach.　The exper-
iments done by Ghorbani (2004) were performed in the 
standard API filtration test13) which is mainly used in 
static fi ltration.

Table  1 shows the composition of various drilling 
mud used in this work.　Drilling mud is a mixture of 
clay minerals, and other additives that enhance proper-
ties such as density, viscosity, gelation, etc., and a fl uid 
which may be either water or oil.

As a result of pressure difference, the fl uid portion of 
the mud (the mud filtrate) filtered into the formation 
ahead of the bit and into the wall of the borehole.　The 
penetration of the mud filtrate which happens radially 
can cause the displacement of the formation fluids 
ahead of it.　This mud fl uid invasion is investigated in 
this work.　In fact, the neural network is applied to es-

Fig.  1　The Design of ANN

Table  1　Composition of Various Mud (Ghorbani, 2004)

Mud name
Weight percent

Water Bentonite Sodium chloride

A
B
C
D
E
F

97
94
91
89
86
81

3
6
9
9
9
9

  0
  0
  0
  2
  5
10
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timate Filtrate volume and the permeability of the mud-
cake.

5.　Results and Discussions

As mentioned above, the network using 154 data sets 
is trained in such a way that it can simulate 51 data sets 
accurately.　The network is able to predict fi ltrate vol-
ume and permeability of mudcake simultaneously.　
The training results are shown in Figs.  2 and 3.　As 
can be seen in these fi gures, there is a very good agree-
ment between the experimental data and the trained 
ones.　This illustrates that the networks trained very 
well and now can be used to simulate independent data 
for filtrate volume and permeability of mudcake.　
Figures  4 and 5 illustrate the simulated results of these 
parameters.　The equations of the form y = f(f(f x) in the 
Figs.  2-5 are the equations of the regression lines.　
When all the points fall exactly on the line of 45° , the 
regression line is y = x.　In this case, the network is 
trained or simulated very well.　Otherwise, the regres-
sion line has the form of y = ax + b.　The regression 
constants (R2-value) which are also appeared in these 
figures show the agreement of trained and simulated 
data with experimental data.　In the ideal situation, 
when these parameters are exactly similar, R2 = 1.

In addition, Ghorbani (2004) suggested some corre-
lations due to his own experimental data to predict fi l-
trate volume and permeability of mudcake12):
For mud A, B, and C
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For mud D, E, and F
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In the next step, the simulated results of the network 
are compared with the results of these correlations and 
the experimental data.　The comparisons of filtrate 
volume and mudcake permeability are shown in 
Tables  2 and 3 for mud A and D, respectively.　These 
results are represented in Figs.  6 through 9.　In these 
figures, simulated data are compared with the experi-
mental and correlated data.　As can be seen, an excel-
lent agreement exists between simulated and experi-
mental data rather than correlated data.　The error 
percent of these parameters due to their experimental 
values are demonstrated in Tables  4 and 5.　Also, in 
these tables, one can see the relationship between the 
magnitude of error and variation of the parameters.　
The main conclusion that can be derived from these ta-
bles is the less error percent of the ANN results in com-
parison of the correlated results.　This shows the capa-
bility and precision of the network trained and used to 
simulate.　Therefore, ANN is a useful tool for calculat-
ing the fi ltration properties than empirical correlations.

Fig.  2　The ANN Training Results for Filtrate Volume

Fig.  3　The ANN Training Results for Mud Cake Permeability

Fig.  4　The ANN Simulated Results for Filtrate Volume

Fig.  5　The ANN Simulated Results for Mud Cake Permeability
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Table  2　The Comparison of Simulated Filtrate Volume with Experimental and Correlated Results

Mud
Bentonite weight 

percent
Sodium chloride 
weight percent

Pressure drop 
[105 Pa]

Square root of 
time [min1/2]

Filtrate volume 
[ml] Exp.

Filtrate volume 
[ml] Sim.

Filtrate volume 
[ml] Corr.

A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D

3
3
3
3
3
3
3
3
3
9
9
9
9
9
9
9
9

0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2

1
1
1
2
2
2
3
3
3
1
1
1
2
2
3
3
3

3.8
5.8
7.5
3.2
5.5
7.2
2.25
5
6.75
1.4
2.45
3.2
1.75
2.65
0
2
2.85

5.2
7.5
9.2
5
7.8
9.4
4
7.6
9.6
18
28
35
24
33
0
27
36

4.9182
7.5180
9.3254
5.4008
7.9110
8.8924
0.2449
7.3640
9.5297
23.5972
27.0248
32.9553
24.8103
34.4689
0.0000
27.3539
35.7747

4.4502
6.7924
8.7833
4.4566
7.6598
10.0274
3.4678
7.7063
10.4035
17.2502
30.1878
39.4289
23.1103
34.9956
0
27.5047
39.1942

Table  3　The Comparison of Simulated Permeability with Experimental and Correlated Results

Mud
Bentonite weight 

percent
Sodium chloride 
weight percent

Pressure drop 
[105 Pa]

Time
[min]

Permeability 
[10−15 m2] Exp.

Permeability 
[10−15 m2] Sim.

Permeability 
[10−15 m2] Corr.

A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D

3
3
3
3
3
3
3
3
3
9
9
9
9
9
9
9

0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2

1
1
1
2
2
2
3
3
3
1
1
2
2
2
3
3

20
40
60
20
40
60
20
40
60
  4
  8
  2
  6
10
  4
  8

0.54
0.36
0.28
0.3
0.19
0.15
0.2
0.13
0.1
11
7
9
4.5
3.2
4
2.5

0.5973
0.2489
0.2962
0.2197
0.1814
0.1306
0.2036
0.1352
0.09
10.9404
7.1583
9.059
4.4071
3.6544
4.0036
2.6654

0.4567
0.3229
0.2637
0.2753
0.1947
0.159
0.2048
0.1448
0.1182
11.2881
7.9819
8.5548
4.9391
3.8258
4.1996
2.9696

Fig.  6　 The Comparison of Simulated Filtrate Volume with 
Experimental and Correlated Results for Mud A at ∆P = 
1 × 105 Pa

Fig.  7　 The Comparison of Simulated Filtrate Volume with 
Experimental and Correlated Results for Mud D at ∆P = 
3 × 105 Pa
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6.　Conclusions

Filtrate volume and permeability of mudcake are 
two main parameters of fi ltration properties which are 
investigated in this paper and a new method for calcu-
lating them is recommended.　The approach presented 
in this study automates the process of predicting these 
parameters.　This new approach is based on artificial 
neural networks which not only speed up calculations 
of simulating but also increase the accuracy of estimating.　
In the fi rst glance, it may seem that using the algebraic 
equations is speedier than ANN method, but as it is 
mentioned before, when a network is trained, simulat-
ing process may take a few minutes to be accomplished.
　The consuming time of simulating in ANN is much 
less than the empirical correlations.　It can be trained 
very well and simulate data precisely.　Furthermore, it 
is shown that the results of the network are in good 
agreement with experimental data.　Therefore, this ap-

proach can be replacement of correlations because the 
developed model provides better predictions and higher 
accuracy than the empirical correlations developed spe-
cifi cally for these data groups.

Nomenclatures

k : permeability  [md (10−15 m2)]
Qw : fi ltrate volume  [ml]
∆P : pressure drop [Pa]
t : time [min]
wb : bentonite weight percent [—]
wn : sodium chloride weight percent [—]
R2 : regression constant [—]
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要　　　旨

人工ニューラルネットワーク手法を用いた掘削泥水の沪過特性の評価

Zahra JEIRANI, Ali MOHEBBI

Chemical Engineering Dept., Shahid Bahonar University of Kerman, Kerman, IRAN

マッドケーキの沪過量ならびに浸透率は掘削流体の特性を評
価するための重要なパラメーターである。過去十年の研究にお
いて，その評価手法としては種々の方法が提案されてきている。
本報告においては，スタティックな泥水沪過実験データを使用
し，人工ニューラルネットワーク（ANN）手法に基づいた上
記の二つの泥水特性（マッドケーキ沪過量ならびに浸透率）の
評価方法に関しその適用可能性を検討している。本手法におい

ては，泥水沪過実験データの75％ がニューラルネットワーク
学習に供され，残りの25％ の実験データが同ネットワークの
パフォーマンスチェックに利用された。その結果，高い精度で
実験データを評価することが可能であることが判明した。さら
に，実験データに基づいた Ghorbaniの関係式により推定され
たマッドケーキ沪過量，浸透率値とも比較され，その整合性に
ついても確認された。


