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Abstract

We consider the realization of a continuous space-time source distributions using a sparse non-uniform

point-source array. The construction determines the largest possible cells corresponding to the local source

parameters in order to obtain a sparse array, while meeting an error criterion on the pulsed radiation

pattern. The scheme is applied for the realization of collimated short-pulse beam fields. The error criterion

is imposed within the main beam direction, while outside this region the relative realization error can be

large but it is negligible since the field there is small compared to the main beam field.
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1. Introduction

The increased interest in the radiation and reception of ultra-wideband short-pulse (UWB-SP) signals has
made an impact on the design of UWB antennas and in particular on UWB-SP array antennas that are
capable of radiating and steering collimated short pulsed fields (pulsed beams). Such arrays are referred

to as “pulsed-antenna arrays,” “transient arrays” or “delay arrays” [1-7]. Most applications, for example
those involving high resolution two- and three-dimensional imaging, require very large arrays that must
be properly thinned to avoid an unrealistic cost, complicated electronics, and managing of huge data-flow
for real-time processing. However, array thinning based on conventional narrowband (frequency domain)
considerations applied at the highest frequency in the signal spectrum leads to unnecessarily ultra-dense
arrays since it does not utilize the fact that the resulting wave-fields are localized in space and in time.
The limitations on the array geometry in this frequency domain approach are due to phase-interference
(kinematic) phenomena and are therefore irrelevant in the SP field regime. The kinematic properties of

SP arrays have been studied recently in [4, 7]. Reference [7] dwells on the transition of the kinematic
phenomena from the narrowband regime to the UWB-SP regime and demonstrates in particular how the
grating lobes that characterize narrowband arrays are replaced by “cross-pulse lobes” that depend on the
pulse repetition rate. This gives rise to possible sparse arrays whose inter-element spacing is much larger
than the wavelengths in the frequency band and basically does not suffer from severe side lobe problems.

A different approach is considered in the present paper which is concerned with an array realization
of continuous source distributions for collimated short-pulse beam fields. Several classes of such wave-fields
have been introduced in the last two decades (for a review, see the Introduction in [8]). Our goal is to
synthesize such fields using an array of pulsed point sources that will reconstruct the time-dependent far
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field pattern within a certain cone around the “main beam” direction and within a specified error. It is
required that the array will have the smallest number of elements possible.

The analytically specified continuous sources are typically characterized by non-uniform space-time
distributions, hence each array-element in the discretized formulation must compensate for both the ampli-
tude and the waveform variations of the idealized (i.e., continuous) distribution within the local cell. This
sets a limit on the dimensions of each one of the cells in the array as a function of the local pulse-length
and of the transverse variation of the source-waveform. The final non-uniform array geometry (and thus

the number of its elements) is then determined by weighting the errors from the individual cells in order to

meet the total error criterion within a given space-time window; the cell dimensions (and thereby the array

sparsity) are proportional to the error level allowed.

The general conditions derived in this approach are applied for the array-realization of the so called
complex source pulse beam (CSPB also termed iso-diffracting pulsed beam) [8]. Compared with a con-
ventional monochromatic array design, the resulting non-uniform array is shown to be ultra-sparse with
inter-element spacing much larger than the wavelength of the frequencies in the band.

The paper is organized as follows. The problem is formulated in Section 2 in term of the slant
stack transform (SST) of the continuous space-time source distribution [9-12]. In Section 3, the continuous
distribution is divided into cells and the contribution of each cell to the time-dependent radiation pattern is
analyzed locally. These results are compared in Section 4 with the radiation pattern of an array of pulsed
point-sources where it is required to use the smallest number of array elements while reconstructing the
radiation patterns within a certain cone around the “main beam” direction. Imposing this error constraint
and maximizing the cell’s size yields expressions for the local cell’s dimensions and to the design algorithm
(Section 4.3). An example of a PB array realization is presented in Section 5 followed by concluding remarks
in Section 6.

2. Problem Formulation: Array Realization of Continuous Source

Distribution

We are interested in the far field u(r, t) radiated by a pulsed source distribution Q(r, t) in a uniform
three-dimensional space with wavespeed c . The field satisfies the time-dependent wave equation(

∇2 − 1
c2
∂2

∂t2

)
u(r, t) = −Q(r, t), Q(r, t) = q(x, t)δ(z), (1)

where r = (x, z) with x = (x1, x2) being the coordinates transverse to z . It is assumed that Q(r, t) is a
surface source distribution confined in the z = 0 plane within a disk of radius R0 centered at the origins
such that

q = 0 for

{
|x| > R0

t ∈
/

(0, T ).
(2)

It is also assumed that the source generates a collimated pulsed beam field that propagates essentially along
the z axis.

Our goal is to synthesize the field using an array of point sources that will reconstruct the far field
pattern within a certain cone around the “main beam” direction z and up to a specified error. It is required
that the array will have the smallest number of elements possible.
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The time-dependent radiation pattern of the continuous source distribution is described by the time
derivative of the slant stack transform (SST) of q , defined by

q̃(ξ, t) =
∫
d2x q(x, t+ ξ · x/c), (3)

with ξ = (ξ1, ξ2). This standard operation has been introduced in [9, 10, 11, 12] in connection with the time

dependent plane wave spectrum and radiation pattern, and has also been studied extensively in [12]. Having

calculated q̃(ξ, t), the field in the far radiation zone is given by

u(r, t)
∣∣∣
r→∞

=
∂tq̃(ξ, t− r/c)

4πr

∣∣∣
ξ=br⊥

(4)

where r̂⊥ = r̂ − ẑ(r̂ · ẑ) = sin θ(cos φ, sinφ) is the projection of the observation direction r̂ onto the z = 0

plane. We may therefore refer to ∂tq̃(ξ, t) as the time domain radiation pattern.

In the array realization, the source distribution is described by a non uniform array of point sources
Qn(t) located at points xn in the z = 0 plane where n is an index. The radiation pattern produces by this

array is given by (4) with

q̃array(ξ, t) =
∑
n

Qn(t+ ξ · xn/c). (5)

Our goal is to determine the sparsest array such that (5) will provide a valid representation for (3) within a

given cone θ < Θ about the z -axis (see (20) and (22)), where Θ typically depends on the application. In

(18a) it will be shown to first order that Qn are given by

Qn(t) = Snq(xn, t) (6)

where Sn is the area on the cell adjacent to xn .

3. Local Evaluation of the SST

Following the discussion above, we shall quantify in this section the radiation-pattern error introduced by
the array-realization of the continuous distribution, and thus to establish criteria for the array design. We
therefore divide the continuous distribution into a non-uniform array of cells that are centered at xn , and
then calculate q̃ of (3) as a sum of the cell contributions. The resulting pattern will then be compared to

that of the point source array in (5) and the error criteria will be imposed in Section 4.

The SST q̃ in (3) is given now by

q̃(ξ, t) =
∑
n

q̃n(ξ, t) (7)

where the SST contribution of an individual cell is

q̃n(ξ, t) =
∫
x∈ nth cell

d2x q(x, t+ ξ · x/c) (8a)

=
∫
|ηi|<dni

d2η q(xn + On
Tη, tn + ξn · η/c). (8b)
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Figure 1. Single cell coordinate system

In (8b) we introduced conveniently the local coordinates η = (η1, η2) around xn

x = xn + ηOn, On =
[

cosψn sinψn
− sinψn cosψn

]
, (9)

where On is a rotation matrix at an angle ψn such that the local coordinates η coincide with the cell
orientation (see Figure 1), and dn1

× dn2
are cell’s dimensions. In this system tn = t + ξ · xn/c is the

reference time at the cell center and ξn = ξOn
T denotes the rotated spectral coordinates, with T denoting

the transpose.

Next we derive an approximate expression for the SST contribution (8) of each cell. We first express the

space-time source distribution in the cell in a format that is amenable for the SST calculations (Section 3.1),

and then evaluate the local SST (Section 3.2).

3.1. Local model for the field in a cell

Our first step is to obtain a simplified expression for the time-dependent field in the vicinity of xn that is
amenable for a closed form calculation of q̃n . It is convenient to start in the frequency domain where field
constituents are denoted by the caret and are related to the time domain constituents via

u(t) =
1
2π

∫ ∞
−∞

dω e−iωtû(ω). (10)

We express the initial frequency domain field in the vicinity of xn as

q̂(x, ω) = q̂(xn, ω)eiΦn(η,ω), i.e. Φn(η, ω)|η=0 = 0. (11)

Next we expand Φn in a Taylor series in ω and η near xn . We also assume that Φn is predominantly
linear in ω , i.e. it mainly describes a distributed delay. Thus, for small η

Φn(η, ω) = ωTn(η) + . . . (12a)

Tn(η) =
∑
i

Tniηi + 1
2

∑
i,j

Tnijηiηj + . . . (12b)
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with Tni = ∂ω∂ηiΦn , Tnij = ∂ω∂
2
ηiηjΦn , and i = 1, 2. In (12a) we neglected terms of order η, η2, . . .

that describe a frequency-independent spatial envelope, and terms of order ω2η . . . , ω3η, . . . that introduce
dispersive components into Φn . Thus Tn(η) represents a non-dispersive “delay” but it may be complex so
that it describes the amplitude variation near xn as will be explained next.

In order to accommodate the complex “delay” Tn(η) we utilize the analytic signal formulation.

Referring to (10), the analytic signal
+
u corresponding to a given real signal u(t) for t ∈ R , and with

frequency spectrum û(ω), is defined via the one-sided inverse Fourier transform

+
u(τ ) =

1
π

∫ ∞
0

dω e−iωτ û(ω) . (13)

This integral defines an analytic function in the complex τ plane whose region of analyticity depends on the

asymptotic behavior of û : if û(ω) ∼ O(e−αω) for ω → ∞ where α > 0 is a constant then
+
u(τ ) is analytic

for Im τ < α .
Applying (13) to (11) with (12a) yields for x ≈ xn (i.e., for small η )

q(x, t) ≈ Re
+
q(xn, t− Tn(η)). (14)

The real part of Tn(η) represents a pure delay (positive or negative) relative to the signal at xn , but the

imaginary part causes a change of the signal and of its magnitude. For η such that ImTn(η) ≷ 0 the signal

decays or grows relative to its value at xn , respectively. As follows from the discussion in (13), ImTn(η)

should be smaller than some positive constant (say α > 0) that is typical large for smooth q(x, t). Thus the

smoothness of q determines the range of validity of (14) about xn .

3.2. Local evaluation of the SST

Next, we insert (14) with (12b) to the SST integral (8) and expand the integrand into a Taylor series around

tn = t+ ξ · xn/c . Collecting terms of equal order in η yields

q(xn + OT

nη, tn + ξn · η/c) =
∑
j

jqn(η, t) (15)

where the left-hand subscripts denotes the index of the series in (15) with jqn ∼ O(ηj), and

0qn(η, t) = Re
{+
q(xn, tn)

}
, (16a)

1qn(η, t) = Re
{+
q(1)(xn, tn)

∑
i

(ξni/c−Tni)ηi
}

(16b)

2qn(η, t) = 1
2Re

{
− +
q(1)(xn, tn)

∑
i,j

Tnijηiηj +
+
q(2)(xn, tn)

[∑
i

(ξni/c−Tni )ηi
]2} (16c)

with tn = t + ξ · xn/c (see (8)). Here ξni with i = 1, 2 denotes the ith coordinate of ξn as defined after

(9) and
+
q(k) ≡ ∂kt

+
q . Performing the integration in (8b) within the cell, using (15) and (16), yields a series

approximation for q̃n

q̃n(ξ, t) = 0̃qn(ξ, t) + 2̃qn(ξ, t) +O(d6) , (17)
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where jq̃n ∼ O(dj+2)

0̃qn(ξ, t) = SnRe
{+
q(xn, tn)

}
(18a)

2̃qn(ξ, t) =
Sn
24

∑
i

d2
ni Re

{
(ξni/c−Tni )2+

q(2)(xn, tn) − Tnii
+
q(1)(xn, tn)

}
(18b)

with Sn = dn1
dn2

is the area of the nth cell.

4. Error Analysis of the Point-Sources-Array Realization

4.1. Error criteria

From (18a), the first term in (17) represents an isotropic point source contribution, thus justifying the point

source array realization in (5)–(6). The second term represents the effects of the finite cell size and of the

linear and quadratic variations of Tn over the cell (recall that in general Tni and Tnii are complex as

discussed in connection with (14)). This second term will therefore be used to quantify the radiation-pattern
error introduced by the realization of the continuous source distribution using the sparse point sources
array. The array geometry will then be determined by setting a given bound on the error for all observation
directions within a specific cone θ ≤ Θ about the z -axis (see discussion after (5)).

Below we shall consider separately the error ēn(ξ) introduced by neglecting the second term in (17)

in the individual cell contribution and then the total error of the array realization e(ξ).

The relative error introduce by describing a single cell contribution using a point source as in the first
term in (17) (see also (6)) is given by

ēn(ξ) ≡ ‖q̃n(ξ, t)− 0̃qn(ξ, t)‖
‖q̃n‖

' ‖2̃qn(ξ, t)‖
‖0̃qn‖

(19)

where in the second equality we used (17). It is required that

ēn(ξ) ≤ ε̄ ∀ |ξ| < sin Θ (20)

where ε̄ is a prescribed bound.
Similarly, the total error introduced by the point source realization, normalize relative to the radiation

pattern along the main beam axis is given by

e(ξ) ≡ ‖q̃(ξ, t)− q̃
array(ξ, t)‖

‖q̃(0, t)‖ ' ‖
∑
n 2̃qn(ξ, t)‖
‖q̃(0, t)‖ (21)

where q̃array is defined in (5). It is required that

en(ξ) ≤ ε ∀ |ξ| < sin Θ (22)

where ε is another prescribed bound. Clearly one should choose ε� ε̄ .

4.2. Error analysis

The norm in the definitions above can be of any type: It should be chosen according to the observables (i.e.,

field-detectors) that are used to quantify the radiation pattern (e.g. L1 , L2 , or L∞ norms). In the example

of Section 5 we use the L2 (energy) norm.
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Using (18b) and the triangle inequality for the norm in the numerator of (19) and noting also from

(18a) that ‖0̃qn‖ = Sn‖q(xn, t)‖ we obtain

ēn ≤
∑
i

d2
ni

Eni(ξni)
‖qn‖

(23)

with

Eni(ξni) ≤
1
24
{
|ξni/c− Tni |2‖q(2)

n ‖ + |Tnii|‖q(1)
n ‖
}

(24)

where ‖qn‖ ≡ ‖q(xn, t)‖ , ‖q(1)
n ‖ = ‖∂tq(xn, t)‖ , etc. In the derivation, the norms of the analytic signals in

(18) were evaluated on the real argument axis where for the L2 norm we have ‖+
q‖ =

√
2‖q‖ .

Maximizing the cell size Sn = dn1
dn2

subject to the error constraint in (20) yields the cell dimensions

dni(xn) = min
|ξ|<sin Θ

[
ε̄

2
‖qn‖

Eni(ξni)

] 1
2

, i = 1, 2 (25)

From (24), the largest Eni in the range |ξ| < sin Θ is obtained for |ξ| = sin Θ. Maximization on the

azimuthal spectral angle ψn is problem dependent, hence we shall use a typical value: ξn = (ξn1
, ξn2

) '
( 1√

2
, 1√

2
) sin Θ. The result in (25) yield the largest cell that can be described by a point source, as a function

of the local source properties.

Next we shall consider the constraint (22) on the total radiation pattern error. Eq. (21) defines the
total error as a sum of the single cell errors and hence it does not relate directly to the single cell dimensions.
We therefore rearranging (21) as

e(ξ) '
∥∥∥∑n en(ξ)2̃qn

‖2̃qn‖

∥∥∥ ≤ ε (26a)

where

en(ξ) ≡ ‖2̃qn(ξ, t)‖
‖q̃(0, t)‖ ≤ Sn

∑
i

d2
ni

Eni(ξni)
‖q̃(0, t)‖ (26b)

is the single element error normalized to q̃(0, t), and the last inequality follows from (18b) with (24). It will
be required that

en(ξ) ≤ ε̃ ∀ |ξ| < sin Θ and ∀n (27)

where ε̃ is a parameter to be determined. To find a bound on ε̃ we use norm inequality to e(ξ) obtaining

e(ξ) ≤ ε̃
∥∥∥∑n 2̃qn/‖2̃qn‖

∥∥∥ . Next we recall that the error criterion should be imposed outside the main beam

direction (for ξ ≈/ 0). Noting that in this region the delayed-error terms 2̃qn are not coherent it follows that∥∥∥∑n 2̃qn/‖2̃qn‖
∥∥∥ ∼ O(1), suggesting that in this range ε̃ ∼ ε . Using this value of ε̃ in (27) together with the

last term on the right hand side of (26b) and maximizing the cell area as in (25) yields

dni(xn) = min
|ξ|<sin Θ

[( ε
2
‖q̃(0, t)‖

)1/4
[
En1

(ξn1
)En2

(ξn2
)
]1/8

[Eni(ξni)]
1/2

]
(28)

where as noted after (25) may shall use a typical value ξn ' ( 1√
2
, 1√

2
) sin Θ.
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4.3. Array design considerations

Equation (25) and (28) provides two constraints on the cell size dni , i = 1, 2 and for all n . The values of dni
obtained from (25) sets an upper limit on the cell size for which the second order analysis is valid, whereas

those obtained via (28) are concerned only with meeting the constraint on the total radiation pattern. For

focusing apertures, q(x, t) is typically large near the center hence the condition (28) dominates for this

elements. Consequently, the dimensions of the central cells are found from (28) yielding a rather dense

array. Far from the center q weakens and the cell dimensions implied by (28) grow until they disagree with

the condition in (25) which then becomes operative. The array construction starts therefore from the center

and proceeds outward where at each step one calculates dn1,2
(xn) via the condition in (25) or (28).

When the procedure above is applied to scanning arrays, the array sparsity is determined by the most
restrictive constraints corresponding to all the possible scan directions within a given range. Consider the
case where the array should stir a given collimated pulsed beam (PB) for all directions within a cone of
angle θmax about the z axis. The analysis for each direction proceeds essentially as discussed above, but
by considering all possible scan directions one finds that the resulting array geometry is almost the same
as obtained for a fixed broadside array that radiates a PB along the z -axis. In fact, the size of the array
should be increased by a factor 1/ cos θmax , so as to obtain the same effective aperture at the largest scan
angle, but the interelement spacing should remain essentially the same so as to accommodate all the scan
directions within the cone.

To be more specific, for a scan in the direction (θ0, φ0), the complex delay T (η) (see Section 3.1) is

augmented by a linear delay T (x) = c−1[x1 sin θ0 cosφ0 + x2 sin θ0 sinφ0] . For simplicity let the local cell
geometry be oriented such that η1 coincides with the scan direction. Consequently, each one of the the

parameters Tn1
of (12b) is augmented by c−1 sin θ0 . It then follows from (24) that En1

is minimized for

observations along the beam axis where ξn1
= sin θ0 . Substituting En1

in Eqs. (25) and (28) and considering

observation directions within a cone Θ about the PB direction (θ0, φ0 = 0), one obtains essentially the same
realization constraints as obtained for radiation along the z -axis. Finally, these considerations should be
repeated for all scanning directions within the θmax cone. For this reasons the example of Section 5 below
considers only the realization for a broadside radiating array.

5. Example: Iso-Diffracting Source Distribution

We consider a circular symmetry pulsed aperture distribution of the form

q(x, t) = Re
+

f [t− i|x|2/2bc], (29)

where
+

f(t) can be any analytic signal and b is a positive parameter. In [10] this distribution has been
termed “iso-diffracting” since all its frequency components have the same collimation distance b . Indeed,
looking at its frequency spectrum for ω > 0,

q̂(x, ω) = f̂(ω) exp{−ω|x|2/2bc} (30)

where f̂(ω) is the spectrum of
+

f(t), one finds that the width of the Gaussian x-distribution varies with ω

like
√
bc/ω , hence its Rayleigh (collimation) distance is given by b for all ω .
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In the examples below we choose
+

f to be the n-times differentiated analytic-δ signal

+

f(t) =
+

δ(n)(t− iT̄0/2) = Re
{ (−)nn!
πi(t − iT̄0/2)n+1

}
(31)

where T̄0>0 is a parameter that defines the pulse length. To understand the properties of (29) we use n = 2

in (31) and write (29) explicitly for this case, obtaining

q(x, t) = Re
+

δ(2)(t− iγ/2) =
γ

π

[
3t2 − (γ/2)2

]
[t2 + (γ/2)2 ]3

(32)

where γ = T̄0 + |x|2/bc . Analyzing the waveform in (32) one observes that the pulse length is given by γ and

hence it grows with |x| . In addition, the waveform decays as γ grows, hence the half-amplitude diameter

that describes the decay in |x| is found to be W0 = 1.02
√
cT̄0b . Plots of q(x, t) at x = 0, 1

2W0, W0 and

2W0 are given in Figure 7b.
Considering next the radiation properties of this source one finds that if the parameters are chosen

such that cT̄0/b � 1 then (29) generates a collimated pulsed beam (PB) field that propagates along the

z -axis, having collimation length b and beamwidth W (z) = W0

√
1 + z2/b2 so that for z � b it expands

along a constant diffraction angle Θ0 = 0.64
√
cT̄0/b� 1. (see e.g., [10], for a thorough review of PB fields

see [8]).

In the examples below we choose n = 2 and cT̄0/b = 0.001. We design the point source array to

realized the radiation pattern of the continuous distribution (29) subject to the error constraints ε = 0.01

and ε̄ = 0.5 (see (19)–(22)) within the cone whose angle Θ equals to the PB diffraction angle Θ0 . We shall
compare the resulting array with an array designed to meet the error criteria within a wider cone θ ≤ 3Θ0 .

The arrays have been designed using (25), (28) and the design considerations of Section 4.3. The

cells have been rotated so that (η1, η2) coincide with the radial and azimuthal coordinates, respectively.

Comparing (14) with (29), the parameters in (25) and (28) are Tn1 = iρn/bc , Tn2 = 0 and Tn11 = i/bc = Tn22

with ρn = |xn| .
Figure 2a depicts the inter element spacing dn1,2

(solid and dashed lines for the radial and azimuthal

dimensions, respectively) as a function of the radial coordinate for the realization with Θ = Θ0 . All
dimensions are normalized to W0 . The values dn1,2

that were actually chosen to minimize the number of

elements are denoted by ♦ and © . For |x| < 1.3W0 , dn1,2
are relatively small and are determined by (28).

For |x| > 1.3W0 , the values obtained from (28) are larger than those obtained via (25) hence dn1,2
were

calculated there via (25). Figure 2b depicts the array layout: the array is denser at the center and consists
of a total of 44 elements within a circle of radius 4.7W0 .

Figure 3 depicts the results for an array designed to meet the same error criteria within a wider cone
Θ = 3Θ0 . The array dimensions were determined via (28) and (25) for |x| ≶ 0.87W0 , respectively, giving a
total number of 82 elements within a supporting radius 3.7W0 .

Figure 4 depicts the far-zone pulse at several observation angles: The solid, the dotted and the dash-
dotted lines correspond, respectively, to the continuous distribution and to the array realizations of Figures 2
and 3. One observes an excellent agreement for θ = 0 and θ = Θ0 (Figures 4a and 4b). For θ ≥ 2Θ0 , i.e.,
beyond the design range of the array of Figure 2, the waveforms corresponding to that array break into the
individual element contributionss (Figures 4c–4d; note the different scales in the figures). The conditions for
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Figure 2. Array realization for θ ≤ Θ0 , ε = 0.01 and ε̄ = 0.5. (a). The inter-element spacing, d1/W0 (solid line)

and d2/W0 (dash-dotted line) as a function of the radial coordinate: ♦ and © mark the values d1,2 that were

actually chosen. (b.) Array layout.

breaking of the pulse into the individual element contributions have been studied in [7] in connection with
equi-spaced arrays. Similarly, the waveforms obtained from the array of Figure 3 break into the individual
element contributions for θ ≥ 4Θ0 (Figures 4e–4f). Finally in Figure 5 we show the far zone pulse for large

observation angles (further away from the main beam) where the pulse is broken to the individual element
contributions. The relative realization error in this region is large yet it is negligible when compared to the
main beam field.

Figure 6 depicts the energy radiation pattern, defined by ‖q̃(ξ, t)‖2/‖q̃(0, t)‖2 with L2 norm. Con-
sistently with the discussion above, the array patterns agree with the continuous source distribution in the
design region θ < Θ0 and θ < 3Θ0 for the arrays in Figures 2 and 3, respectively. Beyond this range the
patterns become flat since in this angular range the radiated fields break into non-overlapping individual
pulse contributions (see Figure 5).

Finally, we compare our design with a design of an ultra wide band non-uniform array based on
frequency domain considerations. In order to avoid grating lobes in the visible range, the local element
spacing d(x) at point x in the aperture plane is determined in this approach via

d(x) ≤ λc(x) = 2πc/ωc(x) (33)

where ωc(x) is the characteristic frequency of signal at x . Recalling (30), the frequency spectrum of the

source distribution in (29) with the pulse in (31) and n = 2 is given by

q̂(x, ω) = (−iω)2 exp(−1
2
ωT (x)), T (x) = T̄0 + |x|2/cb (34)

One observes that the characteristic frequency of the excitation signal decreases as |x| increases (cf. Figure 7a

that depicts the frequency spectrum at x = 0 and at |x| = W0 ).

Figure 8 depicts the ratio d1,2(x)/dc(x) between the element spacing obtained via the time-domain
analysis in Figure 2 and between that obtained via the frequency-domain analysis. The time-domain design
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Figure 3. As in Figure 2 for an array realization with θ ≤ 3Θ0 .

is much sparser than the frequency domain design: The total number of elements in the former is 44 while
in the latter there are ∼ 4500 elements. The difference stems from the fact that the time-domain design
accounts for the actual signal and thus emphasizes the regions where this signal is meaningful. The frequency-
domain design, on the other hand, is not based on the total field, but rather on kinematic concepts of phase
interference at each frequency.

6. Concluding Remarks

We have considered a scheme for the design of sparse non-uniform point-source arrays that realize continuous
source distributions within a given error criterion. The scheme is quite general and it leads to the sparsest
array-realization for any given source distribution. The scheme can, in principle, be applied to scanning
arrays but it has been demonstrated here only for realization of collimated short-pulse beam fields whose
main bean direction is fixed along the z-axis. The error criterion has been imposed within a cone around
this axis whereas outside this region the relative realization error is large yet it is negligible since the field
there is small compared to the main beam field.

When the procedure above is applied to the construction of scanning arrays, the array sparsity is
determined by the most restrictive constraints corresponding to all the possible scan directions within a
given range. The analysis for each scan direction proceeds as in the example considered in above. One finds
that the results are practically unchange; for an array that can stir the PB of Section 5 within a cone of angle
θmax about the z axis, the size of the array should be increased by a factor 1/ cos θmax , so as to obtain the
same effective aperture at the largest scan angle, but the interelement spacing should remain essentially the
same so as to accommodate all the scan directions within the cone (see further discussion in Section 4.3).
The examples in Section 5 deal, however, only with broadside radiating arrays while further analysis of scan
arrays will be considered elsewhere.
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Figure 4. Far zone waveforms. Solid, dotted and dash-dotted lines: waveforms corresponding to the con-

tinuous source and to the array realizations in Figures 2 and 3, respectively. (a)–(f): Observation direction

θ = 0, Θ0, 2Θ0, 3Θ0, 4Θ0 and 5Θ0 .
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Figure 5. Far zone waveforms, as in Figure 4 but for observation angles (a) θ = 10Θ0 and (b) θ = 20Θ0 .
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Figure 6. The energy radiation pattern as a function of θ corresponding to the waveforms in Figure 4.
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Figure 7. Source distribution q(x, t) of (29) with n = 2 at |x| = 0 and at |x| = W0 (solid and dashed lines,

respectively). (a) Frequency spectrum bq(x, ω) . (b) q(x, t) .
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Figure 8. The ratio between the inter-element spacing d1,2(x) calculated via the time domain analysis and dc(x)

calculated via the frequency domain criterion. d1/dc - solid line. d2/dc - dash-dotted line.
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