Surface Enrichment of Low Gold Alloys
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Characteristic dissolution kinetics, obtained from a nuclear tracer technique
(gammeaspectrometry) and surface analysis (ESCA) measurements, of some metals and alloys
immersed in chloride-containing water are presented. The tarnishing of low gold alloys in
simulated saliva solutions is shown to be Jess severe when silver is excluded as an alloying
element in these alloys. Experimental data on interdiffusion at room temperature of a gold-
copper-zinc alloy are presented, and 1t is seen that these diffusion data predict the lowest

possible dissolution rate of the alloy exposed to an aqueous solution.

Many commercial alloys are characterized by a compromise in
economyand petformance, in which the compositionsof the alloys
are a function of relative costs and properties of the component
elements. Stainless steel is a well known example in which the
chromium protects the alloy from cotrosion while the presence of
iron gives the alloy suitable mechanical properties. However, in
certain environments alloys might fail in performance. Many iron-
chromium alloys suffer from localized corrosion in chloride-
containing media like sea water (1). Gold alloys have many
applications in dentistry, jewellery and industrial areas. For
economic reasons much effort has been made in the last 5 yeats or
so to lower the gold content of such alloys whilst retaining the
unique properties of them. However a number of low-gold alloys
have been shown to be sensitive to tarnishing with accompanying
formation of corrosion products (2). In particular when these alloys
contain substantial amounts of silver, a reduction in brightness is
often observed in sulphide-containing solutions such assaliva. In
arecently published work (3) the tarnishing of low gold alloys ( ~ 30
atomic per cent gold) with different proportions of silver, copper
and zinc was investigated in some detail. The phenomenon of
selective dissolution of copper and zinc from the alloys turned out
to be the main criterion for the occurrence or absence of tarnish in
these alloys. This communication describes the selective dissolution
from primarily low gold alloysas it occurs during normal immersion
in near neutral (pH = 5-7) solutions in air contact.

Dissolution from Some Metals and Alloys
The preparation of test materials and solutions, and
experimental procedureshave been detailed elsewhere (3), and in

Table |

Test Alloy Designations and Compositions

Alloy Weight % Atomic %
Al AugsCugZn,, Au,CugsZn,,
A2 Feg,CrigMo, FegCr.gMo,
A3 C0g5CroMog C0,sCrs,Mo,

A4 AugCu,g Au,Cu,,

A5 Au4,AGss AugAgrn
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this short article we will restrict ourselves to reporting on and
discussing the immersion and surface enrichment experiments, and
examination of the alloy surfaces. The compositions of the various
alloyswhich were prepared assingle phase samplesare given in Table .
From gammaspectrometry measurements, amounts of gold, copper
and zinc found in the solution (0.025M NaCl) after various

Fig. 1 Accumulative release of copper, zinc and gold from alloy Al aftet
different times of exposure in water containing ~1% chloride.
Gammaspectrometry examination
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times of immetsion of alloy Al are shown in Figure 1 (experimental
details of the gammaspectrometry technique are given in (4)). After
each analysis of the 300 ml solution volume (in which a 10 cm? area
of alloy surface was exposed) it was renewed to ensure identical
solution chemistry at the beginning of each period of exposure.
Obviously, from Figure 1, a pronounced preferential dissolution of
copper and zinc relative to gold takes place. The monotonous
decrease in overall dissolution rate is expressed in Figure 2. Similar
dissolution kinetics have been found from two otheralloys, A2 and
A3 (see Table I) as shown in the same figure. Cobalt (5)and iron (6)
respectively, are preferentially removed in alloys A3 and A2 inan
analogous manner to zinc and copper in the gold-copper-zincalloy.
As pure metals, zinc, iron, copper and molybdenum dissolve at
constant rates under these conditions of immersion (Figure 2). This
should also be the case for cobalt, although experimental data are
lacking.

The enrichment of certain alloy components, gold in the gold-
copper-zinc alloy and chromium (oxide) in the chromium-
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Fig. 2 (left) Total dissolution rates from alloys A1, A2 and A3 as well as
dissolution rates from iron, zinc, copper and molybdenum as pure metals
in water containing ~ 1% chloride. Gammaspectrometry examination

Fig: 3 (above) Total dissolution rates from alloy Al »s. gold surface
enrichment expressed as a thickness ofa pute gold overlayer with the density
of gold (19.3 g/em?). Dissolution rates of copper and zinc are indicated.
Data from Figs. 1 and 2. Gammaspectrometry examination

containing alloys (A2, A3), isa natural consequence of the selective
removal of the less stable alloy components. The following
presentation of experimental data attempts to throw some lighton
the surface enrichment of gold alloys and its consequences.

Surface Excess of Gold

Gamma Spectrometry Examination

The enrichment of a surface with gold relative to nominal alloy
content, isaconsequence of the preferential removal of copperand
zinc. This gold excess amounts to:

Am(Au) = %2—% .m(Cu+Zn) - m(Au) 1

where Am(Au) is the excess of gold in ug/cm?, the numbers 54.5
and 45.5 are the gold and copper+zinc weight per cent alloy
contents respectively (Alloy 1).

Assuming the excess of gold to be existing in a thin overlayer and
having a density of gold (19.3 g/cm®) then the thickness of such a
pure gold overlayer simply is:
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d(Au) = Am(Au)/1.93 nm 2
These calculations have been made on the dissolution data in
Figure 1 and the dissolution rate »s. d(Au) is seen in Figure 3,
Obviously, a very thin (< 1 nm) gold overlayer, a small amount of
gold surface excess, suppresses considerably the total dissolution.
The initial dissolution rate of the alloy, at gold overlayer thickness
d(Au) = 0, isinmagnitude the sum of the individual dissolution
rates of the pure elements copper and zinc.

Examination by ESCA

The surface sensitivity in the ESCA technique (Electron
Spectroscopy for Chemical Analysis) is in the nanometer range. An
exponential intensity decay s. depthof the detected photoelectrons
appliesin thistechnique (7). Having a gold overlayer on a gold alloy
substrate the integrated gold content (atomic per cent gold)ig,
being measured equals:
(at% Au)yc, = (at.% Au)g,ymu-e-‘?) + (at% Au)gpemae €™ 3

This equation has been used when evaluating the surface
compositions of gold alloys after different periods of immersion in
various solutions (3). Primarily, what we achieve are the
experimental values of (at.% Au),.,. With a mean free path of the
detected photoelectronsof 1.5 nm = Nand anominal gold content
in the alloy of 28 atomic per cent, equation 3 can easily be used to
calculate the thicknesses, D, of pure gold ovetlayers (at.%
AU) oy - It must be stressed that the true distribution of gold in
the surface might deviate from the model of a simple pure overlayer
of gold. On the other hand, after immersionsof alloy A1(A2)it was
found that the surface enrichment with gold (chromium) occurs
within a ~ 1 nm thick surface layer with (probably) pure gold
(chromium (oxide)) constituting the outermost surface (3, 6).

Alloy Al has been immersed in pure water and 0.025 M NaCl
respectively. The enrichment by gold, calculated as above, after
different times of exposure is presented in Figure 4. The addition
of the saltaccelerates the selective dissolution of copperand zinc as
interpreted from this figure. Dissolution of copper from copper
metal hasalso been found to increase when 1 per cent NaCl isadded
to pure watet (8).

Creation of Gold Surface-Enrichment on Gold Alloys

The following steps are criteria for the creation of a gold-enriched
surface on a gold alloy (3):

[ Thealloying elementsare preferentially oxidized compared with
gold

Il Thereaction products are dissolved rather than precipitated at
the metal-solution interface.

Additions of sodium chloride to pure water should speed up the
oxidation of copper (to coppér chloride), which is sufficiently
soluble for step Il above to be fulfilled. On the other hand, additions
of sodiumsulphide to pure water should also speed up the oxidation
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Fig. 4 Gold surface enrichment vs. time of exposure of alloy Al in the
presence and absence of ~ 1% chlotide addition to water. ESCA examination

of copper (to cuprous or cupric sulphide). However these
compoundsare insoluble in water — resulting in tarnishing of the
alloy by formation of the copper sulphides. In pure water zinc and
copper dissolve regardless of being in a gold alloy or as metals (8).
Inan aqueous solution containing many anionssuch as Cl -, HS"
and OH " besides oxygen, there are many pathways for oxidation of
copper and zinc with the oxidation products having sufficiently
high solubility to fulfill step Il above. In contrast to the situation
with copper and zinc, silver will only oxidize to Ag,S which is
insoluble.

An even distribution of gold is created by the single phase
structure of the test alloys and this is beneficial to the limitation of
the release of unstable alloying elements by surface enoblement.
The need for characterization of microstructure in gold alloys in
tarnish situations has recently been pointed out by Treacy and
German in this journal (9).

Some Consequences of the Constructive (Selective)
Dissolution of Copper and Zinc Leading to Passivation of
Gold Alloys

The dissolution kinetics of copper, silver and zinc as described
in the previous section can offer an explanation of the differences
inappearance of the alloys shown in Figure 5. The gold-silver alloy
(A5 in Table I) tarnishes in the sulphide solution while the alloys
Al and A4 do not. The gold-silver and the gold-copper alloy have
also been exposed tosaliva in the oral cavity of four individuals and,
asiswell known, salivacontains bothsulphidesand chlorides. The
results are reproduced in Table ITand are discussed in detail in (10).
A pre-passivation, by means of constructive or selective dissolution,
was performed on alloy Al in chloride solution thus enriching the
surface with gold. A subsequent exposure of the sample to a
relatively concentrated sulphide solution only slightly changed the
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surface composition (Table III). A sample with nominal
composition, that is no pre-passivation, became depleted in gold

due to the selective oxidation of copper to insoluble copper

sulphides (Table III).

A selective oxidation of zinc and copper relative to gold takes
place also in air at room temperature (Figure 6). After
approximately halfa year almost no gold but essentially copperand
zinc in oxidized states were detected by ESCA (solid circlesin Figure
6). This selective oxidation of zinc and copper is suppressed and
delayed when a pre-passivation in NaCl-containing water precedes
the exposure to air. In Figure 6, it is found that the gold surface
content of the pre-passivated sample (open circles in Figure 6)
returns to the nominal bulk value (28 atomic per cent) in ~3
months.

It is of principal interest to follow the changes in surface
composition in an oxidative free environment such as ina vacuum
(partial pressure of oxygen < 10 "N/m?). As expected, the sample
with nominal surface composition (solid triangle in Figure 6) did
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Tablell
Atomic Per Cent Gold in Alloy
Surfaces After Exposure in Oral
Cavities of 4 Individuals for 8 Days

(ESCA)
Test Individuals
alloy 1 2 3 4
A4 40 63 62 54
A5 22 23 21 23

Table I
Atomic Per Cent Gold in Surface After Different Exposures
of Alloy A1 (ESCA)

Alioy Exposure Conditions Surface Goid,
Time lon Concentration* Atomic %
Al 20 h pS =35 19
Al 20 h pCl =16 60
Al 20 h pCl =16
then 20 h pS =35 59

*lon concentrations expressed in pH form.
Thus pX=N means 10 N gram ions/litre

Fig.5 Copper, silver, zincand alloys A1, A4 and A5 after 50 hours of immersion
. _4 N .
in 10™"M sulphide solution

not change significantly during the exposure in vacuum. On the
other hand, the initial gold-enriched sample (open triangle in
Figure 6) slowly decreased in enrichment. This might well be the
result of interdiffusion at room temperature of this alloy. An
interdiffusion at a rate of 10 *cm?/s can be estimated from Figure
6, whichisan acceptable value (11). This interdiffusion should not
be confused with a possible high mobility in gold alloys under
strong oxidative conditions which is discussed in (12, 13). A high
surface (lateral) diffusion could achieve the formation of a thin,
dense, gold overlayer especially during the process of selective
dissolution in the mild solutions found in practice.

This possible circumstance is supported by a low mobility which
is found in Figure 6 (open triangle), and which indicates a gold
surface layer containing relatively few vacancies. If the rate-
determining step in the dissolution process is diffusion of copper
and zinc to the alloy/solution interface it is possible to estimate such
an ultimate dissolution rate to be in the range 107 =10 pg/em*.h
(See also Figure 2).
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Concluding Remarks

Analyses of gold alloying elements such as copper and zinc found
in test solutions (gammaspectrometry), and changes in alloy surface
composition (ESCA), after exposure of alloy samples to tarnish
solutions are quantitative and in good agreement,

The very initial release rate of copper and zinc from a gold-
coppet-zinc alloy is the same in magnitude as the release rates from
copper and zinc metals. After removal, by constructive selective
dissolution, of ~ 2ug/cm’ copper plus zinc — corresponding to a
~ 1 nm thick gold overlayer with the density of metallic gold — the
release rate in 0.025 M NaCl solution is ~ 1 ng/cm®.h.

Silver-containing low gold alloys ( ~ 30 atomic per cent gold)
afe more sensitive to tarnishing in saliva-like solutions containing
sulphide and chloride than low gold alloys with copper or zinc as
alloying elements, although 4024 copper and silver sulphides ace
vircually insoluble. In the saliva-like solutions copper can
oxidize to Cu,O(OH),Cl, with a subsequent chemical dissolution
of this type of reaction product. No corresponding pathways of
oxidation exist for silver which consequently only oxidizes to
insoluble silver sulphide giving rise ro tarnish and discolouration
of the gold alloy.

The ennoblement (to ~ 1 nm)in the surface of a gold-copper-
zinc alloy resists some months of exposure to air at room
temperature — a time period during which the gold surface
composition returns to the nominal bulk value of the alloy. The
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Fig.6 Goldsucface content as measured by ESCA on alloy Al after exposure
in air and vacuum (pO, < 10 °N/m’) respectively, Nominal (28 at. %) and
enriched (62 at. %) gold surface contents were the initial states during the
exposures in air and vacuum

main driving force for the diffusion kinetics of this process is
oxidation of zinc and copper. Measurement of diffusion at room
temperature in a negligible oxidative environment (that is, a
vacuum), gives an experimental value of interdiffusion of the order
of 107* cm?/s in the surface zone of a gold-copper-zinc alloy.
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Three researchers from MIT Department of Chemistry have reported
recently (H. White, G.P. Kittlesen and M.S. Wrighton, /. Ane. Chermn.
Soc., 1984, 106, 5375-5377) on the fabrication of a chemically
derivatized microelectrode array that can function asa transistor when
immersed in an electrolyte solution. The key finding is that it can be
shown thatasmall signal (charge) needed to turn on the device can be
amplified. The device described mimics the fundamental characteristics
ofasolid-state transistor, since the resistance between two contactscan
be varied by a signal to be amplified. The chemical transistor consists
of aser of three (drain, gate and source) gold microelectrodes covered
with polypyrrole. Three features are essential: (1) the three independent
gold microelectrodes are closely spaced, 1.4 pm apart, allowing an easily
measurable current to pass between the source and drain when drain

Gold Microelectrodes in Molecule-Based Transistors

voltage Vy, issignificant and gate voltage V,, 1s above a threshold value
V1 (2) the polypyrrole exhibits a sharp change in conductivity upon
oxidation; the potential at which this occurs is Vi (3) cach of the
microelectrodes can be individually contacted. The inputsignal to the
gate to be amplified is that needed to oxidize the polypyrrole, atwhich
potential the polypyrrole switches from insulating to conducting. The
threshold voltage, and the magnitude of signal needed to achieve it, can
be altered by variation of the molecule-based material. The transistor
reported by White ¢/ 4/, had no immediate practical application at the
ume of their publication, however the authors point out that
considerable interest exists in interfacing microelectronic devices with
chemical and biological systems for sensor applications, and in
‘molecular electronics’ in general. : .
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