非束缚核¹¹N共振能级研究*

王宏伟1) 段利敏 袁小华 付芬

(中国科学院近代物理研究所 兰州 730000)

摘要 简要回顾了目前有关非束缚态核¹¹N的实验研究现状,并根据GANIL和MSU的逆运动学弹性 共振散射实验的结果,用多能级*R*矩阵理论拟合了散射质子的激发函数共振峰. 拟合结果表明,新的 ¹¹N能级顺序应为: 1/2⁺, 1/2⁻, 5/2⁺, 3/2⁺, 3/2⁻, 5/2⁺, 7/2⁻, 同镜像核¹¹Be的实验测量结果和GCM 理论计算¹¹N的能级顺序相一致.

关键词 非束缚核 共振能级 共振弹性散射 R矩阵理论

1 引言

放射性束物理的发展推动了核物理的研究向着 同位旋自由度方向进一步拓展,因此奇异核的研究成 为当前最活跃的研究热点之一. 这一区域的研究, 已 经揭示出了许多独特的现象,如晕核系统、能级翻 转(或称为侵入态)、软模巨共振激发模式、β缓发粒 子发射、滴线附近 N = 8 旧幻数的消失和新幻数的 出现等,其中基态能级翻转现象是对传统壳结构的挑 战,它首先在研究11Be核时就已经被发现.理论研究 认为,必须引入组态混合才能再现¹¹Be的能级翻转现 象^[1],一些理论研究也预言了同中子的核素⁹He, ¹⁰Li 以及¹¹Be的镜像核¹¹N等也存在着能级翻转现象^[2, 3]. 目前已经有转移反应、末态相互作用、逆运动学弹性 共振散射等实验方法的测量结果,但是不同的实验结 果之间还是存在差异,因此精确的实验验证对于检验 理论计算的可靠性, 拓展现有的核结构模型具有重要 的作用. 有多个实验组对11N进行了研究, 已经从实验 上验证了它的基态是自旋翻转,但是其4MeV以上的 共振能级的能量和自旋宇称等还没有定论.

2 ¹¹N的理论和实验研究现状

¹¹N作为¹¹Be的镜像核,也被认为存在着能级翻

转现象, 即基态的自旋宇称为 $1/2^+(1s_{1/2})$, 而不是经 典壳模型所预言的1/2-(1p1/2). ¹¹N的第1次实验数 据是由Benenson等^[4]人在¹⁴N(³He, ⁶He)¹¹N反应中 得到的,在¹⁰C+p阈上2.24MeV的地方测量到一个 共振态,其宽度为0.74MeV,经过讨论解释为1/2-第1激发态,而非1/2+基态,基态是从同位旋多重态 质量公式(IMME, Isobaric Multiplet Mass equation) 推导出的,能量为1.9MeV. 1995年Fortune等^[5]认为 IMME不能应用到轻的束缚(或者非束缚)2s1/2态,他 们用势模型计算后得到¹¹N基态的能量为Edecay = 1.60 ± 0.22 MeV, $\Gamma = 1.58^{+0.75}_{-0.52}$ MeV. Barker^[6] 试图用 同样的模型去分析时却没有得到同样的结论,他认为 Fortune等的势模型只能用于谱因子接近1.0的单粒 子态,因此用了不同方法来计算¹¹N的基态能级,但 得到的结论却同Fortune的一致($E_{decav} = 1.60 \text{MeV}$, $\Gamma = 1.39$ MeV). 1995 年 Guimaraes 等^[7] 测量相同的反 应¹⁴N(³He, ⁶He)¹¹N时发现,这个能级实际上可以 分解为两个能级,新的能级在1.2MeV(质子阈以上). Thoennessen等人^[8]在研究¹²N的碎片时也发现了这 一低激发能级. 1996年L.Axelsson等人^[9]采用弹性共 振散射方法首次对¹¹N进行了直接测量,他们的结果 为 1.3 ± 0.04 MeV $(1/2^+)$, 2.04 ± 0.04 MeV $(1/2^-)$, $3.72\pm$ $0.04 \text{MeV}(5/2^+), 4.32 \text{MeV}(3/2^-), 5.1 \text{MeV}(3/2^+)$ 和 5.5MeV (5/2⁺). 1997年 P.Descouvemont^[10] 用产生坐

²⁰⁰⁵⁻⁰⁴⁻¹¹ 收稿, 2005-07-10 收修改稿

^{*}国家自然科学基金(10175081, 10205020, 10475100),国家重点基础研究发展规划项目(G2000077401),中国科学院知识创新工程重要方向项目(KTCX2-SW-N07)和中国科学院百人计划基金资助

¹⁾ E-mail: wanghw@impcas.ac.cn

标法(GCM, Generator Coordinate Method)研究了 奇异核¹¹Be和¹¹N的能级,给出的结果如图1所示.图 中虚线为粒子发射阈值,¹¹Be的测量结果取自文献 [11],¹¹N的测量结果取自文献[9],对于前3个能级, ¹¹Be和¹¹N具有相同的能级顺序.

图 1 GCM理论计算¹¹Be, ¹¹N的能级顺序,并与 当时实验测量结果的比较(取自文献[10])

1998年, A.Lepine-Szily 等人^[12]利用多核子转移 反应¹²C(¹⁴N, ¹⁵C)¹¹N,测量到5个共振能级为 2.18(5), 3.63(5), 4.39(5), 5.12(8), 5.87(15), 其自旋宇 称分别指定为 $1/2^-$, $5/2^+$, $(3/2)^-$, $(5/2)^-$, $(7/2)^-$, 他们没有测量到理论预言的 $1/2^+$ 基态. 同年, A.Azhari等人^[13]利用⁹Be(¹²N, ¹⁰Be)¹¹N反应,测量 了¹¹N的质子发射谱,除了能量为2.24MeV($1/2^-$) 的能级外,还测量到能量为1.45MeV的共振态,当

时这一能级被认为是预期的1/2+基态或者是由 于¹¹N的3/2⁻态到¹⁰C的第1激发态的衰变.2000 年J.M.Oliveira等^[14]利用多核子转移反应¹⁰B(¹⁴N, 13 B) 11 N,发现了1.63(5),2.16(5),3.06(8),3.61(5), 4.33(5), 5.98(10)和6.54(10)MeV共振能级(相对于 ¹⁰C+p阈), 其自旋宇称指定为1/2+, 1/2-, 5/2+, (3/2)-和(5/2)-,其中3.06(8)和6.54(10)没有指定自 旋宇称,基态共振的质量剩余为24.618(50)MeV,实 验宽度要小于理论的计算值. 以上的几个实验均 是利用复杂的反应道来得到¹¹N核的高激发能级. 2000年Markenroth^[15]详细地分析了L.Axelsson等人 的实验数据,给出的新参数为1.45(1/2+), 2.13(1/2-), $3.74(5/2^+), 3.94(3/2^+), 4.33(3/2^-), 4.81(5/2^+)$ 和 5.4(7/2⁻). 2003年V.Guimaraes等^[16]在日本东京大 学的CNS再次利用¹⁴N(³He, ⁶He)¹¹N反应测量了¹¹N 的基态以及低激发态能级,并第一次测量了反应的 角分布,用扭曲波波恩近似(DWBA)分析后确认了 对低激发态自旋的认定是正确(这一反应的基态共 振峰不是非常明显,这是由于反应可以直接布居 到 Cohen-Kurath态, 即 1/2⁻, 3/2⁻ 和 5/2⁻, 因此共振 峰较强,而布居到1/2+,3/2+和5/2+态需要两步过 程,因此其共振峰较弱).表1给出了¹¹N的测量和计算 结果.

J^{π}	Guimaraes ^[16]		Oliveira ^[14]		Lepine-Szily ^[12]		$Markenroth^{[15]}$		Axelsson ^[9]	
	$E_{\rm decay}$	Г	$E_{\rm decay}$	Г	$E_{\rm decay}$	Г	$E_{\rm decay}$	Г	$E_{\rm decay}$	Г
$1/2^{+}$	1.31	0.24	1.63	0.4			1.27	1.44	1.30	0.99
$1/2^{-}$	2.31	0.73	2.16	0.25	2.18	0.44	2.01	0.84	2.04	0.69
$5/2^{+}$	3.78	0.56	3.61	0.50	3.63	0.40	3.75	0.60	3.72	0.60
$3/2^{+}$							3.94	0.58		
$3/2^{-}$	4.56	0.30	4.33	0.45	4.39	$\leqslant 0.2$	4.33	0.27	4.32	0.07
$5/2^{+}$							4.81	0.40		
$7/2^{-}$							5.4	0.25		
$5/2^{-}$	5.91	1.30	5.98	0.10	5.87	0.7			5.50	1.5
$3/2^{-}$	6.80	0.00	6.54	0.10						

衣 1 主安的头短结禾种哇化 异结击的

				^{11}N	1的主要的理论	计算结果				
Iπ	$Fortune^{[5]}$		$Barker^{[6]}$		$Descouvement^{[10]}$		Grevy ^[17]		Barker ^[18a]	
5	$E_{\rm decay}$	Г	$E_{\rm decay}$	Г	$E_{\rm decay}$	Г	$E_{\rm decay}$	Г	$E_{\rm decay}$	Г
$1/2^{+}$	1.60	1.58	1.4	1.01	1.1	0.9	1.2	1.2	1.636	1.37
$1/2^{-}$	2.49	1.45	2.21	0.91	1.6	0.3	2.1	1.0	2.357	0.93
$5/2^{+}$	3.90	0.88	3.88	0.72	3.8	0.6	3.7	1.0	3.773	0.62
$3/2^{+}$					5.3	1.7				
$3/2^{-}$					5.5	1.3				

a: 考虑到组态混合¹⁰C(0⁺)+p和¹⁰C(2⁺)+p的计算结果.

 $\mathbf{2}$

3 对逆运动学弹性共振散射实验测量结 果的R矩阵理论分析

经过多核子转移反应和Markenroth等人的共振 弹性散射实验测量,¹¹N最低的3个能级的能量和 自旋宇称已经基本确定, 即 $E_{\rm X} = 1.45 \,{\rm MeV}(1/2^+)$, $E_{\rm X} = 2.13 \,{\rm MeV}, \ (1/2^{-}) \,{\rm fl} E_{\rm X} = 3.74 \,{\rm MeV} \,(5/2^{+}).$ 实 验上确认了¹¹N同¹¹Be一样存在基态的自旋翻转现 象,但是对3.8MeV以上能级的测量及其自旋宇称的 指定还没有一个定论. 2003年5月我们在GANIL用 R矩阵理论来检验 Markenroth 等的实验结果时发现, 如果采用Markenroth给出的共振能级参数(见表2)计 算¹⁰C+p弹性共振散射激发函数时,不能完全重复 其拟合的结果,如图2(点划线)所示.同实验数据相 比,他们给出的能级参数不能再现能量为4.33MeV处 的共振峰,而粗实线为我们的拟合结果(拟合参数见 表2). 比较我们的拟合结果和Markenroth给出的参 数及其所用的公式,发现他们利用了简化的R矩阵 公式拟合了前3个能级的共振,然后在处理能量大于 4MeV的能级的共振时,采用了势模型加共振的形式, 经过这样处理的公式, 忽略了 3/2+(3.94MeV) 和 3/2-(4.33MeV)之间的干涉效应,因此,当我们用完全的R 矩阵理论进行分析时,就会发现由于这两个能级间干 涉效应, 使得实际的微分截面在4—5MeV之间降低, 所以其指定的这几个高共振能量能级的自旋和宇称是

不准确的. 另外为了拟合测量结果,他们还引入了一 个能级3.94MeV, $J^{\pi} = 3/2^+$,这个能级在其他的转移 反应实验中并没有对应的结果,而4.33和4.81MeV的 能级被认为是对应于¹¹Be的2.69和3.41MeV的镜像 态,5.4MeV的引入则没有任何的依据,仅仅是为了拟 合实验结果,因为在5MeV以上的实验数据点不可靠, 它的引入是非常可疑的,其能量和自旋宇称都是不准 确的. 从我们的*R*矩阵拟合结果来看,应该存在这个 能量为3.99MeV的共振态,其自旋宇称为3/2⁺,另外 在4.81MeV处的共振态的自旋宇称应该为7/2⁻,这一 指定值同¹¹Be的测量结果以及理论计算结果是一致 的(见表2).

图 2 R矩阵拟合的¹⁰C+p弹性共振散射激发函数 实验点取自文献[15],-----为各个分波的贡献,—— 为所有分波的贡献,-----为Markenroth等采用的能 级参数计算的结果.

表 2 <i>R</i> 矩阵拟台时 ⁺⁺ N 能级参致	女表
---	----

Markenrothet等的数据 ^[15]				我们的R矩阵拟合结果				${}^{11}\text{Be Exp.}^{[11]}$		GCM theory ^[10]	
J^{π}	L	$E_{\rm r}$	$\Gamma_{\rm r}$	J^{π}	L	$E_{\rm r}$	$\Gamma_{ m r}$	J^{π}	$E_{\rm X}$	$^{11}\mathrm{Be}$	^{11}N
$1/2^{+}$	0	1.45	1.56	$1/2^{+}$	0	1.42	1.56	$1/2^{+}$	0.00	$1/2^{+}$	$1/2^{+}$
$1/2^{-}$	1	2.13	0.89	$1/2^{-}$	1	1.98	0.69	$1/2^{-}$	0.32	$1/2^{-}$	$1/2^{-}$
$5/2^{+}$	2	3.74	0.45	$5/2^{+}$	2	3.55	0.45	$(5/2, 3/2)^+$	1.78	$5/2^{+}$	$5/2^{+}$
$3/2^{+}$	2	3.94	0.58	$(3/2^+)$	2	3.86	0.78	$(1/2, 3/2, 5/2^+)$	2.69	$3/2^{+}$	$3/2^{+}$
$3/2^{-}$	1	4.33	0.27	$3/2^{-}$	1	4.34	0.37	$(1/2, 3/2, 5/2^+)$	3.41	$3/2^{-}$	$3/2^{-}$
$(5/2^+)$	3	4.81	0.40	$(7/2^{-})$	3	4.79	0.42	$\geqslant 7/2$	3.89		
$(7/2^{-})$	3	5.4	0.25	?				$3/2^{-}$	3.96		
?				?							

Er和Γr分别为共振能量和质子衰变分支宽度,其单位均为MeV.

图3给出了各种可能的自旋宇称的指定情况,如 果不引入能量为3.99MeV(3/2⁺)的共振能级,则理 论不能拟合实验结果(图3中点划线所示),如果采用 Guimaraes等人^[16]认定的5.91MeV作为第6个共振态 (5/2⁻或7/2⁻),则拟合的结果如图中虚线与点线所示, 没有再现出激发函数在能量大于4.8MeV以后的上升 趋势.因此在Guimaraes等人结果中的4.5和5.9MeV 之间可能还会有其他的能级没有被测量到. 从表格 数据的对比和*R*矩阵的拟合结果中我们可以发现, 利 用*R*矩阵理论给出的低共振态的自旋宇称的指定同 GCM理论(generate coordinate model)^[10]的计算结果 是一致的,同¹¹Be的实验测量结果也有很好的对应, 对于第6和第7个共振态来说,目前的测量结果还有较 大的差异, GCM理论也没有给出相应的计算结果, 在 MSU和GANIL进行的两次¹¹N的弹性共振散射实验 中,因为¹⁰C束流的能量限制,没有能够测到能量高于 5MeV以上的激发函数,所以进一步的精确实验和理 论计算将会有助于我们对¹¹N激发能级的研究.

参考文献(References)

- 1 Nigoita F, Borcea C, Carstoiu F et al. Physics Review, 1999, **C59**: 2082
- 2 Hansen P G, Sherrill B M. Nucl. Phys., 2001, A693: 133
- 3 Jonson Bjorn. Physics Report, 2004, **389**: 1
- 4 Benenson W, Kashy E, Kong-A-Siou D H et al. Physics Review, 1974, C9: 2130
- 5 Fortune H T, Koltenuk D, Lau C K. Physics Review, 1995, C51: 3023
- 6 Barker F C. Physics Review, 1996, C53: 1449
- 7 vGuimaraes V, Kubono S, Hosaka M et al. Nuclear Physics, 1995, A588: 161C
- 8 Thoennessen M. In: Proceedings of the International Conference on Exotic Nuclei and Atomic Masses ENAM-95. Edited de.Saint Simon M et al. Arles, France: Editions Frontiers, Gif-surYvette, 1995, 237
- 9 Axelsson L, Borge M J G, Fayans S et al. Physics Review,

Study of Unbound Nuclei ¹¹N Resonance Energy Level^{*}

WANG Hong-Wei¹⁾ DUAN Li-Min YUAN Xiao-Hua FU Fen

(Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)

Abstract The excitation functions of elastic scattering proton which were measured with inverse kinematics of elastic resonance scattering reactions in GANIL and MSU have been fitted by the multi-energy level R-matrix theory. The final result shows that the new energy levels order for nucleus ¹¹N should be $1/2^+$, $1/2^-$, $5/2^+$, $3/2^-$, $5/2^+$, $7/2^-$, which is consistent with the experimental results of ¹¹Be (the mirror nucleus of ¹¹N) and the theoretical calculation of ¹¹N with GCM theory.

Key words unbound nucleus, resonance energy level, resonance elastic scattering, R-matrix theory

4 结束语

利用多能级的 R 矩阵理论分析了逆运动学弹性共 振散射的实验结果,给出了新的¹¹N共振态的能级顺 序为1/2⁺,1/2⁻,5/2⁺,3/2⁺,3/2⁻,5/2⁺和7/2⁻,同 镜像核¹¹Be的实验测量结果和GCM理论计算的¹¹N 的能级顺序相一致,而目前壳模型的计算结果只给出 了前3个能级的计算数据.转移反应实验的测量表明, ¹¹N可能还存在更高能量的共振态,但是其共振的能 量和自旋宇称的认定还没有完全的确定,因此进一步 精确的实验,对于我们系统地研究¹¹N的谱学和结构 等具有重要的作用.

1996, C54: R1511

- 10 Descouvement P. Nuclear Physics, 1997, A615: 261
- 11 Ajzenberg-Selov A. Nuclear Physics, 1990, A506: 1
- 12 Lepine-Szily A, Oliveira J M, Ostrowski A N et al. Physics Review Letters, 1998, 80: 1601
- Azhari A, Baumann T, Brown J A et al. Physics Review, 1998, C57: 628
- 14 Oliveira Jr J M, Lepine-Szily A, Bohlen H G et al. Physics Review Letters, 2000, 84(18): 4056
- 15 Markenroth K, Axelsson L, Baxter S et al. Physics Review, 2000, C62: 034308-1
- 16 Guimaraes V, Kubono S, Barker F C et al. Physics Review, 2003, C67: 064601-1
- 17 Grevy S, Sorlin O, Vinh Mau N. Physics Review, 1997, C56(5): 2885
- Sherr R, Fortune H T. Physics Review, 2001, C64: 064307 1

Received 11 April 2005, Revised 10 July 2005

^{*}Supported by NSFC (10175081, 10205020, 10475100), Major State Basic Research Development Program (G2000077401), Knowledge Innovation Project of the Chinese Academy of Sciences (KJCX2-SW-N07) and One Hundred Person Projects of the Chinese Academy of Sciences

¹⁾ E-mail: wanghw@impcas.ac.cn