Chapter 2

Signals and Spectra
( Review )



2.1 Signals and Spectra

signal

® Time domain description
Waveform, Power, ......
®frequency domain description

Frequency, bandwidth, ......
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2.1 Signals and Spectra

Waveform
Rectangular pulse |
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Figure 2-5 Waveshapes and corresponding symbolic notation
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2.1 Signals and Spectra

Time average - Dc value of a waveform w(t):

T/2

W, = (w(t)) = pm— j w(t)dt
-T/2
Power:
T/2
P =(w’ (t)>—I|m— jw (t)dt
—T/2
Energy:
T/2
E = lim jw (t)dt
-T/2
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2.1 Signals and Spectra

Decibel

The decibel is a base 10 logarithmic measure of
Power ratios:

The decibel gain of a circuit:

. :1O|og£average power o_ut] . g( Out)
average power In P
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P — Vrms IrzmsR ﬂ
R
R=1Q
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dB =201log - =201log |
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2.1 Signals and Spectra

Decibel

The decibel signal-to-noise ratio:
| s*(t |
dB =10log g —10log < ()> = 2010g Vinssigna
I:)noise <n2(t)> Vrms noise

The decibel power level with respect to 1 mw :

dBm =10 Iog(aCtUIaI power level (Watts)j

1073

other decibel measures: dBW, dBk ......
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.2 Fourier Transform and Spectra

The Fourier Transform of a waveform w(t) Is:

W (f) = F[w(t)] = j_“; w(t)e 12 dt

The inverse Fourier transform:

w(t) = F W (f)]= wa(f)e"z”ﬁdt

Shorthand notation for a Fourier transform pair:

w(t) < W (f)
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.2 Fourier Transform and Spectra

Some useful pulses
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Figure 2—-6 Spectra of rectangular, (sin x)/x, and triangular pulses.
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.2 Fourier Transform and Spectra

Properties

® Linearity, time delay, scale change,
conjugation, ......

® Spectral symmetry of real signals

W (=f)=W"(f)

® Parseval’s theorem

[ wowdt= [ W, ()W, (f)df
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.2 Fourier Transform and Spectra

Proof- )
Iiwl(t)WZ(t)dt = j“’ { j W, ( f)e!2™df }W;(t)dt

— —00

_ f j W, (f)w; (t)e!2 " dfdt

*

o0

- fwwl(f)[ [ Wz(t)ejz’z“dt} df = T W, ()W, (f)df

when — w(t) =w,(t) = w,(t)

E=[ |w®]dt=]" W(f) df

Rayleigh’s energy theorem
2

Energy spectrum density is: ~ E(f) =[W (f)
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.3 PSD and Autocorrelation Function

The average normalized power In time domain
description iIs:

P=lim= j_mw (t)dt = lim = j_°° w2 (t)dt

T T T T

where w4 (t)= w(t) II(t/T) iIs the truncated version of
the waveform. By the use of Parseval’s theorem, we
have:

P=lim= j W, () df__[oo[llm’WT( | de (2-65)

T—)oo T-
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.3 PSD and Autocorrelation Function

The power spectral density (PSD) for a deterministic
power waveform is:

W (D)
p, (f)=Ilim -

T—o

For a real waveform the autocorrelation function is:

R, (7) = (w(O)w(t + 7)) = lim % [ witywt+ )t

The PSD and the autocorrelation function are Fourier
transform pairs:

R, (7) & &,(1)
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.3 PSD and Autocorrelation Function

® The PSD can be obtained by either of the
following two methods:

1) Direct method:

@W(f)zlimm(f)‘

T oo T

2) InDirect method:

e, (f)=#R,(7))
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.3 PSD and Autocorrelation Function

The total average normalized power for the
waveform w(t) can be evaluated by using

any of the four technigues embedded In the
following equation:

P =(W(t))
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4 orthogonal series representation

Orthogonal function

If the functions In the set { @ (t) } are orthogonal,
then they satisfy the relation

er 0 *(t)dt— 0 m=n

a(Dn (Dm T Kn m:n_ n~"mn
O n#m

where 5mn:{
1 n=m

If the constants K are all equal to 1, the & (t) are
sald to be orthonormal functions
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4 orthogonal series representation

Orthogonal Series

w(t) can be represented over the interval (a,b) by
the series:

W(t) — Z A, @, (t) (2 - 83)

where the orthogonal coefficients are given by:

3, = Kl j:w(t)gp;(t)dt (2-84)

n

Note:

The orthogonal function set {p (t)} has to be
complete
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2.5 Fourier Series

e complex exponential Fourier series form:

A physical waveform may be represented over the
Interval a<t<a+T,by the complex exponential
Fourier series:

w(t) = > c,e’™
N=—c0
where the complex (phasor) Fourier coefficients are:
1 a+T, _ i
C, :—j “wi(t)e "'t
T, -2

and @, =2xf,=27/T,
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2.5 Fourier Series

® the spectrum of the periodic waveform
The spectrum of the waveform w(t) with period
TylS:
W(f)= e 5(f—nfy)
® PSD for Periodic waveform
For a periodic waveform, the PSD is given by:

2,(1)= Y [c,[ 5(F ~nf,)

the normalized power : P = <W2 (t)> = i C
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2.9 Bandwidth of Signhals

@® The spectral width of signals and noise in
communication systems iIs a very important
concept.

® In engineering definitions, the bandwidth
Is taken to be the width of a positive
frequency band. In other words, the

bandwidth is:

fo - h

where f,> £, =0
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2.9 Bandwidth of Signhals

Some definitions of bandwidth:
¢ Absolute bandwidth: £ - f

¢ Null-to-null bandwidth (or zero-
crossing bandwidth): f, - f;

¢ Equivalent noise bandwidth:

| p,(f)df =B, p,(f,) B = [[H ()l
0

IH(f ) s
¢ 3-dB bandwidth, 6-dB bandwidth, ......
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2.9 Bandwidth of Signhals

Example2-18 Bandwidths for a BPSK signal (p106)
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(b) Resulting BPSK Spectrum
Figure 2—-23 Spectrum of a BPSK signal.
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