基于 ADAMS/Car 和 Simulink 的主动悬架遗传模糊控制 *

郑 泉 陈黎卿 王继先 张小龙 (安徽农业大学工学院,合肥 230036)

【摘要】 利用 ADAMS/Car 软件建立了车辆多体动力学模型;基于遗传算法策略设计了主动悬架模糊控制器并通过 Matlab 编写了控制算法,基于 ADAMS/Car 和 Matlab/Simulink 对主动悬架系统进行联合仿真。通过随机路面输入和脉冲路面输入下的仿真结果分析,表明联合仿真的方法正确、可行,同时通过试验结果分析表明,该控制方法能够有效提高汽车的平顺性能。

关键词: 汽车 主动悬架 联合仿真 遗传算法 模糊控制

中图分类号: U463.33 文献标识码: A

Control of ASS Genetic Algorithms and Fuzzy Based on ADAMS/Car and Simulink

Zheng Quan Chen Liqing Wang Jixian Zhang Xiaolong (School of Engineering, Anhui Agricultural University, Hefei 230036, China)

Abstract

The paper presents the design process of controller for active suspension employed by vehicle based on the co-simulation. Firstly, a detailed multi-body dynamic model of the vehicle was established by using ADAMS/Car software package. Secondly, a fuzzy controller was designed for active suspension system based on genetic algorithm, then programmed by means of Matlab/Simulink. Finally, the co-simulations were carried out based on ADAMS/Car and Matlab/Simulink. The co-simulation model can simulate vehicle dynamic response with the control of ASS under random road and impulse road condition. Through simulation result analysis, it indicates that the co-simulation method is effective and feasible, and the experimental result indicates control method is applicable, too.

Key words Vehicle, Active suspension, Co-simulation, Genetic algorithm, Fuzzy control

引言

目前,已有许多学者对主动悬架做了大量的研究工作,采用了各种控制技术,如模糊控制、神经网络、鲁棒控制^[1~3]等方法,但大多是建立在数学模型的基础上,对车辆运动进行的仿真研究,事实上车辆在运动过程中许多参数不易测得,所以使用数学模型进行分析,必然使分析结果具有一定的不准确性。近年来多刚体动力学仿真软件 ADAMS 得到广泛使用,能够将机械系统与控制系统有机地结合形成联合仿真模型,从而为车辆性能的分析提供了新

的方法。

本文以商务车为研究对象,采用多体动力学建模软件 ADAMS 建立车辆动力学模型,并应用 Matlab/Simulink 设计控制算法,建立一个主动悬架 控制策略研究的集成环境,利用该集成环境对车辆联合控制进行仿真。

1 整车多刚体动力学模型

1.1 建模假设

汽车是一个复杂的系统,在建立模型前有必要 根据设计分析的目的,对其进行简化:将前后减振器

收稿日期: 2008-09-19 修回日期: 2009-01-15

^{*}安徽省教育厅自然科学基金重点项目(KJ2007A061)、安徽省科技厅科技攻关重点项目(08020204024)和清华大学安全与节能国家重点 实验室开放基金资助项目(KF09122)

作者简介:郑泉,副教授,主要从事车辆动力学及其控制研究,E-mail: zhengquan70@126.com 通讯作者:陈黎卿,副教授,主要从事车辆动力学及其控制研究,E-mail: clq79111@sina.com

简化为阻尼约束;车架与后车桥通过螺旋弹簧连接起来;在主动悬架的性能分析中,主要研究车辆在各种道路情况下行驶时车辆的平顺性,因此建立仿真模型时将发动机、传动系、动力总成等略去,通过在后轮胎上施加扭矩使汽车运动。

1.2 模型参数确定

模型参数的获得方法一般有:关键点的坐标根据图纸查得;运动部件的质心与转动惯量通过计算、试验等方法获得;起缓冲减振作用的零部件,如减振器、橡胶元件、弹性轮胎等的特性参数通过试验获得^[4]。其中对运动性能有重要影响的参数,如表1所示。

表 1 建模主要数据 Tab.1 Main data for modeling

参数	数值			
整车质量(空载)/kg	1 800			
轴距/mm	2 810			
轮距/mm	1570(前)/1545(后)			
扭杆弹簧刚度/N·m·rad-1	53.38			
主销内倾角/(°)	15.8			
前轮外倾角/(°)	0.5			
转动惯量 I_z (满载)/kg·m²	4 132			
转动惯量 I_y (满载)/kg·m²	4 132			
整车质量(满载)/kg	2 650			
质心与后轴距离/mm	1235(空)/1340(满)			
簧载质量质心高度/mm	770(空)/750(满)			
轮胎径向刚度 /kN·m⁻¹	258			
主销后倾角/(°)	3.0			
前轮前束/mm	2			
转动惯量 I_x (满载)/kg·m²	3 708			
轮胎型号	215/70R15			

1.3 路面

路面的构建通过 GB7031—1986 建议的公路路面功率谱密度的拟合表达式进行研究,在分析所关心的汽车固有振动频率和行驶速度的影响后,获得分布在一定频率范围内的离散功率傅里叶变换,进而利用离散傅里叶逆变换得到路面不平度值^[5]。由于 ADAMS 软件中路面文件创建较繁琐,故引入 Visual C++软件,将路面文件生成程序编制成软件,软件界面如图 1 所示,在生成路面文件后,通过 ADAMS 软件中内嵌的 System command 菜单工具调用路面文件生成程序。

1.4 整车仿真模型

所研究的车辆主要由双横臂式独立前悬架、多 连杆式独立后悬架、齿轮齿条转向机构和四轮盘式 制动机构等组成。将整车虚拟样机模型分割成悬架、车身、转向、制动、车轮等子系统,分别建立其模型;将各子系统组装成整车虚拟样机试验模型。建成后的仿真模型如图 2 所示。

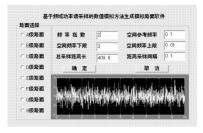


图 1 随机路面生成软件界面

Fig. 1 Random road generation software interface

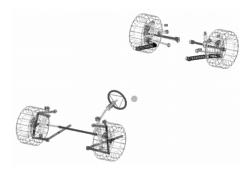


图 2 整车仿真模型(隐藏车身) Fig. 2 Vehicle simulation model

2 控制系统设计

2.1 主动悬架动力学模型

图 3 为 1/2 车辆模型图。

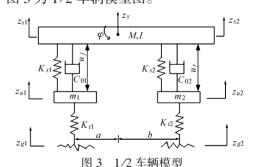


Fig. 3 1/2 vehicle model

1/2 车辆动力学方程为

$$\begin{cases} m_1 \ddot{z}_{u1} - K_{t1}(z_{g1} - z_{u1}) + F_f = 0 \\ m_2 \ddot{z}_{u2} - K_{t2}(z_{g2} - z_{u2}) + F_r = 0 \\ m \ddot{z}_s = F_f + F_r \end{cases}$$

$$I \ddot{\varphi} = b F_r - a F_f$$

$$F_f = K_{s1}(z_{u1} - z_{s1}) + C_{01}(\dot{z}_{u1} - \dot{z}_{s1}) + u_f$$

$$F_r = K_{s2}(z_{u2} - z_{s2}) + C_{02}(\dot{z}_{u2} - \dot{z}_{s2}) + u_r$$

$$(1)$$

式中 *M*——汽车簧载质量

I----转动惯量

 m_1, m_2 ——前、后轮的非簧载质量

 z_{g1} 、 z_{g2} —— 路面位移 z_{u1} 、 z_{u2} —— 非悬挂质量垂直位移 z_{s} —— 簧载质量质心处的垂直位移 z_{s1} 、 z_{s2} —— 悬挂质量在 4 个车轮处垂直位移 K_{s1} 、 K_{s2} —— 前、后悬架(弹簧)刚度 C_{01} 、 C_{02} —— 前、后减振器的阻尼力 u_r —— 后悬架控制力 u_r —— 前悬架控制力 K_{t1} 、 K_{t2} —— 前、后轮胎刚度 φ —— 汽车簧载质量的角位移 L —— 轴距

2.2 主动悬架控制过程

由于在实际工作中,主动悬架系统很多参数不可能直接测得,所以采用模糊控制器作为主动悬架的主要控制器,同时为了能够在线调整控制规则,采用遗传算法对模糊控制规则进行优化。

a、b——汽车簧载质量质心与前、后轴距离

2.2.1 模糊控制器的设计

车辆的垂直加速度、动挠度和俯仰角加速度等 是评价汽车行驶平顺性的重要指标,应尽可能减 个是以车身垂直加速度响应值 z与期望值的误差 e1 及其变化率 $e_1 = de_1/dt$ 作为模糊控制器的输入量, 悬架的控制力 u1 作为模糊控制器的输出量;另一 个以动挠度响应值 $z_{ii} - z_{ii}$ (i = 1, 2)与期望值的误 差 e_2 及其变化率 $e_2 = de_2/dt$ 作为模糊控制器的输 入量,悬架的控制力 u_2 作为模糊控制器的输出量, 整个前或后悬架控制力为 $u = u_1 + u_2$ 。模糊化时 输入和输出均选择三角形隶属函数,并把输入输出 变量的模糊语言划分为7个语言变量值,即:负大 (NL)、负中(NM)、负小(NS)、零(ZE)、正小(PS)、 正中(PM)、正大(PL),将误差、误差变化率及控制 量的模糊子集论域均取为: $\{e\} = \{e\} = \{u\} = \{-3,$ -2, -1, 0, 1, 2, 3

控制器输入量和输出量之间的关系决定了模糊控制的规则。文中两个输入量和输出量均有7个模糊子集,依照专家经验可得到49条模糊规则^[7]。

按模糊控制原理设计出用于修改参数的模糊调整规则,如表 2 所示。

模糊推理采用 Mandain 法,去模糊化采用重心法。

2.2.2 用遗传算法优化模糊规则

以模糊规则表构成设计变量,即设计变量为规则表中的49个模糊集。取汽车的车身垂直加速度

表 2 模糊控制规则

Tab. 2 Control rule of fuzzy model

ė	e_i						
e_i	NL	NM	NS	ZE	PS	PM	PL
NL	PL	PL	PM	PM	PM	PS	PS
NM	PL	PM	PM	PS	PS	PS	ZE
NS	PM	PM	PS	PS	ZE	NS	NM
ZE	PM	PS	PS	ZE	NS	NS	NM
PS	PM	PS	ZE	NS	NS	NM	NM
PM	ZE	NS	NS	NS	NM	NM	NL
PL	NS	NS	NM	NM	NM	NL	NL

和动挠度均方根值之和作为评价函数,表达式为

$$E_r = \left[\frac{1}{T} \int_0^T \left[w_1 \ddot{z}_{si}^2(t) + w_2 (z_{si} - z_{ui})^2 \right] dt \right]^{1/2}$$
 (2)

式中 T——采样时间 w_1, w_2 ——加权系数

同时为了提高车辆的平顺性能,一般要求车辆 在行驶过程中其振动输出值在给定的路面输入时不 超过一定的界限。因此有约束

$$a_{\min} \leqslant z_s \leqslant a_{\max} \quad b_{\min} \leqslant \ddot{\varphi} \leqslant b_{\max}$$

式中 a_{\min} 、 a_{\max} ——车身垂直加速度的最小值和最大值

b_{min}、b_{max}——车身俯仰角加速度的最小值和最大值,一般可以根据具体车辆的试验数据得出

遗传算法优化的目标是寻求使目标函数 E_r 达到最小,即适应度函数 $f=1/E_r$ 达到最大的待求参数,设计变量作为解的代码,随机产生 100 个个体作为初始种群而以约束条件作为检验函数,用以检验遗传操作过程中得到的每一个染色体是否在可行域内,以适应度值误差 $\Delta f = f_{\text{max}} - f_{\text{min}}$ 作为判断优化是否继续进行的准则,当 $\Delta f \leq 0.03$ 则停止优化。遗传算法初始种群取 100 个随机产生的可行染色体,交叉概率 $P_c = 0.25$,变异概率 $P_m = 0.01$,编码长度 20,具体计算流程图如图 4 所示。

2.3 联合仿真系统设计

在 ADAMS/Car 环境下定义状态变量,包括前、后悬架与簧上质量连接点的加速度 \ddot{z}_{s1} 、 \ddot{z}_{s2} ,车轮动 挠度 $z_{s1}-z_{u1}$ 、 $z_{s2}-z_{u2}$,将这 4 个信号作为车辆多体动力学模型的输出量。将车辆多体动力学模型的控制输入量规定为前、后主动作用力 u_f 、 u_r 。通过 ADAMS/Controls 模块将整车多体动力学模型以非线性被控对象形式输出至 Matlab/Simulink 环境中,以 ADAMS_ sub 子系统来表示,联合仿真结构图如图 5 所示。

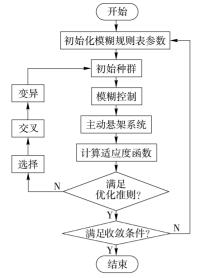


图 4 遗传算法流程图

Fig. 4 Genetic algorithm flow chart

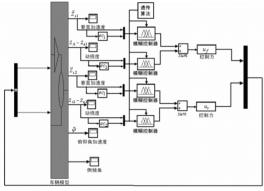


图 5 联合仿真系统结构图

Fig. 5 Model block diagram of co-simulation

3 联合仿真及结果分析

为验证建模、控制策略和联合仿真算法的合理 性和有效性,在随机路面和脉冲路面输入下,分别对 装有主、被动悬架的汽车进行平顺性性能仿真计算 和分析。

设车辆以 100 km/h 的速度在 C 级路面上直线行驶,仿真工作步长 0.005 s,仿真时间为 10 s,悬架动挠度和车身侧倾角的仿真结果分别如图 6、7 所示,不同控制方法下的主动悬架和被动悬架性能对比如表 3 所示。以三角形凸块来模拟脉冲输入,凸块高度 60 mm,仿真车速按 GB/T 5902—1986 要求确定为 60 km/h,仿真步长为 0.005 s,仿真时间为 10 s,仿真结果如图 8 所示。

由仿真结果对比分析表明,装有主动悬架的车辆行驶平顺性性能明显好于被动悬架的车辆,同时也验证了采用联合仿真方法的可行性和准确性。

4 试验

为了验证控制方法的有效性,将开发的主动悬

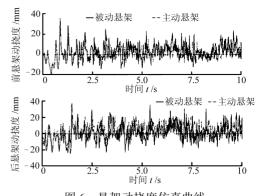


图 6 悬架动挠度仿真曲线 Fig. 6 Dynamic deflection

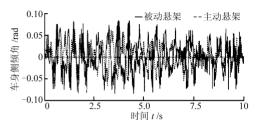


图 7 车身侧倾角仿真曲线

Fig. 7 Body roll angles

表 3 悬架性能对比表

Performance of suspension

) d = l=		
	参数	被动悬架	主动悬架		
参 奴	似切念朱	模糊控制	遗传模糊控制		
	垂直加速度均方根/m·s ⁻²	2.423	2.312	2.214	
	动挠度均方根/m	0.0341	0.0297	0.0264	
	动载荷均方根/N	2 035.4	1894.5	1 784.7	
	车身侧倾角/rad	0.0347	0.0301	0.0246	
	车身俯仰角/rad	0.0091	0.0081	0.0079	

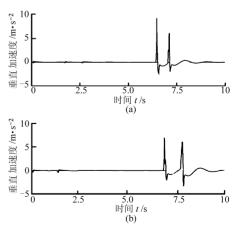


图 8 脉冲路面下车身加速度仿真曲线

Fig. 8 Vertical acceleration on pulse road
(a) 被动悬架 (b) 主动悬架

架进行实车试验。对试验数据的采集分析主要通过 动态信号实时分析系统 DSPS 完成,其余设备有电 荷放大器、电流传感器、加速度传感器和步进电动机 等。试验时基于 C 级随机路面和脉冲路面,车速为 60 km/h,试验结果对比如表 4 所示,随机路面试验结果如图 9 所示。

表 4 试验数据

Tab. 4	Experiment	data
--------	------------	------

	随机路面 垂直加速度 最大峰值		脉冲路面		
			垂直加速度	最大峰值	
	均方根/m·s ⁻²	$/\mathrm{m}^{\bullet}\mathrm{s}^{-2}$	均方根/m·s ⁻²	$/\mathrm{m}^{\bullet}\mathrm{s}^{-2}$	
被动悬架	2.406	10.966	1.753	15.593	
主动悬架	2.102	5.694	1.598	11.917	

由以上试验结果可知,在不同工况下,悬架控制后与控制前相比,汽车性能得到明显改善。随机路面试验中,车身垂直加速度由原来的 2.406 m/s² 减为 2.102 m/s²,表明了汽车平顺性的提高;在脉冲路面试验中,车身垂直加速度最大峰值由原来的 15.593 m/s² 减为 11.917 m/s²,进一步表明了汽车平顺性的提高。试验结果与仿真结果基本吻合,从而证明了所采用方法的正确性。

5 结束语

对具有主动悬架系统的车辆进行了基于 Matlab/Simulink 和 ADAMS/Car 的联合仿真。利 用两种软件分别在控制器设计和参数建模中的优

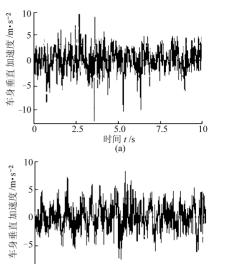


图 9 随机路面试验结果
Fig. 9 Random road experiment results
(a) 被动悬架 (b) 主动悬架

时间 t/s

(b)

7.5

10

2.5

-10

势,建立了车辆主动悬架控制策略研究的集成环境。 在此环境下,对所设计的模糊控制主动悬架控制器 进行了遗传算法的优化研究。通过仿真结果分析表 明联合仿真方法是可行的,同时通过试验对控制方 法可行性进行了验证。

参考文献

- 1 方敏,史明光,陈无畏. 汽车主动悬架多目标 H₂/H_∞混合控制[J]. 农业机械学报,2005,36(3):4~7. Fang Min,Shi Mingguang,Chen Wuwei. Research on multi-objective and mixed H₂/H_∞ control of vehicle active suspension [J]. Transactions of the Chinese Society for Agricultural Machinery,2005,36(3):4~7. (in Chinese)
- 2 陈无畏,王其东,王志君,等.汽车半主动悬架的非线性神经网络自适应控制研究[J]. 机械工程学报,2000,36(1): $75\sim78$.
 - Chen Wuwei, Wang Qidong, Wang Zhijun, et al. Research on adaptive control for automotive semi-active suspension based on nonlinear neural networks [J]. Chinese Journal of Mechanical Engineering, 2000, 36(1):75~78. (in Chinese)
- 3 Abdellahi E, Mehdi D, M 'saad M. On the design of active suspension system by H_{∞} and mixed H_2/H_{∞} ; an LMI approach [C]//Proceedings of the American Control Conference, Chicago, Illinois, 2000:4041~4045.
- 4 陈无畏,时培成,高立新,等. ADAMS 和 Matlab 的 EPS 和整车系统的联合仿真[J]. 农业机械学报,2007,38(2):22~25. Chen Wuwei, Shi Peicheng, Gao Lixin, et al. Co-simulation study system based on on EPS and full vehicle ADAMS and Matlab[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007,38(2):22~25. (in Chinese)
- 5 刘献栋,邓志党,高峰.公路路面不平度的数值模拟方法研究[J].北京航空航天大学学报,2003(9):843~846. Liu Xiandong, Deng Zhidang, Gao Feng. Research on the method of simulating road roughness numerically[J]. Journal of Beijing University of Aeronautics and Astronautics,2003(9):843~846. (in Chinese)
- 6 贝绍轶,陈龙.基于遗传算法的汽车半主动悬架模糊控制器设计[J]. 农业机械学报,2006,37(9):9~12. Bei Shaoyi, Chen Long. Design of semi-active automobile suspension fuzzy controller based on genetic algorithms [J]. Transactions of the Chinese Society for Agricultural Machinery, 2006,37(9):9~12. (in Chinese)
- 7 陈黎卿,郑泉,陈无畏,等.基于 ADAMS 和 Simulink 联合仿真的主动悬架控制[J]. 农业机械学报,2007,38(4):12~15. Chen Liqing, Zheng Quan, Chen Wuwei, et al. Study on active suspension system based on ADAMS and simulink[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007,38(4):12~15. (in Chinese)