¥3BvE FiH it B #l I # 2009 £ 2 A
Vol.35 No.4 Computer Engineering February 2009

- it . CEHS: 1000—3428(2000)04—0023—02 NERARIAE: A hESHS: TP31LI2

TPR*

1 1 1 2
1. 430033 2. 410073

TPR*
TPR* TPR*

TPR*

Method for Index-building and Dynamic Maintenance of TPR -tree

LIAO Wei', WU Xiao-ping®, YAN Cheng-hua®, ZHONG Zhi-nong?
(1. College of Electronic Engineering, Naval Engineering University, Wuhan 430033;
2. College of Electronic Science & Engineering, National University of Defense Technology, Changsha 410073)

Abstract A novel method for index-building of TPR*-tree is proposed, which splits the moving object set at root node level by using velocity
vector. According to the value of velocity vector, the moving objects are clustered into different sub-nodes, which then constructs the TPR*-tree. The
records of moving objects are stored by using overflow bucket at root node level, and the index of TPR*-tree is inserted and updated with a batch,
which decreases the cost of insertion maintenance. Experimental results show this method is feasible.

Key words TPR*-tree; construction algorithm; overflow bucket; insertion delay update

1 HBU TPR*-tree
GPS
f TPR*-tree M, = f! i
TPR*-tree
n TPR*-tree i+1
M; <n<M;,
[1]
<[4
TPR-treel? TPR*-treel’]
LUGrid 4 TPR*-tree R-tree
L
TPR*-tree
VX, Wy 2
MBR K
V= [//y} 2
Hx, Hy K DeterminePartition
TPR*-tree TPR*-tree
1(DeterminePartition)
TPR*-tree Hx, Hy, K
Lx, Ly
BEGIN
*
2 TPR*-tree For any integer combination (Vx, Vy) satisfyingVx=K/Wy
[5] TPR-tree do
HBU (bulk loading) HBU <8637 (2007AA127208)
*
TPR*-tree (1980)
TPR*-tree

2008-08-20 E-mail liaowei_2000@163.com

Lx = CalculateExtent(Vx, Hx)
Ly= CalculateExtent(\y, Hy)

vx . W .
cost < . [Lx[iJtdt + 3 [Ly[i]tdt
i=1 i=1

If cost is better valued,
return current Lx, Ly values
End If
End For
End
Num
H NumPerPartition
CalculateExtent

2(CalculateExtent)

Num, H

L
BEGIN
NumPerPartition « %um ,i<0;
For i from 0 to Num do
Starting from the jth bucket, count the H[j].num into the partition

until their sum = NumPerPartition;

L[i].extent «— sum of the H[j].extent
Adjust j to corresponding value for next
End For
return L
END

TPR*-tree

TPR*-tree
TPR*-tree

TPR*-tree

TPR*-tree

OID
TPR*-tree

Insert
3(Insert)
bucket
TPR*-tree
BEGIN
For all entries in bucket, search the TPR*-tree from root and
decide the child nodes that contain the moving objects in entries;
For entries that don’t lie in any child node, choose the nodes that
have the least expansion;
For each node do
Insert the entries into corresponding nodes until the leaf level;
End For
END

[6]

—24—

Oldenburg

100 KB
TPR*-tree TPR*-tree
1 KB 31
54 .
e (LRU)
100
P4 3.0 GHz 256 MB
7 200 RPM Windows
4.2
1@ 1(b)
%0 1000 TPR*-tree
1000
= 800 :
= 600
*? 400 ’
%i—: 200
4]
0 400 800 1200 1600
HEHEO
® 50
1000 . . _ ‘
xﬁ 800 »+?H:LI§%{£+ SRR
é 600 |
B 400
f
i 2009
4]
* 0 60 80 100
I EE 0
®) 1000
1
TPR*-tree
MBR
2 TPR*-tree
(
)

. HAEEE = REE

25
S
X 20
b
518
i
@ 10
5
O i i i i
5 10 15 20 25
BRRB(<107)
(a)
1500
& 1200
=
= 900
%600
= 300
0 ; ; ; ;
5 10 15 20 25
1(x10%)
(b)
2 (27

