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Abstract Because the nucleon may be excited and transformed into a virtual ∆ resonance easily, we consider

the decuplet contribution to the parity-violating (PV) nucleon-nucleon interaction in the chiral effective field

theory. The effective PV nucleon-nucleon potential is derived without introducing any unknown coupling

constants.
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1 Introduction

The strangeness-changing weak processes (∆S =

1) can be studied both in the semi-leptonic decays and

strangeness-changing hadronic weak interactions. In

contrast, the nuclear parity violation is almost the

unique way to study the ∆S = 0 hadronic weak inter-

action experimentally. Up to now, our knowledge on

such processes is still relatively poor.

The search for nuclear parity violation[1] started

shortly after the observation of the parity violation

in nuclear beta decay[2]. Thereafter, there had been

many experimental investigations of nuclear parity-

violation such as the polarized proton-nucleus scat-

tering, radiative np capture, γ decay of nuclei, neu-

tron spin rotation, and atomic parity-violation[3—6].

The parity-violating (PV) effect is very small in

nuclear processes. Such an effect can be measured

through the asymmetry of the cross-sections in the

polarized experiments. In some heavy nuclei, there

exist two energy levels with different parity which are

very close to each other. The PV weak interaction

mixes these two levels. Then the asymmetry may be

amplified.

However, the few-body nuclear system provides a

much cleaner place to study nuclear parity-violation

though the asymmetry is only ∼ 10−7. Experimen-

tal progress in this field is very encouraging. Sev-

eral years ago, the longitudinal analyzing power of

~pp scattering was measured at TRIUMF[7, 8]. There

are also on-going experiments to measure the photon

asymmetry in radiative ~np capture at LANSCE[9], the

helicity asymmetry in the photodisintegration of deu-

terium at IASA[10], and the spin rotation of polarized

neutrons in 4He at NIST[11, 12].

Strong interaction dominates the nucleon-nucleon

interaction, which is repulsive at the short range.

Therefore the weak interactions between nucleons me-

diated directly by W and Z bosons are strongly sup-

pressed since the interaction range is around 0.002 fm.

On the other hand, the meson nucleon interaction ver-

tex can be parity-violating. Thus one can study nu-

clear parity violation after replacing one strong vertex

by the weak one in the meson exchange model.

Historically, the study of nuclear parity-violation

with the meson-exchange model started in 1964[13].

Later, nuclear parity-violation was extensively stud-

ied in this framework[14—16]. In 1980, Desplanques,

Donoghue, and Holstein (DDH) investigated the PV

nuclear force in a general way and considered the ex-

changed mesons up to ρ and ω[17]. The DDH method

has become a standard way in analyzing experiments

since then. In that paper, the PV vertices were pa-

rameterized with seven coupling constants: h1
π, h0,1,2

ρ ,
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h0,1
ω and h1′

ρ . h1′
ρ was found to be small and usu-

ally neglected[18]. DDH estimated these coupling con-

stants using the quark model and SU(6)w symmetry.

They gave reasonable ranges for the couplings and

presented their best guesses. Surprisingly, various

experimental constraints are more or less consistent

with these DDH estimates, except that the bound on

h1
π from nuclear anapole moment in Cesium[19] does

not agree well with those from other experiments[20].

In the past decades, there has been important

progress in the study of parity violation both in

the single-nucleon case[21—25] and NN system [26—30].

In order to investigate nuclear parity violation in

a model-independent way, Zhu, Maekawa, Holstein,

Ramsey-Musolf and van Kolck reformulated the PV

nucleon-nucleon interaction in the framework of effec-

tive field theory (EFT)[31]. At very low energy, the

momenta of external fields are very small and the pion

can be integrated out. EFT without explicit pions is

appropriate. When the external momenta are com-

parable with the pion mass, EFT with explicit pions

is necessary.

For the description of PV NN forces in EFT with

explicit pions, the treatment is similar to the study of

parity-conserving (PC) NN force in EFT[32, 33]. One

simply replaces one PC vertex with one PV vertex

and imposes chiral symmetry on the PV vertex. In

Ref. [31], the PV potential was calculated to O(Q)

in Weinberg’s power counting where Q is the typical

scale of the processes. The leading order (O(Q−1))

result reproduced the pion exchange part of DDH for-

malism. At the next leading order (O(Q0)), explicit

computation shows there is in fact no contribution.

At the third order, the short range potential was de-

scribed with contact interactions. The medium range

potential was deduced from two-pion exchange inter-

actions while the long range potential was obtained

by considering corrections to the one-pion exchange

interaction. In this framework, Ref. [34] studied a

minimal set of parameters to describe low-energy PV

observables. In Ref. [35], the authors studied PV

asymmetry in np→ dγ within EFT.

The decuplet baryon ∆ couples to Nπ strongly.

The virtual ∆ may aslo contribute to the PV nucleon-

nucleon interactions, which was noted long time ago

in Refs. [36—38]. The DDH formalism was extended

to investigate the effects due to ∆[39]. With devel-

opment of the modern EFT language, we will extend

the former work[31] and calculate the PV potential by

considering ∆ as an explicit degree of freedom in EFT

in the present work. The present work was part of Y.

R. Liu’s thesis submitted in April, 2007. It is inter-

esting to note that an independent work dealing with

similar topics appeared recently[40]. However the way

to derive the potential in this work is different from

that in Ref. [40]. In a recent work[41], the calculation

of the longitudinal asymmetry in pp→ pp by includ-

ing 2π exchange effects which include NN and N∆

intermediate states is presented.

In order to include the ∆ degree of freedom sys-

tematically, we employ the heavy baryon chiral per-

turbation theory with ∆. The expansion scheme was

called the small scale expansion (SSE)[42], which was

widely used to study the processes involving ∆[43—51].

Both the pion mass and the mass difference between

nucleon and ∆ isobar are counted as the order O(Q).

We use this formalism to calculate the ∆ contribution

to the PV NN potential. In the following section, we

present the relevant Lagrangian. In Section 3, we

calculate PV potentials due to the virtual ∆ baryon.

The final section is a short summary.

2 Lagrangians

In the EFT study of the nucleon-nucleon po-

tential, one performs a systematic expansion of La-

grangians and amplitudes[32, 33]. We present relevant

Lagrangians L(ν) in this section. They are grouped

with chiral index ν = d+f/2−2 where d is the num-

ber of derivatives and powers of the pion mass and f

the number of fermion fields. When we consider the

∆ contribution to the parity-violating potential up to

the third order O(Q), we need only the lowest order

chiral Lagrangians.

For the πNN interaction, the PC part is

L(0)
πN,PC = N [iv •D+2g0

AS •A]N, (1)

where

Dµ = Dµ +Vµ, Vµ =
1

2
(ξDµξ† +ξ†Dµξ),

Aµ = − i

2
(ξDµξ†−ξ†Dµξ) =−Dµπ

Fπ

+O(π3),

ξ = exp

(

iπaτ a

2Fπ

)

= exp

(

iπ

Fπ

)

. (2)

Here Vµ and Aµ are the chiral connection and the

axial field respectively. vµ is the velocity and Sµ is

the Pauli-Lubanski spin vector. Fπ = 92.4 MeV is

the pion decay constant and τ a is the Pauli matrix.

Here gA ≈ 1.27 is the nucleon axial vector coupling

constant.

The PV part is

L(−1)
πN,PV = −h1

πFπ

2
√

2
NX3

−N =

−ih1
π(pnπ+−npπ−)+ · · · , (3)

where

X3
− = ξ+τ 3ξ−ξτ 3ξ+ ,

and h1
π ∼ 10−7 is the weak coupling constant. The
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ellipsis denotes terms involving more pions.

For the part containing ∆, the leading Lagrangian

reads[42]

L(0)
πN∆,PC = −iT

µa
v •DabT b

µ +δT
µa

T a
µ +

2gπN∆(T
µa

Aa
µN +NAa

µT µa), (4)

where δ = m∆−mN, Aa
µ =

1

2
Tr(Aµτ a) and T µ repre-

sents ∆ fields with

T 1
µ =

1√
2

(

∆++−∆0/
√

3

∆+/
√

3−∆−

)

µ

,

T 2
µ =

i√
2

(

∆++ +∆0/
√

3

∆+/
√

3+∆−

)

µ

, (5)

T 3
µ = −

√

2

3

(

∆+

∆0

)

µ

.

In this Lagrangian, we have used C =
√

2gπN∆ with

the language in Ref. [52, 53]. The quark model gives

the relation gπN∆ =
3
√

2

5
gA. Since the PV πN∆ part

contributes to the PV potential beyond the order of

O(Q)[22], we do not consider it here.

3 ∆ contribution to PV NN potential

Because the PV contribution is tiny, one PV ver-

tex is enough for the present study. The interme-

diate ∆ contribution to parity-violating potential is

presented in Fig. 1. We employ the counting scheme

Fig. 1. Diagrams for intermediate ∆ contribu-
tion to PV NN potential. The dotted lines are
pions. The full lines represent nucleon while
the double lines represent ∆ states. Vertices
with black dot mean the parity-violating πN
interaction.

of SSE and truncate the expansion at the order O(Q).

To this order, the triangle diagrams do not con-

tribute. In the case without the ∆ contribution, the

box diagrams are two-particle reducible. Now the di-

agrams are all two-particle irreducible (2PI). That is,

the diagrams in Fig. 1 will not induce double counting

problem. In the following, we calculate the effective

potentials in detail.

First, we consider the cross diagrams (a)—(d) in

Fig. 1. From the vertices, one can construct four cases

of transitions which include charge-conserving cases

pp → pp, nn → nn and pn → pn (np → np) and

charge-changing case pn→ np (np→ pn).

For pp→ pp, the sum of (a) and (b) gives

iT =−i
4
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

Z(Q)p̄[S1
•q,S1 µ]pp̄S

µ
2 p . (6)

where q = p1−p′
1 = p′

2−p2, Q2 =−q2 ≈ q2, Λχ = 4πFπ

and

Z(Q) = 2L(Q)+
π

2δ
(4m2

π +Q2)A(Q)− 2

δ
B(Q) , (7)

with

L(Q) =

√

4m2
π +Q2

Q
ln

Q+
√

4m2
π +Q2

2mπ

A(Q) =
1

2Q
arctan

Q

2mπ

B(Q) =

∫1

0

dy

∫∞

δ

dλ
m2

π−δ2 +y(1−y)Q2

λ2 +m2
π−δ2 +y(1−y)Q2

. (8)

In calculating the loop integrals, we have used the

dimensional regularization. The divergent part could

be absorbed by the renormalization of the counter-

terms at the same chiral order. Here we only retain

the non-analytic terms.

For nn→ nn channel, the sum of (a) and (b) is

iT = i
4
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

Z(Q)n̄[S1
•q,S1 µ]nn̄S

µ
2 n . (9)

This result is similar to the pp → pp channel. Simi-

larly, one gets contributions from the mirror diagrams

(c) and (d). Since the initial particles are identical,

the operator form for these two channels will generate

(a), (b) and the mirror diagrams (c), (d) simultane-

ously.

Compared with the case without the ∆

contribution[31], there is an additional channel pn →
pn. The sum of (a)—(d) in the operator form reads

iT = i
2
√

2

3

g2
πN∆gAh1

π

Λ2
χFπ

Z(Q)
{

N̄ [S •k,Sµ]τ3NN̄SµN −

N̄ [S •k,Sµ]NN̄Sµτ3N
}

. (10)

Here k is the initial momentum minus the final mo-

mentum for a nucleon line.
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After combining the above three channels, we get

i
4
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

Z(Q)N̄ [S •k,Sµ]τ3NN̄SµN −

i
8
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

Z(Q)N̄ [S •k,Sµ]NN̄Sµτ3N . (11)

For the charge-changing case pn→ np, the sum of

diagrams (a)—(d) gives

−
√

2

6

g2
πN∆gAh1

π

Λ2
χFπ

Y (Q)εij3N̄τ iNN̄τ jσ •kN , (12)

where

Y (Q) = 2L(Q)+
2π

3δ
(2m2

π +Q2)A(Q)− 2

δ
C(Q) , (13)

with

C(Q) =

∫1

0

dy

∫∞
δ

dλ
m2

π−δ2 +
4

3
y(1−y)Q2

λ2 +m2
π−δ2 +y(1−y)Q2

, (14)

Next, we consider the box diagrams (e)—(h) in

Fig. 1. There are also four cases: charge-conserving

processes np → np (pn → pn), pp→ pp and nn → nn

and charge-changing process np→ pn (pn→ np).

For the channel np→ np, the sum of the diagrams

(e)—(h) gives

iT = i
2
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

W (Q)
{

N̄ [S •k,Sµ]τ3NN̄SµN −

N̄ [S •k,Sµ]NN̄Sµτ3N
}

, (15)

where

W (Q) = 2L(Q)− π

2δ
(4m2

π +Q2)A(Q)− 2

δ
B(Q) . (16)

In calculating the amplitudes, we use the following

formula

1

v •k+iε
=− 1

−v •k+iε
−2πiδ(v •k) . (17)

In the case without the ∆ contribution, the part from

the δ function was subtracted to separate the con-

tributions from the iterated one-pion exchange and

those from the irreducible two-pion exchange. Now

this part is included because the diagram is 2PI.

The diagrams (e) and (f) result in

iT =−i
4
√

2

3

g2
πN∆gAh1

π

Λ2
χFπ

W (Q)p̄[S1
•q,S1 µ]pp̄S

µ
2 p ,

(18)

for the channel pp→ pp and

iT = i
4
√

2

3

g2
πN∆gAh1

π

Λ2
χFπ

W (Q)n̄[S1
•q,S1 µ]nn̄S

µ
2 n ,

(19)

for nn→ nn.

After combining these results, we get the charge-

conserving amplitude from box diagrams

−i
4
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

W (Q)N̄ [S •k,Sµ]τ3NN̄SµN −

i
8
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

W (Q)N̄ [S •k,Sµ]NN̄Sµτ3N . (20)

For the charge-changing case np → pn, one sums

the amplitudes from (e)—(h) and gets

−
√

2

6

g2
πN∆gAh1

π

Λ2
χFπ

X(Q)εij3N̄τ iNN̄τ jσ •kN , (21)

where

X(Q) = 2L(Q)− 2π

3δ
(2m2

π +Q2)A(Q)− 2

δ
C(Q) . (22)

After combing Eqs. (11), (12), (20) and (21), we

finally get the ∆ contribution to nuclear parity viola-

tion

−
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

[

W (Q)−Z(Q)
]

εijkN †kiσjτ3NN †σkN

−2
√

2

9

g2
πN∆gAh1

π

Λ2
χFπ

[

W (Q)+Z(Q)
]

εijkN †kiσjNN †σkτ3N

−
√

2

6

g2
πN∆gAh1

π

Λ2
χFπ

[

X(Q)+Y (Q)
]

εij3N †τ iNN †τ jσ •kN .

(23)

Acordingly, one gets the PV potential

V = − i

Λ3
χ

{

C̃∆
2 (Q)

τ z
1 +τ z

2

2
(σ1×σ2) •q+

C∆
6 (Q)(τ1×τ2)

z(σ1 +σ2) • q
}

, (24)

where

C̃∆
2 (Q) =

8
√

2

9
πg2

πN∆gAh1
π

[

4L(Q)− 4

δ
C(Q)

]

,

C∆
6 (Q) = −2

√
2

3
πg2

πN∆gAh1
π

[

8L(Q)−

π

δ
(4m2

π +Q2)A(Q)− 8

δ
B(Q)

]

. (25)

4 Discussions

In short summary, we have calculated the ∆ con-

tribution to the parity-violating nucleon-nucleon po-

tential. The ∆ resonance couples to the nucleon and

pion strongly. A nucleon may be excited and trans-

formed into a virtual ∆ quite easily. The ∆ will cer-

tainly contribute to the hadronic parity violation in

nuclear processes. In this work, we employ the small

scale expansion formalism and extend the former in-

vestigation of PV NN interaction in EFT in Ref. [31]

through the inclusion of the ∆ contribution. To the

next-next-leading order, the new potential contains
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no more unknown PV coupling constants. The only

new parameter is the strong coupling constant gπN∆,

which is known from the decay width of the ∆ baryon.

Fig. 2. The momentum dependence of coeffi-
cients in the PV two-pion exchange potentials:
C̃2π

2 (Q) (thick solid line), C2π
6 (Q) (thin solid

line), C̃∆
2 (Q) (dash line) and C∆

6 (Q) (dotted
line).

The structure of the obtained potential is similar

to the medium-range potential derived in Refs. [6, 31].

For comparison, we plot the momentum depen-

dence of coefficients C̃∆
2 (Q), C∆

6 (Q), C̃2π
2 (Q) =

−8
√

2πg3
Ah1

πL(Q) and C2π
6 (Q) = −

√
2πgAh1

πL(Q) +
√

2π[3L(Q)−H(Q)]g3
Ah1

π with H(Q) =
4m2

π

4m2
π +Q2

L(Q)

in Fig. 2. We take mπ = 135 MeV, δ = 294 MeV,

gA = 1.27, gπN∆ =
3
√

2

5
gA. From the figure, one notes

C∆
6 (Q) is bigger than C2π

6 (Q) at small momentum.

It is also important to note that C̃∆
2 (Q) and C̃2π

2 (Q)

are comparable in magnitude but they have opposite

signs! Therefore it is highly desirable to include the

new parity violating nucleon-nucleon arising from the

∆ correction in the future theoretical calculation of

PV observables in the hadronic weak interaction pro-

cesses.

We thank Prof. B. Desplanques for helpful dis-

cussions.
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