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Abstract

We present a variant of Regev’s system first presented in [Reg05],
but with a new choice of parameters. By a recent classical reduction by
Peikert we prove the scheme semantically secure based on the worst-case
lattice problem GAPSVP. From this we construct a threshold cryptosys-
tem which has a very efficient and non-interactive decryption protocol.
We prove the threshold cryptosystem secure against passive adversaries
corrupting all but one of the players, and againts active adversaries cor-
rupting less than one third of the players. Finally we sketch how one can
build a distributed key generation protocol.

1 Introduction

Cryptography based on lattice problems is one of the most important examples
of techniques holding promise for public-key cryptography that is secure even
under quantum attacks. Recently, these techniques have become much more
efficient after it has been realized that one can base the actual cryptosystem
on the learning with error problem (LWE), and then argue that the (variant of
the) LWE problem used is as hard as some lattice related problem, typically
computing the shortest vector in a lattice. In the LWE problem, the adversary
must compute a secret vector s with entries in some field or ring, given only
the inner product of s with some public vectors where, however, some noise has
been added to the products. As mentioned, basing a cryptosystem on LWE can
lead to quite efficent cryptosystems, see, e.g., [Reg05],[PVWO08],[MRO0S8],[Pei09].

As lattice-based cryptography moves close to practice, it becomes an impor-
tant research question to investigate whether these cryptosystems can provide
the same “extra” functionality we have come to expect from well-known public-
key cryptosystems based on factoring or discrete logarithms. For instance, can
we have threshold versions of these systems? In other words, we want to share
the private key among a set of servers and efficently decrypt a ciphertext while
revealing nothing but the plaintext to the adversary.

In this paper we construct such a threshold cryptosystem, based on a variant
of Regev’s system [Reg05]. We show our scheme is semantically secure based



on a worst-case lattice problem using a recent reduction of Peikert[PVWO08]. To
the best of our knowledge, it is the first lattice-based threshold cryptosystem.
We need to use a larger modulus than Regev, thus making ciphertexts larger, on
the other hand we get a very efficient and non-interactive decryption protocol:
each player needs only to do local computation and announce a single element
from the underlying ring. The basic version of the protocol is secure against a
passive adversary corrupting all but one of the players. For a small number of
players, we show an equally efficent version secure against a malicious adversary
corrupting less than a third of the players. Towards the end of the paper, we
sketch a distributed protocol for generating keys.

Various improvements of Regev’s original cryptosystem have been made
since its first appearence, e.g. in [PVWO08] and [MRO8]. Our threshold cryp-
tosystem can be generalized in the same way, but we stick to Regev’s original
approach here for simplicity.

2 Preliminaries

When writing  €r S we mean that z is chosen uniformly at random from the
set S. Equivalently x €, S means choosing = from the set S according to the
distribution .

Given a probability distribution x on Zg, let n be some integer and s € Zj.
We define As , as the distribution on Zj x Z, obtained by choosing a €r Zy,
e €y Zq and outputting (a, (a,s) + e). We define the decisional Learning With
Errors (LWE) problem as being able to distinguish between a sample from A,
and the uniform distribution on Zj x Z, with non-negligible probability. We
define the search LWE problem as given a sample from A, , finding s with
non-negligible probability.

By U, we denote a discrete Gaussian distribution on Z, with mean 0 and
standard deviation %. Likewise ¥, is a continuous Gaussian distribution
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distribution given by summing £ independent samples from x. Note in particular
that when y = ¥, we have that y** = ¥ Vi-o- This follows immediately from

on T = R/Z with mean 0 and standard deviation By x*¥ we denote the

U, behaving as an ordinary normal distribution.

3 Cryptosystem

We first present the underlying cryptosystem which was proposed first in [Reg05],
but with a new choice of parameters better suited for the distributed decryption
protocol given later.

3.1 Description

Let n be the security parameter of the cryptosystem. Then the main parameter
is an integer ¢ which is chosen as ¢ = 2°("). More specifically ¢ will not be a



prime but a B-smooth number where B is of polynomial size. That is ¢ = [ p;
is a product of prime numbers pq,...,pg, where p; < B and also p; > u, the
number of players in the distributed decryption protocol. The latter requirement
on the primes is necessary in order to do secret sharing over the the ring Zg,
more on this later. We also need an integer m which will be chosen to be O(n?).
Finally, we need a distribution x on Z, which will be taken to be the discrete
Gaussian distribution ¥,,, where a = ¢” for some 3 < 1/4.

The cryptosystem is now defined as follows:

e Secret key: Choose s €r Z;. The secret key is then s.

e Public key: Choose m vectors ay, ..., a,, €r Zy, melements ey, ..., en €y
Z4. The public key is then given by (a;,b; = (a;,s) + ;).

e Encryption: Choose a random set S among all the subsets of [m]. Given
a bit ~, the encryption of 7 is given by (3, cgai, v [£] + > ,cqbi)-

e Decryption: Given a ciphertext (a,b), calculate b — (a,s) and determine
whether it is closer to 0, the encrypted bit being 0, or closer to %, the
encrypted bit being 1.

3.2 Correctness
The correctness of the decryption protocol is given in the following theorem.

Theorem 3.1 (Correctness). If for any k € {0,1,...,m} it holds that

—0(n)
Pr (el > ¥a) <2

then the decryption protocol will give correct output except with negligible prob-
ability.

A similar theorem is proved in [Reg05] for Regev’s original choice of param-
eters. The intuition is clear, if the noise added is not too big, we will be able to
decrypt to the right bit. The correctness with the new parameters follows from
the following claim.

Claim 3.2 (Correctness). For the choice of parameters made, for any k €
{0,1,...,m} and e ~ x** it holds that

—0(n)
Pr (el = ¥a) <2

Proof. We will prove this using the Chebyshev inequality, but first we will reduce
the problem from ¥, to ¥,. Given e ~ @;k we have that e = Zle lgz;] (mod ¢q),
where z; ~ W,. The value of e is at most & < m < \3/6/2 away from
Zle qz; (mod q), so it is sufficient to prove that |Zf:1 qz; (mod q)| < &q/2
unless with negligible probability. Since Zle gz; (mod q) comes from a distri-
bution with standard deviation approximately vk - ¢° and mean 0 we get the



following result from Chebyshev’s inequality, with m = n3 and t = Va >

3 2\/%%
iy = Vi
P > 3/q/2) <P >t VR < —
(el > /2 < Pr(el > 1 VEYD) <
We see that 1/t < 1/ /g is in fact negligibly small. O

Note that the inequalities used above are not very tight, especially the
Chebyshev inequality. Therefore in practice one would expect to be able to
choose much better parameters, for instance a bigger standard deviation on the
distribution used. This would in turn give us security reductions to the hardness
of somewhat bigger lattice problem instances. Furthermore the claim is actually
stronger than what is needed for the original decryption protocol to be correct,
but we will need this stronger result in the proofs of the distributed decryption
protocols described below.

3.3 Security
The security of the cryptosystem is given by the following theorem.

Theorem 3.3 (Security). The cryptosystem is semantically secure under the
assumption that GAPSVP is hard in the worst case.

Below we will sketch the ideas of the proof. It boils down to showing how
the proofs given in [Reg05] can be adjusted to the new choice of parameters.

Proof. The proof of security given in [Reg05] is based on the property that
distinguishing between encryptions of 0 and 1 is at least as hard as distinguishing
public keys from randomly chosen elements in Zy x Z,. The latter problem being
the decision LWE problem. The proof of the reduction does not depend heavily
on the values of the parameters, and is therefore still valid with the new choice
of parameters.

The decision LWE is then further reduced to search LWE. This reduction
in [Reg05] heavily relies on the fact that ¢ is chosen to be polynomial in that it
does exhaustive search over all elements in Z,. But in fact the same idea can be
used when ¢ is exponential in size, but B-smooth with B polynomial. The idea
being to do the reduction modulo each of the primes p; in ¢, and recombine the
solutions to a full solution modulo g using the Chinese Remainder Theorem.

The last step is to reduce search LWE to standard lattice problems. Since ¢
is chosen to be exponentially large we can use the reduction to GAPSVP made
in [PVWO08]. O

This is another advantage of choosing an exponentially large ¢q: With the
original choice of a polynomial g the reductions to lattice problems are either a
quantum reduction as in [Reg05] or a reduction to a special variant of GAPSVP,
the hardness of which is not completely understood.



4 Distributed Decryption (Passive Adversaries)

In this section we present a distributed decryption protocol for the above cryp-
tosystem involving u players which is secure against a static, passive adversary
corrupting up to t = u — 1 players. That is, we assume the adversary is able
to see all messages and internal data of a corrupted player, but the player still
follows the protocol. The adversary must choose which players to corrupt at
the start of the protocol.

We assume that communication is synchronous and that the client has access
to a broadcast channel to all players. Private channels between players are
not necessary since there is no interaction between players in the protocol. We
assume the adversary sees all communication between the client and the players.

We use Shamir secret sharing over Z, as described in [Sha79] to make secret
sharings of various values in the protocol. Normally Shamir secret sharing is
done over a field, but since ¢ is not a prime Z, is only a ring. This turns out
not to be a problem with the choice made of the prime factors in q. The only
thing that is needed is that one can do Lagrange interpolation over the points
1,...,u which in turn boils down to being able to invert elements in this range.
We chose ¢ = [] ps, where p; > u, so obviously invertion of the points needed is
possible.

We furthermore make use of the concept of pseudorandom secret sharing
(PRSS) described in [CDI05]. PRSS will enable the players to non-interactively
share a common random value from some interval. The idea is as follows. For
each subset A of size t of the players we associate a key K4 €r Z4. Such a
key is given to player i exactly if i ¢ A. Assume we are given a pseudorandom
function ¢ that given a key and a ciphertext as input, will output values in the
interval [—,/q,/q]. A player can now compute ¢, (c) for all K4 he has been
given, and afterwards take an appropriate linear combination of the results.
This will result in all players having a Shamir share of the common random
value © = Y , ¢, (c). Since |A| = ¢ there are () possibilities for A, so = will

be in the interval [— (1;) Va (1;) \/(j] We note that (1;) = u for our choice of ¢
(but we will consider other choices later).
The protocol and proofs will be given in the setting of the Universal Com-

posability (UC) framework proposed by Canetti. For details of this see [Can01].

4.1 Key Generation and Distribution

We assume for now that generation and distribution of keys and key-shares to
players are handled by some trusted party. This is described by the functional-
ity FKeyGen'

Functionality Ficygen

1. When receiving “start” from all honest players, choose the secret key s and
construct the public key (a;, ;)™ as described in section 3. Furthermore
for each subset A of size t of the players, choose key K4 €r Z,.



2. For each entry j in the secret key make a share s; ; for each player ¢. We
write [s] as short for the set of shares in s. To each player 4 privately send
to him his shares from [s] and all keys K 4 where i ¢ A.

3. Finally send the public key to all players and the adversary.

4.2 Decryption Protocol

We now describe the decryption protocol. To make things more easily describ-
able we introduce a client, who is the party receiving the ciphertext in the first
place, and who wants to decrypt with help from the players.

Protocol Decrypt

1. Each player sends “start” to Fieygen and stores the public key, the share
of the secret key and the keys K 4 received.

2. When receiving a ciphertext ¢ = (a, b), the client broadcasts ¢ to all play-
ers.

3. The players compute [¢'] = [b— (a,s)] = [e+ [2] -7]. Since (a,b) is public
this is a linear operation on s and only requires the players to locally do
the same linear operation on their shares. Then ¢k ,(c) is computed for
all the keys K 4 the player received and the player takes an appropriate
linear combination of the result to obtain a sharing [z] = [}~ 4 ¢x,(¢)]-
Finally the players compute [x+¢'], and send all these shares to the client.

4. Having received all the shares of [z + €'] the client reconstructs z + ¢/,

checks whether it is closer to 0 or to ¢/2, and outputs 0 or 1 accordingly.

4.3 Security

To prove security we wish to be able to implement the following functionality.

Functionality FK&yGen—and—Decrypt

1. Upon receiving “start” from all honest players, choose the secret key and
construct the public key to be used. Send the public key to all players,
the client and the adversary.

2. Hereafter on receiving “decrypt (a,b)” from the client, send “decrypt
(a,b)” to all players and the adversary.

3. In the next round, send “result 4” to the client and the adversary, where
~ is the bit corresponding to the given ciphertext.

The security is now given by the following theorem.



Theorem 4.1 (Security). When given access to the functionality Fxeygen and
assuming that ¢ is a pseudo-random function, the protocol Decrypt securely
implements FieyGen—and—Decrypt- 1he adversary is assumed to be passive and
static, corrupting up tot =u — 1 of the players.

Proof. We abbreviate FgcyGen—and—Decrypt DY Frg—p in the following. To
prove security we must construct a simulator to work on top of the ideal func-
tionality Fxg_p, such that an adversary playing with either the simulator and
ideal functionality or the real world decryption protocol cannot tell in which
case he is. We denote by Adv the adversary communicating with the real de-
cryption protocol and must show that we can simulate everything Adv sees.
The simulation proceeds as follows.

1. Let B denote the set of players corrupted by Adv. When receiving “start”
t0 Freygen send “start” to Fgg—p. Upon receiving the public key, com-
pute a sharing of 0, the zero-vector in Zg, to simulate sharing the secret
key. Also choose the necessary keys K 4. Then send to the adversary the
public key, the shares of the secret key corresponding to B, and the keys
K 4 that should be send to players in B.

2. When receiving “decrypt (a,b)” from Fig_p, the ciphertext is sent to
Adv for each player in B. When “result 4” is received in the next round,
we have to simulate the shares of x + ¢’ that honest players would send.
To play the role of 2, we form a value y as the sum of those ¢x , (c) where
the adversary knows K 4, and one uniformly random value from [—,/q, \/q]
for each K4 that adversary does not know. The idea is to let y 4+ [2] -
play the role of the value z + e+ [ 4] -~ that would be revealed in the real
protocol. Note that from the shares and keys given to the adversary, we
can compute the shares corrupted players would send to the client. Using
Lagrange interpolation, we can compute a polynomial f of degree at most
t that is consistent with these shares and has f(0) =y + [2] - 7. We use
this polynomial to compute shares for the honest players and give these
to the adversary.

The final thing is to prove that no environment is able to distinguish between
the real decryption protocol and the simulation presented above. This basically
comes down to proving that the decryption protocol is able to recover the bit
encrypted and that the distributions of the shares sent to the adversary in both
cases are computationally indistinguishable.

The shares of the secret key in step 1 are distributed the same in both cases
beacuse of the security of the underlying secret sharing scheme used. The keys
K 4 are also obviously distributed identically in the two cases.

Next, note that in both simulation and real protocol, the shares revealed in
the decryption step follow deterministically from the information sent in step 1
and the values y + [2] -, z + e+ [ 2] - v used in simulation, respectively real
protocol. It is therefore enough to show that these values are computationally
indistinguishable in the view of the adversary. For this, note that in the real



protocol the adversary is not given all keys K4, and so, by pseudorandomness
of ¢ and construction of y, y 4+ e + [ 4] - 7 is computationally indistinguishable
from the x 4+ e+ 2] - v in the view of the adversary. Second since y is a sum
including at least one value that is uniform in an interval of size 2,/q, which is
exponentially larger than the interval [— /g, ¢/q] in which e is distributed, we
find that y 4 | 2] - v is statistically indistinguishable from y +e+ [2] - v.
Finally in both the simulated and the real run the client will output the
correctly decrypted value. This is obvious in the simulated case and in the real
world it follows from Lemma 1 below. U

Lemma 4.2 (Correctness). Let (¥) < /g — 1. Assume that for any k €
{0,1,...m}, x** satisfies that

Then the error probability when decrypting is negligible.

Proof. Given an encryption of 0 the result which is reconstructed is given by
b—(a,s) =e+x =) ge + 2z The distribution of e is exactly given by
x*151, therefore according to our assumption |e| < | ¢/q] with probability at
least 1 — 279 Since (;‘) < % q — 1 according to our assumption, we have
that |z| < § — ¢/g. Combined we get that |e + x| < § with probability at least
1 —2790) In this case the result is closer to 0 than 4 and the decryption is
correct. A similar proof can be done for an ecryption of 1. O

The assumptions in the lemma are fulfilled according to the claim in section
3. We note that the correctness puts an upper bound on the possible number of
players, which is also to be expected, since there is a limit to how much random
noise can be added before an encryption of 0 turns into an encryption of 1. Note
though that when ¢t = u — 1, as is the case in the passive case, we have (’t‘) = u.
So here the number of players is bounded by approximately /g which is still
quite a big number.

5 Distributed Decryption for Stronger Adver-
saries

The protocol for doing distributed decryption against a passive adversary cor-
rupting less than t = u — 1 players, can easily be turned into a protocol secure
against a stronger adversary. First, if the adversary is semi-honest, i.e. cor-
rupted players follow the protocol but may stop at any point, exactly the same
protocol will be secure, if ¢ < u/2. The proof is the same, one just notes that
at least t 4+ 1 players will always complete the protocol.

If the adversary is active, again almost the same protocol and proof applies,
if we assume ¢ < u/3. The only significant difference to the protocol is that the
client must use standard methods for error correction to reconstruct x + e’ at



the end of the decryption since some players may lie about their shares. This
is possible exactly when ¢ < u/3.

It should be noted that both variants of the protocol are only feasible to
execute for a small number of players, since the number of keys K4 we must
give to each player increases exponentially with u whenever ¢ is a constant
fraction of u. However, in most realistic applications of threshold cryptography,
one indeed expects the number of players to be small.

6 Distributed Key Generation

In this section we will briefly sketch how to implement the functionality Fcygen
against an active adversary. In some of the parts involving interaction between
the players, we will have to assume private communication channels between
players.

The coordinates of the secret key can be generated as follows. For each
coordinate each player chooses uniformly random element in Z, and secret shares
it among all the players. The secret key will now be given by the sum of the
values chosen by the players, and the players can locally compute their share of
the secret key.

The next issue is how to compute the public key which in turn boils down to
securely generating secret shares of the error terms e; distributed according to
the distribution x = W¥,. The problem especially being that corrupted players
might not construct shares in the right way. For this step we can use the idea
of non-interactive verifiable secret sharing (NIVSS) described in [CDI05], which
builds on top of PRSS described earlier'. In brief NIVSS enables us to securely
construct sharings of a specific secret chosen by one of the players. We then
form the e;’s as sums of secret values chosen by each of the players, where we
note that we can enforce a limitation on the size of the contribution of each
player to the sum.

Assuming that m public vectors ay, ..., a,, has been chosen randomly, each
player can now compute their shares [(a;, s) + e;] and open these to get the
public key. By choosing the parameters appropriately, we can argue that we
can decrypt correctly because the size of each e; is bounded, and furthermore
that the system is semantically secure since this would be the case if we only
added the contributions of honest players to the (a;, s)’s.
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