
New DLOG-Based Convertible Undeniable Signature
Schemes in the Standard Model

Le Trieu Phong, Kaoru Kurosawa, Wakaha Ogata

August 11, 2009

Abstract

We propose discrete-logarithm-based undeniable signature schemes supporting both
selective and all conversion, with formal security analysis in the standard model. The
schemes are the first practical ones of their type, enjoying relatively short signatures
and efficient confirmation/disavowal protocols, while for security relying on the strong
Diffie-Hellman assumption and the decision linear assumption.

Keywords: Undeniable signature, selective/all conversion, discrete logarithm, stan-
dard model.

1 Introduction

1.1 Background

Almost twenty years ago, Chaum and van Antwerpen [10] introduced the concept of
undeniable signature (US) scheme, where a signature is not publicly verifiable, which is
in contrast to ordinary signature schemes. The verification of an undeniable signature
requires the cooperation of the signer through the zero-knowledge confirmation protocol
(for validity of signatures) and zero-knowledge disavowal protocol (for invalidity of
signatures). A mandatory property of a US scheme thus is invisibility, namely without
interacting with the signer, it is hard to decide whether a signature is valid or not.
Also, it is worth noting that either the confirmation or disavowal protocol must be
successful if the signer is honest; and the case both protocols fail formally implies that
the signer is not cooperating (or cheating).

Undeniable signature is useful when we sign on sensitive data such as software [10],
electronic cash [5,11,26], confidential business agreement [12]. There have been a wide
range of research on the concept [4, 9, 12, 13, 17–24, 28], to list just a few. Most of the
papers are in the random oracle model, with (even arbitrary) short signatures [23],
or extensive security consideration of a classical scheme [24]. In the standard model,
the first efficient proposal is that of Laguillaumie and Vergnaud [21] (but relying on a
non-standard and strong assumption for invisibility).

In order to link undeniable signature to regular signature, Boyar et al [4] proposed
the concept of conversion. In all conversion, the signer releases a piece of information
so that all issued undeniable signatures can be publicly-verifiable. In selective conver-
sion, the signer publishes a piece of information so that a single undeniable signature

1



is publicly-verifiable. The paper [4] gave a generic construction of US scheme with
selective and all conversion from one-way function, but the construction is not practi-
cal. Note that selectively-convertible undeniable signature schemes play a central role
in fair payment protocols [5], so the more efficient the former is, the more practical
the latter can be realized. For more applications, the readers may find in [4, 12]. We
also note that the above mentioned work of Laguillaumie and Vergnaud [21], while
producing very short signatures (of about 170 bits), does not support any kinds of
conversion.

In an attempt to realize practical US schemes supporting conversions, Damgard and
Pedersen [12] proposed two dlog-based schemes, but they could not formally prove the
invisibility of their schemes, and just conjectured on it. Recently, another attempt was
made by Yuen et al [28] using pairings, but their scheme suffers from a big (exponential)
loss factor in security reduction, so that the signer is only able to produce very few
(less than 128) signatures. The scheme in [28] is claimed to satisfy invisibility, but in
Appendix A, we point out that the claim is incorrect, and the scheme is totally broken.

Based on the above literature, we therefore say that, in the discrete-log-based set-
ting, there is still no practical undeniable signature scheme supporting (selective, all)
conversions, with formally-proved security in the standard model. We remark that in
the RSA-based setting, Kurosawa and Takagi [20] proposed some efficient schemes with
selective conversion (but not all conversion).

1.2 Our contribution

We propose two undeniable signature schemes, called SCUS1 and SCUS2, with the
following properties:

∙ supporting both selective and all conversion.

∙ formally-proven security in the standard model, relying on the strong Diffie-
Hellman assumption and the decision linear assumption. Furthermore, the factor
loss in security reduction is polynomial.

∙ Both the confirmation and disavowal protocols are of constant moves (4 moves)1.

∙ The signature size is about 70 + 3 ⋅ ∣q∣ (resp, 4 ⋅ ∣q∣) bits for SCUS1 (resp, SCUS2)
where ∣q∣ ≈ 170. The piece of information for all conversion is of 2 ⋅ ∣q∣ bits for
both schemes. For each selective conversion, which employs the NIZK proof of
Groth and Sahai [15] in a novel way, the signer needs to totally release 13 ⋅ ∣q∣
bits.

Above, the scheme SCUS1 produces shorter signatures than SCUS2, but the public
key of SCUS1 (of 164 ⋅ ∣q∣ bits) is much longer than that of SCUS2 (of 6 ⋅ ∣q∣ bits).
Choosing which one to use thus depends on specific applications. Also note that our
signature sizes are much shorter than those of Kurosawa-Takagi [20] (of 4 ⋅ 1024 bits in
the standard model), since we are in the dlog-based setting.

Let us now look at the ways to obtain the above results. We first focus on the ideas
behind SCUS1.

1We remark that the 3-move scheme of Kurosawa and Heng [18] is insecure, as shown by Ogata et al
in [24] (Sect.V.D, page 2013), who furthermore point out that any 3-move (HVZK) confirmation/disavowal
protocols are not secure against active attacks.

2



Sign-then-Encrypt Paradigm. We re-utilize an elegant paradigm introduced by
Damgard and Pedersen [12] in which the the undeniable signature � of a message m is
of the form � = Encryptpk2(Signsk1(m)), where Encrypt and Sign are respectively some
regular encryption and signature scheme. For all conversion, the signer publishes the
secret key sk2 of the encryption scheme, so that everyone can decrypt � to get the
regular signature Signsk1(m) and then check its validity. For selective conversion, the
signer releases the regular signature Signsk1(m).

Some difficulties when using the above paradigm are: (1) designing efficient zero-
knowledge confirmation and disavowal protocols, (2) proving the invisibility of the
designed scheme, and (3) releasing Signsk1(m) in a provable way (that it is the signature
encrypted in �). Damgard and Pedersen [12] have overcome (1) but not (2). For (3),
they suggested a storage-costly method of storing all randomness previously used in
signing (while we manage to avoid that method by using the efficient NIZK proof of
Groth and Sahai [15], as seen later).

To overcome (1) (and (3) in an efficient way), one needs to properly choose simple
(but-secure-enough) ingredients. To design SCUS1, we choose the Generic Bilinear Map
(GBM) signature [16] and the linear encryption [2] (LE) scheme. A GBM signature on
m is of the form (s, � = H(m)1/(x+s)) for a random s, a standard model hash function
H and the secret key sk1 = x. We use the LE scheme to encrypt � in the ciphertext
(u1 = gr11 , u2 = gr22 , u3 = � ⋅ gr1+r2) for randomness r1, r2. The undeniable signature
� = (s, u1, u2, u3).

Intuitively, � seems random-like, unrelated to m, (and thus invisible) because s is
random and (u1, u2, u3) is random-like under the decision linear assumption. However,
the scheme is in fact not invisible. The reason is in the malleability of LE scheme.
In particular, if � = (s, u1, u2, u3) is valid on a message m (resp, � is random), then

�′ = (s, u1g
�
1 , u2g

�
2 , u3g

�+�) is also valid on m (resp, �′ is random) for adversarily-
chosen randomness � and �. The fact causes a simple attack on the invisibility of
(m,�) as follows: the adversary first asks the signer for converting (m,�′), so that it
knows the validity of the pair, and hence it also is aware of whether the corresponding
(m,�) is valid. (See Definition 3 for a formal definition on invisibility, which also
contains some new insights.)

Fortunately, we can overcome the above attack as follows: we authenticate the
randomness r1, r2 by signing on u1 and u2. In our proposed SCUS1 scheme (in Sect.4),
the values (u1 = gr11 , u2 = gr22 ) are generated first, then the GBM signature on m,u1, u2
is created:

(
s, � = H(m ∥ u1 ∥ u2)1/(x+s)

)
. After all, set u3 = � ⋅ gr1+r2 and let the

undeniable signature � = (s, u1, u2, u3). With the authentication on the randomness,
the adversarily-formed �′ above becomes invalid regardless of whether � is valid on m,
so that the validity of �′ cannot be used to decide that of �. We succeed in proving
the invisibility of our proposed scheme in Theorem 6.

On Confirmation and Disavowal Protocol. Now we give ideas on constructing
the confirmation and disavowal protocol for SCUS1. To confirm

(
m,� = (s, u1, u2, u3)

)
,

the signer needs to prove for secrets x1(= logg1 g), x2(= logg2 g), and x:

u3
ux11 u

x2
2

= H(m ∥ u1 ∥ u2)
1

x+s .

3



Namely, the LE decryption of (u1, u2, u3) gives the GBM signature on m,u1, u2. Or
equivalently,

ux3 ⋅ u
−x1(x+s)
1 ⋅ u−x2(x+s)2 = H(m ∥ u1 ∥ u2) ⋅ u−s3 ,

which is a proof of representation of public value H(m ∥ u1 ∥ u2) ⋅ u−s3 , and can be
realized by standard techniques, using constant moves.

Now we turn to the disavowal protocol. Given
(
m,� = (s, u1, u2, u3)

)
, the signer

needs to prove for secrets x1, x2, x:

u3
ux11 u

x2
2

∕= H(m ∥ u1 ∥ u2)
1

x+s ,

or equivalently,

ux+s3 ⋅ u−x1(x+s)1 ⋅ u−x2(x+s)2 ⋅H(m ∥ u1 ∥ u2)−1 ∕= 1.

Employing the technique of Camenisch and Shoup [8], we choose r
$← Zq and set

U =
(
ux+s3 ⋅ u−x1(x+s)1 ⋅ u−x2(x+s)2 ⋅H(m ∥ u1 ∥ u2)−1

)r
.

The signer sends U to the verifier, who checks that U ∕= 1. Then both execute a proof of
representation of U , where the signer holds the secrets r, x, x1, x2. The zero-knowledge
protocol can also be accomplished via standard techniques, also using constant moves.
Moreover, since we will work on a pairing group, the disavowal protocol can be made
non-interactive, again thanks to the NIZK proof of Groth-Sahai [15], interestingly
yielding a way to efficiently “convert” (namely, make publicly-verifiable) even invalid
signatures.

More Schemes. The above ideas work well if we replace the GBM signature by the

signature of Boneh and Boyen [1], which is of the form (s, g
1/(x+H(m)+ys)
0 ) for random

s ∈ Zq, g0 ∈ G, and secret signing key x, y. The replacement creates our SCUS2

described in Sect.5. Furthermore, in the random oracle model, one can use the BLS
signature [3] so that the unforgeability of the resulting undeniable scheme relies on the
CDH assumption in bilinear group. We do not explicitly consider the random oracle
scheme in this paper.

2 Syntax and definitions

We begin with the syntax of selectively-convertible undeniable signature (SCUS for
short) schemes. We focus on the syntax of schemes with selective conversion here and
do not explicitly describe the syntax of all conversion since the latter is very simple in
our proposals.

Definition 1 (SCUS scheme). A selectively-convertible undeniable scheme SCUS =
(KeyGen, Usign, Convert, Verify, Confirm, Disavowal) consists of four algorithms and
two protocols whose descriptions are as follows.

– KeyGen(1�) → (pk, sk): This algorithm generates the pubic key pk and the secret
key (signing key) sk for user.

– USign(sk,m) → �: Using the secret key sk, this algorithm produces a signature
� on a message m.

4



– Convert(sk,m, �) → cvt/ ⊥: Using sk, this algorithm releases a converter cvt if
the message-signature (m,�) pair is valid, enabling everyone to check the validity of
the pair. If the pair is invalid, the output of the algorithm is ⊥. 2

– Verify(pk,m, �, cvt) → 0/1: Using the converter cvt, everyone can check the va-
lidity of (m,�) by this algorithm.

– Confirm: This is a protocol between the signer and a verifier, on common input
(pk,m, �), the signer with sk proves that (m,�) is a valid message-signature pair in
zero-knowledge.

– Disavowal: This is a protocol between the signer and a verifier, on common input
(pk,m, �), the signer with sk proves that (m,�) is an invalid message-signature pair
in zero-knowledge.

The following definitions describe securities that SCUS schemes should meet.

Definition 2 (Unforgeability and strong unforgeability of SCUS schemes). A selec-
tively convertible undeniable scheme SCUS is said to be existential unforgeable under
adaptive chosen message attack if no p.p.t (probabilistic polynomial time) forger ℱ has
a non-negligible advantage in the following game.

1) ℱ is given the public key pk.
2) ℱ is permitted to issue a series of queries shown below.

– Signing queries: ℱ submits a message m to the signing oracle and receives
a signature � on m. These queries are adaptive, namely the next query
can depend on previous ones.

– Convert queries: ℱ submits a message-signature pair (m,�) to the convert
oracle, and receives a converter cvt. These queries are also adaptive.

– Confirmation/disavowal queries: ℱ submits a message-signature pair of
the form (m,�) to the confirmation/disavowal oracle. We will consider
active attack, where the oracle first checks the validity of (m,�). If it is
a valid pair, the oracle returns 1 and executes the confirmation protocol
with ℱ (acting as a cheating verifier). Otherwise, the oracle returns 0
and executes the disavowal protocol with ℱ .

3) At the end of the game, ℱ outputs a pair (m∗, �∗).

In the definition of unforgeability, the forger ℱ wins the game if the pair (m∗, �∗) is a
valid message-signature pair, and m∗ has never been queried to the signing oracle. The
advantage of ℱ is defined to be AdvforgeSCUS(ℱ) = Pr[ℱ wins].
In the definition of strong unforgeability, the only different point is that (m∗, �∗) does
not coincide with any (m,�) at signing queries. We denote ℱ ’s advantage in this case

by AdvsforgeSCUS (ℱ) = Pr[ℱ wins].

The notion of invisibility intuitively ensures that no-one (without contacting the
signer) can tell whether a message-signature pair is valid or not, and is formally given
below.

2Note that only valid undeniable signatures can be converted, and the signer has no responsibility to con-
vert ill-formed ones. These properties are natural, and sufficient enough for application (e.g., [5]). However,
we note in our proposed schemes, the signer can even “convert” invalid signatures by making the disavowal
protocol non-interactive (yet without Fiat-Shamir heuristics).

5



Definition 3 (Invisibility). A selectively-convertible undeniable scheme SCUS satisfies
invisibility under adaptive chosen message attack if no p.p.t distinguisher D has a
non-negligible advantage in the following game.

1) D is given the public key pk.
2) D is permitted to issue a series of queries: signing queries, convert

queries, confirmation/disavowal queries, as in Definition 2.
3) At some point, D outputs an arbitrary message m∗, and requests a chal-

lenge signature �∗ on m∗. The challenge signature �∗ is generated based
on a hidden bit b. If b = 0, then �∗ is generated as usual using the
signing algorithm; otherwise �∗ is chosen randomly from the signature
space of the scheme.

4) The distinguisher D additionally issues signing queries, convert queries,
confirmation/disavowal queries with the only restriction that no confir-
mation/disavowal query and convert query (m∗, �∗) are allowed.

5) At the end, D outputs a bit b′ as the guess for b.

The distinguisher wins the game if b′ = b and its advantage in this game is defined as
AdvivSCUS(D) = ∣Pr[b′ = b]− 1/2∣.

Remark 1 (On the definition of invisibility). Above, there are some subtleties. First,
at step 4, we do allow the distinguisher to submit convert queries of the form (m∗, �)
with � ∕= �∗. We clarify this point here for later use in Appendix A.

Second, D can make signing query m∗, even in multiple times, even before and
after step 3. Intuitively, a scheme meeting the definition enables the signer to sign on
the same message many times without any loss in invisibility, so that the scheme is
very suitable and easy to use at least in licensing software (which is one of the main
applications). This second subtlety makes our definition differ from and stronger than
previous ones (say, that of [24]). A scheme meeting the (weak) definition as in [24]
can be turned into another one satisfying our definition by ensuring that the signing
messages are pairwise different (via randomness, the time when signing, etc).

Definition 4 (Standard signature scheme and its security). A signature scheme S =
(Kg, Sign, Vrf) is as follows. On input 1�, the key generation algorithm Kg produces
the public key pk and the secret signing key key sk. On input sk and a message m,
the signing algorithm Sign produces a signature �, which is publicly-verifiable using the
verification algorithm Vrf on input pk and �.

The unforgeability under chosen message attack (uf-cma security) of a signature
scheme S is defined essentially the same as that of SCUS in Definition 2, except that
the forger ℱ against S only issues signing queries. We denote the advantage of ℱ by
Advuf−cmaS (ℱ) = Pr[ℱ wins]. The strong unforgeability (suf-cma security) is defined

in a similar manner and we have the advantage Advsuf−cmaS (ℱ) = Pr[ℱ wins].

3 Preliminaries

Pairing Group. We call ℙG = (G,GT , q = ∣G∣, g, ê : G × G → GT ) a pairing group
if G and GT are cyclic groups of prime order q, where the bit length ∣q∣ = � ≈ 170.
The element g is a generator of G, and the mapping ê satisfies the following properties:
ê(g, g) ∕= 1, and ê(ga, gb) = ê(g, g)ab.

6



Decision Linear Assumption. Given a pairing group ℙG, the assumption, first
formalized in [2], asserts that the following advantage of a p.p.t adversaryA is negligible
in the security parameter �.

AdvdlinG (A) =
∣∣∣Pr

[
�, �, 


$← Zq; g1, g2, g3
$←G;T0 ← g�+�3 ;T1 ← g
3 ;

b
$←{0, 1}; b′ $←A(ℙG, g1, g2, g3, g�1 , g

�
2 , Tb): b

′ = b
]
− 1

2

∣∣∣.
Known Dlog-Based ZKIP. We use known techniques for proving statements about
discrete logarithms, such as (1) proof of knowledge of discrete logarithm [27]; (2) proof
of knowledge of an element representation in a prime order group [25]; and the ∧ proof
of (1) and (2). (The ∧ proof is easily designed by choosing the same challenge while
asking the prover to prove both (1) and (2) in parallel.) These proofs need four moves
to become zero-knowledge.

When referring to the proofs above, we use the following kind of notation. For
instance, PoK{(x1, x2): y = gx1 ∧ U = ux11 u

x2
2 } denotes a zero-knowledge proof of

knowledge of x1 and x2 such that y = gx1 and U = ux11 u
x2
2 . All values except (x1, x2)

are assumed to be known to the verifier.

Known NIZK proof. We also utilize the non-interactive zero-knowledge (NIZK)

proof for proving that a system of linear equations of the form g0 = Πm
j=1g

Xj

j , over a
group G (with pairing as above) is satisfiable, where Xj are variables and g0, ⋅ ⋅ ⋅ , gm
are constants in G. This is derived from the result of Groth and Sahai [15]. We will
mention more about the NIZK proofs later.

4 Our proposed SCUS1

In this section, we describe our first selectively convertible undeniable signature (SCUS)
scheme and analyze its securities.

We first need the following ingredients, which operate on a common pairing group
ℙG = (G,GT , q = ∣G∣, g, ê : G×G→ GT ). The pairing group is implicitly included in
the public keys of the following schemes.

Generic Bilinear Map Signature Scheme GBM [16]. The signature scheme GBM
= (GBM.Kg, GBM.Sign, GBM.Vrf) is briefly recalled with some minor modifications as
follows.

GBM.Kg(1�): Generate x
$← Zq, X ← gx, and H : {0, 1}∗ → G. Return the verifying

key pk1 = (X,H, �) where � = 70 and the signing key sk1 = x. (The public key
size ∣pk1∣ ≈ 162 ⋅ log2 q bits, according to the estimation in [16], due to the concrete
description of H.)

GBM.Sign(sk1,m ∈ {0, 1}∗): s
$←{0, 1}�, � ← H(m)

1
x+s ∈ G. Return (s, �) ∈

{0, 1}� ×G as the signature on m.

GBM.Vrf
(
pk1,m, (s, �)

)
: Check that (s, �) ∈ {0, 1}�×G and ê(�,X ⋅gs)= ê(H(m), g).

Return 1 if all checks pass, else return 0.

The signature scheme is known to be strongly unforgeable (suf-cma secure) under the
strong Diffie-Hellman assumption. To be complete, the proof given in [16] is for the
uf-cma case, but holds even for suf-cma security.

7



Linear Encryption [2]. The linear encryption scheme LE= (LE.Kg, LE.Enc, LE.Dec)
is as follows.

LE.Kg(1�): Generate x1, x2
$← Zq and set g1 ← g1/x1 , g2 ← g1/x2 . Return the public

key pk2 = (g1, g2) and the secret key sk2 = (x1, x2).

LE.Enc(pk2,m ∈ G): Choose r1, r2
$← Zq and set u1 ← gr11 , u2 ← gr22 , u3 ← m⋅gr1+r2 .

Return (u1, u2, u3) as the ciphertext of m.

LE.Dec
(
sk2, (u1, u2, u3)

)
: Return u3/(u

x1
1 u

x2
2 ).

The scheme is ind-cpa-secure under the decision linear assumption [2].

Our Proposal SCUS1. The scheme is described as follows.

KeyGen(1�): Run GBM.Kg(1�) and LE.Kg(1�) to get (pk1, sk1) and (pk2, sk2). Re-
turn the public key pk = (pk1, pk2) and the signing key sk = (sk1, sk2).

USign(sk,m): First, generate r1, r2
$← Zq, and set u1 ← gr11 , u2 ← gr22 , and m =

m ∥ u1 ∥ u2. Next, sign on m to get
(
s, � = H(m)

1
x+s
) $← GBM.Sign(sk1,m). Then,

encrypt � in the ciphertext (u1, u2, u3 = � ⋅gr1+r2). Return the undeniable signature
� = (s, u1, u2, u3).

Convert(sk,m, �): Parse � as (s, u1, u2, u3) ∈ {0, 1}� ×G3. Let �← u3/(u
x1
1 u

x2
2 ). If

(s, �) is not a GBM signature on m ∥ u1 ∥ u2 then return ⊥. Otherwise, return the
converter (�, �) ∈ G×G12, where � is a NIZK proof proving (with secrets x1, x2):

g = gx11 , g = gx22 , u3/� = ux11 u
x2
2 . (1)

Such a NIZK proof � can be efficiently created using the result of Groth and Sahai
[15]. See Appendix B for the concrete description of �. For another (but storage-
expensive) method of converting, see Footnote3.

For all conversion, release sk2 = (x1, x2) so that everyone can compute � =
u3/(u

x1
1 u

x2
2 ) and then check whether (s, �) is a valid GBM signature on m ∥ u1 ∥ u2.

Note that in this case, our proposal becomes a regular signature scheme equivalent
to the GBM scheme.

Verify(pk,m, �, cvt): Parse � as (s, u1, u2, u3) ∈ {0, 1}� × G3 and cvt as (�, �) ∈
G × G12. Return 1 (meaning, valid) if � is a valid proof of the equations (1), and
(s, �) is a valid GBM signature on m ∥ u1 ∥ u2. Otherwise return 0.

Confirm: On common input pk, (m,�), the signer and the verifier execute

PoK
{

(x, a, b) :gx=y ∧ ga1 =(ygs)−1 ∧ gb2 = (ygs)−1 ∧ ux3ua1ub2 =H(m∥u1 ∥u2)u−s3

}
.

Intuitively, the equations first show that a = −x1(x+ s) and b = −x2(x+ s) where
x1 = logg1 g and x2 = logg2 g. With the values a, b, the final equation is equivalent

to u3/(u
x1
1 u

x2
2 ) = H(m ∥ u1 ∥ u2)1/(x+s). Since u1, u2 ∈ G, a cyclic group, there

exist r1, r2 such that u1 = gr11 and u2 = gr22 , and thus ux11 = gr1 , ux22 = gr2 .
Hence, u3 = H(m ∥ gr11 ∥ g

r2
2 )1/(x+s) ⋅ gr1+r2 , showing that � = (s, u1, u2, u3) is

indeed produced by USign on m. The zero-knowledge proof of knowledge can be
implemented using known ZKIPs described in Sect. 3.

3The method, inspired by Damgard and Pedersen [12], is to store the randomness r1, r2 used in signing
and later release them as converter. Then, everyone can check u1 = gr11 , u2 = gr22 and compute � as u3/g

r1+r2 .
With the method, the signer needs to store about 340 ⋅ qcv bits, where qcv is the total number of selective
conversion.

8



Disavowal: On common input pk, (m,�), the signer sends a value U ∕= 1 to the
verifier, and both execute

PoK
{

(c, d, f, r) : gc(y−1g−s)r = gd1(ygs)r = gf2 (ygs)r = 1

∧ U = uc3 ⋅ ud1 ⋅ u
f
2 ⋅H(m ∥ u1 ∥ u2)−r

}
.

Intuitively, the equations of the first line give us c = r(x + s), d = −rx1(x + s),
and f = −rx2(x + s). Substituting these values to the second line equation and
noting that U ∕= 1 show u3/(u

x1
1 u

x2
2 ) ∕= H(m ∥ u1 ∥ u2)1/(x+s), and thus (m,�) is

invalid. The disavowal protocol is also implemented using known ZKIPs or NIZK
proof in Sect. 3. Note that the NIZK proof for the disavowal protocol gives a way
to “convert” (namely, make publicly-verifiable) invalid signatures.

Above, if the confirmation protocol fails, then the disavowal protocol is run. If both
fails, we conclude that the signer is cheating (or not cooperating). We now consider
securities of SCUS1, which are ensured by the following theorems.

Theorem 5 (Strong unforgeability). The proposed SCUS1 scheme is strongly unforge-
able if the signature scheme GBM is suf-cma-secure. Moreover, given a forger ℱ against
SCUS1, there exists another forger ℱ ′ against the GBM signature scheme such that

AdvsforgeSCUS1
(ℱ) ≤ Advsuf−cmaGBM (ℱ ′),

T(ℱ ′) = O(qconf/dis) ⋅T(ℱ),

where qconf/dis is the total number of confirmation/disavowal queries ℱ made, and T
expresses the running time.

Proof. Given a forger ℱ against the proposed SCUS scheme, we build a forger ℱ ′
against the ordinary GBM signature scheme. The input of ℱ ′ is pk1 = (ℙG, X =
gx, H, � = 70) and ℱ ′ has a signing oracle GBM.Sign(sk1 = x, ⋅). ℱ ′ itself chooses the

keys for the linear encryption scheme sk2 = (x1, x2)
$← Z2

q , and pk2 = (g1 = g1/x1 , g2 =

g1/x2).
The forger ℱ ′ gives pk = (pk1, pk2) as the public key of the SCUS scheme to ℱ ,

and begins to simulate the environment for the SCUS forger as follows:

– Signing query m: ℱ ′ chooses r1, r2
$← Zq and sets u1 ← gr11 , u2 ← gr22 , and then

calls m ∥ u1 ∥ u2 to its own signing oracle GBM.Sign(sk1 = x, ⋅) to obtain the GBM
signature (s, �). ℱ ′ then returns the undeniable signature (s, u1, u2, u3 = � ⋅ gr1+r2) to
ℱ .

– Confirmation/disavowal query (m,�): Parse � as (s, u1, u2, u3) ∈ {0, 1}� × G3. De-
crypt (u1, u2, u3) to get � (since ℱ ′ has sk2), and then check whether (s, �) is a valid
GBM signature on m ∥ u1 ∥ u2 or not. If it is the case, return 1 and run the con-
firmation protocol with ℱ (acting as a cheating verifier); otherwise, return 0 and run
the disavowal protocol with ℱ accordingly. The protocols are simulatable using the
rewinding technique [14] since they are zero-knowledge.

– Convert query (m,�): Parse � = (s, u1, u2, u3) ∈ {0, 1}� ×G3. Let �← u3/(u
x1
1 u

x2
2 ).

If (s, �) is a valid GBM signature on m ∥ u1 ∥ u2, then compute the NIZK proof � (using
secrets x1, x2) of the equations (1), and finally return the converter (�, �). Otherwise,
if (s, �) is not a valid GBM signature on m ∥ u1 ∥ u2, then return ⊥.

9



At the end, the forger ℱ outputs
(
m∗, �∗ = (s∗, u∗1, u

∗
2, u
∗
3)
)
. If ℱ succeeds, (m∗, �∗)

is a valid pair of the SCUS scheme, we then have

u∗3
(u∗1)

x1(u∗2)
x2

= H(m∗ ∥ u∗1 ∥ u∗2)
1

x+s∗ .

Based on the above equation, ℱ ′ outputs
(
m∗ ∥ u∗1 ∥ u∗2, (s∗,

u∗3
(u∗1)

x1 (u∗2)
x2

)
)

as a forgery

of the ordinary GBM signature scheme. It is clear that the forgery is valid, and we just
need to prove that it is different from all message-signature pairs appeared at the oracle

GBM.Sign(sk1 = x, ⋅). By the contrary, suppose that
(
m∗ ∥ u∗1 ∥ u∗2, (s∗,

u∗3
(u∗1)

x1 (u∗2)
x2

)
)

=(
m ∥ u1 ∥ u2, (s, �)

)
, a previously-appeared pair at the signing oracle of ℱ ′. Thus

m = m∗, u1 = u∗1, u2 = u∗2, s = s∗, and furthermore

u∗3 = � ⋅ (u∗1)x1(u∗2)
x2 = � ⋅ (u1)x1(u2)

x2 = u3,

and hence
(
m∗, �∗ = (s∗, u∗1, u

∗
2, u
∗
3)
)

=
(
m,� = (s, u1, u2, u3)

)
, which is a contradiction

to the success of ℱ .
The running time of ℱ ′ is O(qconf/dis) times that of ℱ due to the rewinding used

in the simulation of the confirmation and disavowal protocol.

Theorem 6 (Invisibility). The SCUS1 scheme satisfies invisibility. Moreover, given
a distinguisher D against SCUS1, there exist an Adlin against the decision linear as-
sumption, and a forger ℱ against SCUS1 such that

AdvinvSCUS1(D) ≤ AdvdlinG (Adlin) + AdvsforgeSCUS1
(ℱ),

T(Adlin) = O(qconf/dis) ⋅T(D), and T(ℱ) ≈ T(D),

where T expresses the running time, and qconf/dis is the total number of confirma-
tion/disavowal queries D makes.

Proof. We proceed in games as follows.

Game 0: This is exactly the definitional game as in Definition 3. Let Wi (i = 0, 1) be
the event that the distinguisher D wins in Game i, we have AdvinvSCUS1(D) = Pr[W0]
by definition.

Game 1: This game is the same as Game 0, except that we consider the following dis-
tinguisher: D never issues a convert or confirmation/disavowal query (m,�) satisfying
(1) the pair is valid (namely, ⊥ or 0 was not returned), and (2) the pair is different
from all previously-issued message-signature pairs at the signing oracle.

Obviously, if D (in Game 0) issues the pair (m,�) as above, then we can use (m,�)
as a forgery (in the strong sense) of the SCUS1 scheme. More precisely, we can use D
to build a forger ℱ against SCUS1 with T(ℱ) ≈ T(D). Thus, Game 0 and Game 1 are
indistinguishable thanks to the strong unforgeability of the scheme, and hence

∣Pr[W0]− Pr[W1]∣ ≤ AdvsforgeSCUS1
(ℱ).

Using the distinguisher D in Game 1, we now build an adversary Adlin against the
decision linear assumption on G satisfying Pr[W1] ≤ AdvdlinG (Adlin). Note that

AdvinvSCUS1(D) = Pr[W0] ≤ Pr[W1] + AdvsforgeSCUS1
(ℱ)

≤ AdvdlinG (Adlin) + AdvsforgeSCUS1
(ℱ),

10



which completes the proof. Thus the rest is devoted to constructing such Adlin. The in-

put of Adlin is (ℙG, g1, g2, g, g�1 , g�2 , Tb), where T0 = g�+� and T1 = g
 for �, �, 

$← Zq.

The adversary Adlin itself sets up the keys for GBM signature scheme: sk1 = x
$← Zq

and pk1 = (gx, H, � = 70). Then Adlin gives pk = (pk1, g1, g2) to D and begins to
simulate the environment for the distinguisher as follows:

– Signing query m: Adlin chooses the randomness r1, r2
$← Zq and s

$←{0, 1}�, and
computes � ← H(m ∥ u1 ∥ u2)1/(x+s) where u1 = gr11 and u2 = gr22 . It then lets u3 ←
� ⋅ gr1+r2 and returns � = (s, u1, u2, u3) to D as the undeniable signature on m. The
adversary Adlin internally keeps a record of the values �, and also lets Q ← Q∪{(m,�)}
for later use, where Q is an initially empty set of message-signature pairs appeared so
far.

– Convert query (m,�): If (m,�) ∈ Q then return the corresponding recorded � and
a simulated NIZK proof �sim (of the equations (1)) to D. If (m,�) ∕∈ Q then return ⊥
to D. The reasoning behind this simulation is that if (m,�) ∕∈ Q then the pair must
be invalid since we are in Game 1.

– Confirmation/disavowal query (m,�): Like the simulation for convert query above, if
(m,�) ∈ Q then return 1 and run the confirmation protocol with D; otherwise return
0 and run the disavowal protocol. The protocols are simulatable using the rewinding
technique [14] since they are zero-knowledge.

– Challenge query m∗: Let u∗1 ← g�1 and u∗2 ← g�2 . Choose s∗
$←{0, 1}� and then

compute �∗ ← H(m∗ ∥ u∗1 ∥ u∗2)1/(x+s
∗) and u∗3 ← �∗ ⋅ Tb. Return �∗ = (s∗, u∗1, u

∗
2, u
∗
3)

to D.
Note that if b = 0 then Tb = T0 = g�+�, so that �∗ is a valid undeniable signature

on m∗. If b = 1 then Tb = T1 = g
 is a random value over G independent of the other
values, so that �∗ is also randomly distributed over the signature space {0, 1}� ×G3.

At the end, the distinguisher D outputs a bit b′ as a guess of the hidden bit b. The
adversary Adlin in turn outputs b′. The advantage of Adlin is exactly the probability
D wins in Game 1, namely AdvdlinG (Adlin) = Pr[W1]. The running time of Adlin is
O(qconf/dis) times that of D due to the rewinding.

5 Our proposed SCUS2

In this section, we describe our second scheme SCUS2, which is also secure under the
same assumptions as those of SCUS1. The scheme SCUS2 uses the Boneh-Boyen [1]
signature scheme as a component. We first recall the Boneh-Boyen signature scheme,
basing on a pairing group ℙG = (G,GT , q = ∣G∣, g, ê : G×G→ GT ).

Boneh-Boyen Signature Scheme. The signature scheme BB = (BB.Kg, BB.Sign,
BB.Vrf) is as follows.

BB.Kg(1�): Generate g0
$←G, x, y

$← Zq, u← gx, v ← gy, z = ê(g0, g), and a target
collision hash H : {0, 1}∗ → Zq. Return the verifying key pk1 = (g0, u, v, z,H) and
the signing key sk1 = (x, y).

BB.Sign(sk1,m): s
$← Zq, � ← g

1
x+H(m)+ys

0 ∈ G. Return (s, �) ∈ Zq × G as the
signature on m.

11



BB.Vrf
(
pk1,m, (s, �)

)
: Check that (s, �) ∈ Zq × G and ê

(
�, u ⋅ gH(m) ⋅ vs

)
= z.

Return 1 if all checks pass, else return 0.

It was proven in [1] that the above signature scheme is suf-cma-secure under the strong
Diffie-Hellman assumption.

Our Proposal SCUS2. The scheme, whose security analysis is given in Appendix
C, is described as follows.

KeyGen(1�): Run BB.Kg(1�) and LE.Kg(1�) to get (pk1, sk1) and (pk2, sk2). Return
the public key pk = (pk1, pk2) and the signing key sk = (sk1, sk2).

USign(sk,m): First, generate r1, r2
$← Zq, and set u1 ← gr11 , u2 ← gr22 , and m =

m ∥ u1 ∥ u2. Next, sign on m to get
(
s, � = g

1
x+H(m)+ys

0

) $← BB.Sign(sk1,m). Then,
encrypt � in the ciphertext (u1, u2, u3 = � ⋅gr1+r2). Return the undeniable signature
� = (s, u1, u2, u3).

Convert(sk,m, �): The same as that of SCUS1, except now checking whether (s, �)
is a BB signature or not. Also, for all conversion, release sk2 = (x1, x2), so that our
proposal becomes a regular signature scheme equivalent to the BB scheme.

Verify(pk,m, �, cvt): The same as that of SCUS1, except now checking whether (s, �)
is a valid BB signature or not.

Confirm: On common input pk, m, � = (s, u1, u2, u3), the signer and the verifier
execute

PoK
{
(a, b, c) :ga = uvs ∧ gb1 = gc2 =

(
uvsgH(m∥u1∥u2)

)−1
∧ ua3ub1uc2 = g0u

−H(m∥u1∥u2)
3

}
.

The first three equations show that a = x+ys, b = −x1 (x+H (m ∥ u1 ∥ u2) + ys),
and c = −x2 (x+H (m ∥ u1 ∥ u2) + ys), where x1 = logg1 g and x2 = logg2 g. With

the values a, b, c, the final equation is equivalent to u3/(u
x1
1 u

x2
2 )=g

1/(x+H(m∥u1∥u2)+ys)
0 ,

showing that (m,�) is valid. The zero-knowledge proof of knowledge can be imple-
mented using known ZKIPs or NIZK proof described in Sect. 3.

Disavowal: On common input pk, m, � = (s, u1, u2, u3), the signer sends a value
U ∕= 1 to the verifier, and both execute

PoK
{

(d, e, f, r) : gd(ugH(m∥u1∥u2)vs)−r = 1 ∧ ge1(ugH(m∥u1∥u2)vs)r = 1

∧ gf2 (ugH(m∥u1∥u2)vs)r = 1 ∧ U = ud3 ⋅ ue1 ⋅ u
f
2 ⋅ g

−r
0

}
.

Intuitively, the first three equations give us d = r(x + H(m ∥ u1 ∥ u2) + ys),
e = −rx1(x+H(m ∥ u1 ∥ u2) + ys), and f = −rx2(x+H(m ∥ u1 ∥ u2) + ys). Sub-
stituting these values to the last equation and noting that U ∕= 1 show u3/(u

x1
1 u

x2
2 ) ∕=

g
1/(x+H(m∥u1∥u2)+ys)
0 , and thus (m,�) is invalid. The disavowal protocol is also im-

plemented using known ZKIPs or NIZK proof in Sect. 3.

6 Conclusion

We propose two undeniable signature schemes with both selective and all conversion
in the dlog-based setting, in the standard model. Our proposals enjoy formally-proved
security and being very practical with short signatures. Moreover, the confirmation
and disavowal protocols are of (minimal) four moves, and even become non-interactive
without the random oracle model. We also point out a flaw in the scheme of [28].

12



References

[1] D. Boneh and X. Boyen. Short signatures without random oracles and the sdh
assumption in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[2] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. K. Franklin,
editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 41–
55. Springer, 2004.

[3] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. J.
Cryptology, 17(4):297–319, 2004.

[4] J. Boyar, D. Chaum, I. Damg̊ard, and T. P. Pedersen. Convertible undeniable
signatures. In A. Menezes and S. A. Vanstone, editors, CRYPTO, volume 537 of
Lecture Notes in Computer Science, pages 189–205. Springer, 1990.

[5] C. Boyd and E. Foo. Off-line fair payment protocols using convertible signatures.
In K. Ohta and D. Pei, editors, ASIACRYPT, volume 1514 of Lecture Notes in
Computer Science, pages 271–285. Springer, 1998.

[6] E. F. Brickell, editor. Advances in Cryptology - CRYPTO ’92, 12th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 16-20,
1992, Proceedings, volume 740 of Lecture Notes in Computer Science. Springer,
1993.

[7] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In A. Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer
Science, pages 351–368. Springer, 2009.

[8] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 126–144. Springer, 2003.

[9] D. Chaum. Zero-knowledge undeniable signatures. In EUROCRYPT, pages 458–
464, 1990.

[10] D. Chaum and H. V. Antwerpen. Undeniable signatures. In G. Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 212–216.
Springer, 1989.

[11] D. Chaum and T. P. Pedersen. Wallet databases with observers. In Brickell [6],
pages 89–105.

[12] I. Damg̊ard and T. P. Pedersen. New convertible undeniable signature schemes.
In EUROCRYPT, pages 372–386, 1996.

[13] S. D. Galbraith and W. Mao. Invisibility and anonymity of undeniable and con-
firmer signatures. In M. Joye, editor, CT-RSA, volume 2612 of Lecture Notes in
Computer Science, pages 80–97. Springer, 2003.

[14] O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

[15] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In N. P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer
Science, pages 415–432. Springer, 2008.

13



[16] D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In
D. Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science,
pages 21–38. Springer, 2008.

[17] K. Kurosawa and J. Furukawa. Universally composable undeniable signature. In
L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in Computer
Science, pages 524–535. Springer, 2008.

[18] K. Kurosawa and S.-H. Heng. 3-Move undeniable signature scheme. In R. Cramer,
editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages
181–197. Springer, 2005.

[19] K. Kurosawa and S.-H. Heng. Relations among security notions for undeniable
signature schemes. In R. D. Prisco and M. Yung, editors, SCN, volume 4116 of
Lecture Notes in Computer Science, pages 34–48. Springer, 2006.

[20] K. Kurosawa and T. Takagi. New approach for selectively convertible undeniable
signature schemes. In X. Lai and K. Chen, editors, ASIACRYPT, volume 4284 of
Lecture Notes in Computer Science, pages 428–443. Springer, 2006.

[21] F. Laguillaumie and D. Vergnaud. Short undeniable signatures without random
oracles: The missing link. In S. Maitra, C. E. V. Madhavan, and R. Venkatesan,
editors, INDOCRYPT, volume 3797 of Lecture Notes in Computer Science, pages
283–296. Springer, 2005.

[22] J. Monnerat and S. Vaudenay. Generic homomorphic undeniable signatures. In
P. J. Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in Computer Sci-
ence, pages 354–371. Springer, 2004.

[23] J. Monnerat and S. Vaudenay. Undeniable signatures based on characters: How
to sign with one bit. In F. Bao, R. H. Deng, and J. Zhou, editors, Public Key
Cryptography, volume 2947 of Lecture Notes in Computer Science, pages 69–85.
Springer, 2004.

[24] W. Ogata, K. Kurosawa, and S.-H. Heng. The security of the FDH variant of
Chaum’s undeniable signature scheme. IEEE Transactions on Information The-
ory, 52(5):2006–2017, 2006.

[25] T. Okamoto. Provably secure and practical identification schemes and correspond-
ing signature schemes. In Brickell [6], pages 31–53.

[26] D. Pointcheval. Self-scrambling anonymizers. In Y. Frankel, editor, Financial
Cryptography, volume 1962 of Lecture Notes in Computer Science, pages 259–275.
Springer, 2000.

[27] C.-P. Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4(3):161–174, 1991.

[28] T. H. Yuen, M. H. Au, J. K. Liu, and W. Susilo. (Convertible) undeniable signa-
tures without random oracles. In S. Qing, H. Imai, and G. Wang, editors, ICICS,
volume 4861 of Lecture Notes in Computer Science, pages 83–97. Springer, 2007.

14



A A flaw in [28]

We first show that the scheme of Yuen et al [28] does not have invisibility in the sense
of Definition 3. Let us briefly recall their undeniable signature scheme. A signature on
a message m is of the form � = (S1, S2,1, . . . S2,k) where k = 7 (see the final remark of
the paper), and

S1 = g�2U
r, S2,j = V r

j (1 ≤ j ≤ k),

where � is in the secret key, r is random, while g2, U, Vj are publicly-computable
values. Notice that the undeniable signature scheme is not strongly unforgeable, since
�′ = (S1U

t, S2,1V
t
1 , . . . S2,kV

t
k ) is also valid on the same m for an adversarily-chosen

randomness t. (The randomness of the signature becomes r + t.)
The attack on the scheme uses the same idea as the one we present at Sect.1.1.

Namely, the adversary obtains the challenge � (which is either random or valid) on its
challenge query m, and then submits (m,�′) as above for selective conversion. If the
answer is ⊥, then �′ is not valid on m, and so � is not a signature on m. If the answer
is not ⊥, �′ is valid on m, and so is �. The attack is sufficient to show that the scheme
of [28] does not satisfy invisibility in the sense of Definition 3.

However, Yuen et al [28] use a weaker (and not natural) definition of invisibility
which disallows the convert query (m,�′) as above. In that case, the above attack does
not apply, but the invisibility proof (Theorem 2 of [28]) is incorrect in that it makes use
of strong unforgeability. Specifically, in the simulation of the confirmation/disavowal
oracle, the following reasoning is used: “Let ℒ is the set of previously-appeared message-
signature pairs at the signing oracle. Upon receiving a confirmation/disavowal query
(m,�), if (m,�) ∈ ℒ then return 1 and execute the confirmation protocol, otherwise if
(m,�) ∕∈ ℒ then return 0 and execute the disavowal protocol”.

The above simulation is imperfect and incorrect, since if the adversary submits the
above (m,�′) as a confirmation/disavowal query, then (m,�′) ∕∈ ℒ, but valid, while the
simulation will return 0 and execute the disavowal protocol.

In short, if the strong definition of invisibility (Definition 3) is used, the scheme
in [28] is totally broken; while if the weaker definition is used, then the invisibility proof
provided in [28] is incorrect.

We find it is hard to apply our technique (of authenticating the randomness) in
designing the schemes SCUS1, SCUS2 to fix the scheme of Yuen et al, because the latter
is directly designed from scratch, employing no standard encryption and signature
schemes as ours.

B The NIZK proof for selective conversion

We present the concrete NIZK proof of the equations

g = gx11 , g = gx22 , u3/� = ux11 u
x2
2 ,

used by the Convert algorithms of SCUS1 and SCUS2. The proof is originally developed
by Groth and Sahai [15], but here we follows the exposition of Camenisch, Chandran
and Shoup [7] (Section 4.4). Recall that we work on a pairing group ℙG = (G,GT , q =
∣G∣, g, ê : G×G→ GT ).

15



First, a common reference string, which can be kept in the public key of the signer,

is generated as follows: 
1, 
2, 
3
$←G and 
⃗ = (
0, 


′
0, 

′′
0 )

$←G3. Let the common ref-
erence string be crs = (
1, 
2, 
3, 
⃗), and define vectors 
⃗1 = (
1, 1, 
3), 
⃗2 = (1, 
2, 
3).

The prover, with secrets x1, x2, works as follows. It chooses random rij
$← Zq, where

1 ≤ i, j ≤ 2, and computes

�⃗1 = 
⃗x1 ⋅ 
⃗1r11 ⋅ 
⃗2r12 = (
x10 
r111 , 
′x10 
r122 , 
′′x10 
r11+r123 ) ∈ G3,

�⃗2 = 
⃗x2 ⋅ 
⃗1r21 ⋅ 
⃗2r22 = (
x20 
r211 , 
′x20 
r222 , 
′′x20 
r21+r223 ) ∈ G3,

where exponentiations and products of the vectors are understood (as usual) as expo-
nentiations and products of the corresponding components. The NIZK proof is

� =
(
�⃗1, �⃗2, (g

r11
1 , gr121 ), (gr212 , gr222 ), (ur111 ⋅ u

r21
2 , ur121 ⋅ u

r22
2 )
)
∈ G12.

Define E : G × G3 → G3
T sending

(
�, (�1, �2, �3)

)
to
(
ê(�, �1), ê(�, �2), ê(�, �3)

)
,

which is also a bilinear map. To verify whether � =
(
�⃗1, �⃗2, (p1, p2), (p

′
1, p
′
2), (p

′′
1, p
′′
2)
)
∈

G12 proves the equations, one checks whether the following holds

E(g1, �⃗1) = E(g, 
⃗) ⋅ E(p1, 
⃗1) ⋅ E(p2, 
⃗2),

E(g2, �⃗2) = E(g, 
⃗) ⋅ E(p′1, 
⃗1) ⋅ E(p′2, 
⃗2),

E(u1, �⃗1) ⋅ E(u2, �⃗2) = E(u3/�, 
⃗) ⋅ E(p′′1, 
⃗1) ⋅ E(p′′2, 
⃗2).

Derived from [7], the NIZK proof has perfect completeness, statistical soundness,
and computational zero-knowledge (based on the decision linear assumption).

C Security of SCUS2

We consider the securities of SCUS2, which are ensured by the following theorems.

Theorem 7 (Strong unforgeability). The SCUS2 scheme is strongly unforgeable if the
signature scheme BB is suf-cma-secure. Moreover, given a forger ℱ against SCUS2,
there exists another forger ℱ ′ against the BB signature scheme such that

AdvsforgeSCUS2
(ℱ) ≤ Advsuf−cmaBB (ℱ ′),

T(ℱ ′) = O(qconf/dis) ⋅T(ℱ),

where qconf/dis is the total number of confirmation/disavowal queries, and T expresses
the running time.

Proof. The proof is essentially the same as that of Theorem 5, so we just outline the
main ideas here. The forger ℱ ′ first generates the keys (pk2, sk2) for the LE scheme,
which will be used for the simulation of the convert and confirmation/disavowal oracles.
For answering signing queries from ℱ , the forger ℱ ′ utilizes its own signing oracle.
Finally, ℱ outputs the pair

(
m∗, �∗ = (s∗, u∗1, u

∗
2, u
∗
3)
)

satisfying

u∗3
(u∗1)

x1(u∗2)
x2

= g
1

x+H(m∗∥u∗1∥u
∗
2)+ys∗

0 ,

16



so that ℱ ′ in turn outputs(
m∗ ∥ u∗1 ∥ u∗2,

(
s∗,

u∗3
(u∗1)

x1(u∗2)
x2

))
as the forgery in the strong sense of the BB signature, completing the proof.

Theorem 8 (Invisibility). The SCUS2 scheme satisfies invisibility. Moreover, given a
distinguisher D against SCUS2, there exist Adlin and a forger ℱ against SCUS2 such
that

AdvinvSCUS2(D) ≤ AdvdlinG (Adlin) + AdvsforgeSCUS2
(ℱ),

T(Adlin) = O(qconf/dis) ⋅T(D), and T(ℱ) ≈ T(D),

where T expresses the running time, and qconf/dis is the total number of confirma-
tion/disavowal queries D makes.

Proof. The proof follows along the line of that of Theorem 6, except that Adlin gener-
ates the keys for the BB signature scheme, and uses them to simulate the signing and
challenge oracle for D. The rest remains the same.

17


