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Fast Architectures for the ηT Pairing over
Small-Characteristic Supersingular Elliptic Curves

Jean-Luc Beuchat, Jérémie Detrey, Nicolas Estibals, Eiji Okamoto, and Francisco Rodrı́guez-Henrı́quez

Abstract— This paper is devoted to the design of fast parallel
accelerators for the cryptographic ηT pairing on supersingular
elliptic curves over finite fields of characteristics two and three.
We propose here a novel hardware implementation of Miller’s
algorithm based on a parallel pipelined Karatsuba multiplier.
After a short description of the strategies we considered to
design our multiplier, we point out the intrinsic parallelism
of Miller’s loop and outline the architecture of coprocessors
for the ηT pairing over F2m and F3m . Thanks to a careful
choice of algorithms for the tower field arithmetic associated
with the ηT pairing, we manage to keep the pipelined multiplier
at the heart of each coprocessor busy. A final exponentiation
is still required to obtain a unique value, which is desirable
in most cryptographic protocols. We supplement our pairing
accelerators with a coprocessor responsible for this task. An
improved exponentiation algorithm allows us to save hardware
resources.

According to our place-and-route results on Xilinx FPGAs, our
designs improve both the computation time and the area–time
trade-off compared to previoulsy published coprocessors.

Keywords: Tate pairing, ηT pairing, elliptic curve, finite field
arithmetic, Karatsuba multiplier, hardware accelerator, FPGA.

I. INTRODUCTION

In 2000, Mitsunari, Sakai & Kasahara [36], Sakai, Oghishi
& Kasahara [41], and Joux [25] independently showed how
to use bilinear pairings defined over algebraic curves to
solve cryptographic problems of long standing. This discovery
ignited an intensive research that, until today, has produced
an impressive number of pairing-based cryptographic protocol
proposals [13]. Practice has shown that one of the most
efficient options to compute bilinear pairings is to resort to
the Tate pairing operating on supersingular elliptic curves of
low embedding degrees.

Back in 1986, Miller [33], [34] presented an iterative
algorithm that can be adapted to compute the Tate pairing
with linear complexity with respect to the size of the input.
Since then, significant improvements of Miller’s algorithm
were independently proposed in 2002 by Barreto et al. [4] and
Galbraith et al. [17]. One year later, Duursma & Lee presented
a radix-3 variant of Miller’s algorithm especially targeted
at the case of characteristic three [14]. In 2004, Barreto et
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lès-Nancy Cédex, France.

F. Rodrı́guez-Henrı́quez is with the Computer Science Department, Electri-
cal Engineering Department, Centro de Investigación y de Estudios Avanzados
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al. [3] introduced the ηT approach, which further shortens the
loop of Miller’s algorithm. More recently, Hess, Smart, and
Vercauteren generalized these results to ordinary curves [22],
[23], [46].

We extend here the work presented in [10] and propose
novel hardware architectures for computing the ηT pairing
over binary and ternary fields based on parallel pipelined
Karatsuba multipliers and enhanced unified arithmetic oper-
ators. We stress that the modified Tate pairing can be directly
computed from the reduced ηT pairing at almost no extra
cost [7]. Our hardware accelerators are able to compute the
ηT pairing operating on supersingular elliptic curves defined
over F2691 and F3313 in just 18.8 µs and 16.9 µs, respectively
(Table V). We note that these field sizes enjoy an associated
security equivalent to that of 105-bit and 109-bit symmetric-
key cryptosystems, respectively (Table IV).

The main strategies considered to design our parallel
pipelined multiplier are described in Section II. They are in-
cluded in a VHDL code generator that allows us to experiment
on a wide range of operators as well as a variety of design
parameters. Thanks to a judicious choice of algorithms for
performing tower field arithmetic and a careful analysis of the
scheduling, we managed to keep our pipelined units always
busy. This allows us to compute one iteration of Miller’s
algorithm over ternary and binary fields in only 17 and 7 clock
cycles, respectively (Sections III and IV). We summarize the
results obtained from our FPGA implementation and provide
the reader with a thorough comparison against previously
published coprocessors in Section V.

For the sake of concision, we are forced to skip the de-
scription of many important concepts of elliptic curve theory.
We suggest the interested reader to review [44], [47] for an
in-depth coverage of this topic.

II. PARALLEL KARATSUBA MULTIPLIERS

Before delving into the specifics of our pairing coprocessor
architectures, we first detail here the Karatsuba multipliers on
which they extensively rely.

We define the p-ary extension field Fpm as Fp[x]/ (f(x)),
where f is an irreducible degree-m monic polynomial over
Fp. The product of two arbitrary elements of Fpm represented
as p-ary polynomials of degree at most m − 1 is computed
as the polynomial multiplication of the two elements modulo
f . Carefully selecting an irreducible polynomial with low
Hamming weight (i.e. trinomial, tetranomial, etc.) and low
sub-degree allows for a simple modular reduction step.

In this work, due to its subquadratic space complexity, we
opted for a variant of the classical Karatsuba multiplier to
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implement the polynomial product, while a few extra adders
and subtracters over Fp are dedicated to performing the final
reduction modulo f .

A. Variations on the Karatsuba Algorithm

The Karatsuba multiplication [27] is based on the observa-
tion that the polynomial product c = a · b, for a and b ∈ Fpm ,
can be computed as

c = aLbL +
[
(aH + aL)(bL + bH)− (aHbH + aLbL)

]
xn

+ aHbHx2n,

where n = dm2 e, a = aL + xnaH , and b = bL + xnbH .
Note that since we are working with polynomials, there is

no carry propagation. This allows one to split the operands
in a slightly different way: for instance Hanrot and Zim-
mermann [21] suggested to split them into odd- and even-
degree parts. It was adapted to multiplication over F2m by
Fan et al. [15]. Since there is no overlap between the odd and
even parts at the reconstruction step, this different method of
splitting saves approximatively m additions over Fp during the
reconstruction of the product.

Another natural way to generalize the Karatsuba multipli-
cation is to split the operands into three or more parts, in
a classical way (i.e. splitting each operand into contiguous
parts from the lowest to the highest powers of x) or using
a generalized odd/even split (i.e. according to the degree
modulo the number of split parts). By applying this strategy
recursively, in each iteration each polynomial multiplication
is transformed into three or more subproducts of smaller
degree, until all the polynomial operands are reduced to
single coefficients. Nevertheless, practice has shown that it
is better to prune the recursion earlier, performing the lowest-
level multiplications using alternative techniques that are more
compact and/or faster for low-degree operands, such as the so-
called schoolbook method with quadratic complexity, which
has been selected for this work.

B. A Pipelined Architecture for the Karatsuba Multiplier

We pipelined our multiplier architecture by means of op-
tional registers inserted between the computations of the
required subproducts, where the depth of the pipeline can
be adjusted according to the complexity of the application at
hand. This approach allows us to split the critical path of the
whole multiplier structure and therefore increase its operating
frequency.

In order to study a wide range of implementation strate-
gies, we wrote a VHDL code generator, which automatically
produces the description of different variants of Karatsuba
multipliers according to several parameters (field extension
degree, irreducible polynomial, splitting method, etc.). Our
automatic tool was extremely useful for selecting the operator
that showed the highest clock frequency, the smallest area or
a good trade-off between them.

III. REDUCED ηT PAIRING IN CHARACTERISTIC THREE

In the following, we consider the computation of the re-
duced ηT pairing in characteristic three. Table I summarizes
the parameters of the algorithm and of the supersingular
curves. We refer the reader to [3], [8] for more details about
the computation of the ηT pairing. Recall that a final exponen-
tiation is required to obtain a unique value, which is desirable
in the context of cryptographic protocols. As pointed out by
Beuchat et al. [9], the computations of the non-reduced pairing
(i.e. Miller’s algorithm) and of the final exponentiation do not
share the same datapath, and it seems judicious to pipeline
these two tasks using two distinct coprocessors in order to
reduce the computation time and increase the throughput.

A. Computation of Miller’s Algorithm

We rewrote in Algorithm 1 the reversed-loop algorithm in
characteristic three described in [8], denoting each iteration
with parenthesized indices in superscript in order to emphasize
the intrinsic parallelism of the ηT pairing. At each iteration
of Miller’s algorithm, two tasks are performed in parallel,
namely: a sparse multiplication over F36m (lines 6 and 7),
and the computation of the coefficients for the next sparse
operation (lines 8 to 10). We say that an operand in F36m is
sparse when some of its coefficients are trivial (i.e. either zero,
one, or minus one).

Algorithm 1 Computation of the reduced ηT pairing in
characteristic three.†

Input: P = (xP , yP ) and Q = (xQ, yQ) ∈ E(F3m)[`].
Output: ηT (P,Q)M ∈ F∗36m .

1. x
(0)
P ← xp − νb; y

(0)
p ← −µbyP ;

2. x
(0)
Q ← xQ; y

(0)
Q ← −λyQ;

3. t(0) ← x
(0)
P + x

(0)
Q ;

4. R(−1) ← λy
(0)
P · t(0) − λy

(0)
Q σ − λy(0)

P ρ;

5. for i = 0 to (m− 1)/2 do
6. S(i) ← −

(
t(i)
)2

+ y
(i)
P y

(i)
Q σ − t(i)ρ− ρ2;

7. R(i) ← R(i−1) · S(i);

8. x
(i+1)
P ← 3

√
x

(i)
P ; y

(i+1)
P ← 3

√
y
(i)
P ;

9. x
(i+1)
Q ←

(
x

(i)
Q

)3

; y
(i+1)
Q ←

(
y
(i)
Q

)3

;

10. t(i+1) ← x
(i)
P + x

(i)
Q ;

11. end for

12. return
(
R((m−1)/2)

)M
;

†Intermediate variables in uppercase belong to F36m , those in low-
ercase to F3m .

1) Sparse Multiplication over F36m : The intermediate re-
sult R(i−1) is multiplied by the sparse operand S(i) (Al-
gorithm 1, lines 6 and 7). This operation is easier than a
standard multiplication over F36m , but the choice of the sparse
multiplication algorithm requires careful attention. Bertoni et
al. [6] and Gorla et al. [18] took advantage of Karatsuba
multiplication and Lagrange interpolation, respectively, to re-
duce the number of multiplications over F3m at the expense
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TABLE I
SUPERSINGULAR CURVES OVER F3m AND F2m .

Characteristic three Characteristic two

Base field F3m , where m is coprime to 6. F2m , where m is an odd integer.

Curve equation y2 = x3 − x+ b, with b ∈ {−1, 1}. y2 + y = x3 + x+ b, with b ∈ {0, 1}.

Number of
rational points

N = 3m + 1 + µb3(m+1)/2, with

µ =

{
+1 if m ≡ 1, 11 (mod 12), and
−1 if m ≡ 5, 7 (mod 12).

N = 2m + 1 + ν2(m+1)/2, with

δ =

{
b if m ≡ 1, 7 (mod 8),
1− b if m ≡ 3, 5 (mod 8),

and ν = (−1)δ .
Embedding degree k = 6 k = 4

ψ :E(F3m)[`]−→E(F36m)[`] \ E(F3m)[`]
(x, y) 7−→ (ρ− x, yσ)

ψ :E(F2m)[`]−→E(F24m)[`] \ E(F2m)[`]
(x, y) 7−→ (x+ s2, y + sx+ t)Distortion map

with σ ∈ F32 satisfying σ2 = −1,
and ρ ∈ F33 satisfying ρ3 = ρ+ b.

with s ∈ F22 satisfying s2 = s+ 1,
and t ∈ F24 satisfying t2 = t+ s.

Tower field
F36m = F3m [σ, ρ]

∼= F3m [X,Y ]/(X2 + 1, Y 3 − Y − b)
F24m = F2m [s, t]

∼= F2m [X,Y ]/(X2 +X + 1, Y 2 + Y +X)

Final
exponentiation

M =
(
33m − 1

)
· (3m + 1)·(

3m + 1− µb3(m+1)/2
) M =

(
22m − 1

)
·
(

2m + 1− ν2(m+1)/2
)

Parameters of
Algorithms 1 and 3

λ =

{
+1 if m ≡ 7, 11 (mod 12),
−1 if m ≡ 1, 5 (mod 12),

ν =

{
+1 if m ≡ 5, 11 (mod 12), and
−1 if m ≡ 1, 7 (mod 12).

α =

{
0 if m ≡ 3 (mod 4),
1 if m ≡ 1 (mod 4),

β =

{
b if m ≡ 1, 3 (mod 8), and
1− b if m ≡ 5, 7 (mod 8).

of several additions. (Note that Gorla et al. study standard
multiplication over F36m in [18], but extending their approach
to sparse multiplication is straightforward.) In order to keep
the pipeline of a Karatsuba multiplier busy, we would have
to embed in our processor a large multioperand adder (up to
twelve operands for the scheme proposed by Gorla et al.) and
several multiplexers to deal with the irregular datapath. This
would negatively impact the area and the clock frequency, and
we prefer considering the algorithm discussed by Beuchat et
al. in [11] which gives a better trade-off between the number
of multiplications and additions over the underlying field
(Algorithm 2): it involves 17 multiplications and 29 additions
over F3m to compute S(i) and R(i−1) · S(i).

We suggest to take advantage of a parallel Karatsuba
multiplier with seven pipeline stages to implement Miller’s
algorithm. Since the algorithm we selected for sparse multipli-
cation over F36m requires at most the addition of four elements
of F3m , it suffices to complement the multiplier with a four-
operand adder to compute s(i)3 , a(i)

j , and r
(i)
j , 0 ≤ j ≤ 5, as

shown in Figure 1. The second loop of Algorithm 2 (lines 13
to 16) requires a small amount of additional hardware. Since
the first two multiplications of the loop involve r

(i−1)
2j and

r
(i−1)
2j+1 , respectively, we compute s(i)j on-the-fly by means of

an accumulator. Furthermore, it seems convenient to store p(i)
6 ,

p
(i)
7 , and s(i)3 in a circular shift register.
We managed to find a scheduling that allows us to start a

new multiplication over F3m at each clock cycle, thus keeping
the pipeline busy and computing an iteration of Miller’s
algorithm in 17 clock cycles as depicted in Figure 2. It is
worth noticing that the cost of additions over F3m is hidden
and the number of clock cycles depends only on the amount
of multiplications over F3m . We easily identify five datapaths
(denoted by the numerals À to Ä in Figures 1 and 2) between
the output of the four-operand adder and the inputs of the
parallel multiplier.

Specific attention is needed to design the register file storing
the coefficients of R(i) and the intermediate variables a(i)

j ,
0 ≤ j ≤ 6, of the sparse multiplication algorithm. According
to our scheduling scheme, we have to read simultaneously up
to three variables from the register file. Thus, we decided to
implement it by means of two blocks of Dual-Ported RAM
(DPRAM):

• The first one is connected to input M0 of the parallel
multiplier and input A0 of the four-operand adder, and
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P ← −µbyP ,

r
(i)
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r

(i)
5 ← p

(i)
14 + p

(i)
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(i)
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(i)
5 ,

r
(i)
2 ← −p

(i)
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(i)
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2 ,
r

(i)
3 ← p

(i)
11 + p

(i)
13 + p

(i)
12 − a

(i)
3 ,

r
(i)
0 ← −p

(i)
8 + p

(i)
9 + 0− ba(i)

0 ,
r

(i)
1 ← p

(i)
8 + p

(i)
10 + p

(i)
9 − ba

(i)
1

a
(i)
0 ← 0 + p

(i)
4 + 0 + r

(i−1)
2 ,

a
(i)
1 ← r

(i−1)
3 + p

(i)
5 + 0 + 0,

a
(i)
4 ← r

(i−1)
4 + p

(i)
2 + 0 + r

(i−1)
0 ,

a
(i)
5 ← r

(i−1)
5 + p

(i)
3 + 0 + r

(i−1)
1 ,

a
(i)
2 ← br

(i−1)
4 + p

(i)
0 + 0 + a

(i)
0 ,

a
(i)
3 ← br

(i−1)
5 + p

(i)
1 + 0 + a

(i)
1 ,

s
(i)
3 ← 0 + p

(i)
7 + p

(i)
6 + 0,

r
(i−1)
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(i)
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P

y
(i+1)
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Q

3
,

x
(i+1)
Q ←

x(i)
Q

3

s
(i)
0 ← −r

(i−1)
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s

(i)
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(i−1)
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Fig. 1. Coprocessor for the ηT pairing in characteristic three. (N.B. All control bits ci belong to {0, 1}.)
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Fig. 2. Scheduling of Miller’s algorithm in characteristic three.
(N.B. The numerals À to Ä refer to the datapaths between the output of the four-operand adder and the inputs of the parallel multiplier in Figure 1.)

stores the coefficients of R(i).
• According to our scheduling (Figure 2), the second

DPRAM block provides the four-operand adder with its
fourth input, namely a

(i)
j , 0 ≤ j ≤ 5, and r

(i−1)
j ,

0 ≤ j ≤ 2.

2) Computation of the Sparse Operand: The second task
consists in computing the coefficients of the sparse operand
S(i+1) required for the next iteration of Miller’s algorithm
(Algorithm 1, lines 8 to 10). Two cubings and an addition
over F3m allow us to update the coordinates of point P and to
determine the coefficient t(i+1) of the sparse operand S(i+1),
respectively.

Recall that the ηT pairing over F3m comes in two flavors:
the original one involves a cubing over F36m after each sparse
multiplication. Barreto et al. [3] explained how to get rid
of that cubing at the price of two cube roots over F3m to
update the coordinates of point Q. It is essential to consider
such an algorithm here, as an extra cubing over F36m would
put even more strain on the first task (which is already the
most expensive one). According to our results, the critical path
of the circuit is never located in a cube root operator when
pairing-friendly irreducible trinomials or pentanomials [2],
[20] are used to define F3m . If by any chance such polynomials
are not available for the considered extension of F3 and the
critical path is in the cube root, it is always possible to pipeline
this operation. Therefore, the cost of cube roots is hidden by

the first task.
The hardware implementation is rather straightforward (Fig-

ure 1): four registers, a cubing operator, and a cube root
operator allow us to store and update the coordinates of points
P and Q. Then, a two-operand adder computes the sum of
x

(i)
P and x

(i)
Q , and the result t(i) is memorized in a fifth

register. Multiplexers select the inputs of the parallel multiplier
according to our scheduling.

3) Initialization: The initialization step of the ηT pairing
(Algorithm 1, lines 1 and 2) involves a small amount of
specific hardware in order to compute x

(0)
P , y(0)

P , x(0)
Q , and

y
(0)
Q . Note that we are able to send t(i), λy(i)

P , and −λy(i)
Q

to input M1 of the parallel multiplier (Figure 1). Assuming
that the constants 0, 1, and 2 are stored in the DPRAM block
connected to input M0, we compute the coefficients of R(−1)

by means of six multiplications over F3m :

r
(−1)
0 = t(0) · λy(0)

P , r
(−1)
3 = 0 · t(0) = 0,

r
(−1)
1 = 1 ·

(
−λy(0)

Q

)
, r

(−1)
4 = 0 · t(0) = 0, and

r
(−1)
2 = 2 · λy(0)

P = −λy(0)
P , r

(−1)
5 = 0 · t(0) = 0.

Loading the coordinates of points P and Q and performing
the initialization step involves 17 clock cycles (i.e. exactly
the same number of clock cycles as an iteration of Miller’s
algorithm). Therefore, our coprocessor returns R((m−1)/2)

after 17 · (m+ 3)/2 clock cycles.
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Algorithm 2 Sparse multiplication over F36m .

Input: b ∈ {−1, 1}; t(i), y(i)
P , and y(i)

Q ∈ F3m ; and
R(i−1) ∈ F36m .

Output: R(i) = R(i−1) · S(i) ∈ F36m , where
S(i) = −

(
t(i)
)2

+ y
(i)
P y

(i)
Q σ − t(i)ρ− ρ2.

1. for j = 0 to 5 do
2. p

(i)
j ← r

(i−1)
j · t(i);

3. end for
4. p

(i)
6 ← t(i) · t(i); p(i)

7 ← −y
(i)
P · y

(i)
Q ;

5. s
(i)
3 ← p

(i)
6 + p

(i)
7 ;

6. a
(i)
0 ← r

(i−1)
2 + p

(i)
4 ;

7. a
(i)
1 ← r

(i−1)
3 + p

(i)
5 ;

8. a
(i)
2 ← br

(i−1)
4 + p

(i)
0 + a

(i)
0 ;

9. a
(i)
3 ← br

(i−1)
5 + p

(i)
1 + a

(i)
1 ;

10. a
(i)
4 ← r

(i−1)
0 + r

(i−1)
4 + p

(i)
2 ;

11. a
(i)
5 ← r

(i−1)
1 + r

(i−1)
5 + p

(i)
3 ;

12. for j = 0 to 2 do
13. p

(i)
3j+8 ← r

(i−1)
2j · p(i)

6 ;
14. p

(i)
3j+9 ← r

(i−1)
2j+1 · p

(i)
7 ;

15. s
(i)
j ← −r

(i−1)
2j − r(i−1)

2j+1 ;
16. p

(i)
3j+10 ← s

(i)
j · s

(i)
3 ;

17. end for

18. r
(i)
0 ← −ba

(i)
0 − p

(i)
8 + p

(i)
9 ;

19. r
(i)
1 ← −ba

(i)
1 + p

(i)
8 + p

(i)
9 + p

(i)
10 ;

20. r
(i)
2 ← −a

(i)
2 − p

(i)
11 + p

(i)
12 ;

21. r
(i)
3 ← −a

(i)
3 + p

(i)
11 + p

(i)
12 + p

(i)
13 ;

22. r
(i)
4 ← −a

(i)
4 − p

(i)
14 + p

(i)
15 ;

23. r
(i)
5 ← −a

(i)
5 + p

(i)
14 + p

(i)
15 + p

(i)
16 ;

24. return r
(i)
0 + r

(i)
1 σ + r

(i)
2 ρ+ r

(i)
3 σρ+ r

(i)
4 ρ2 + r

(i)
5 σρ2;

B. Final Exponentiation

The second and last stage in the computation of the ηT
pairing is the final exponentiation, where the result of Miller’s
algorithm R((m−1)/2) = ηT (P,Q) is raised to the M -th power
(Algorithm 1, line 12). This exponentiation is necessary since
the non-reduced pairing ηT (P,Q) is only defined up to N -th
powers in F∗36m .

1) Improved Algorithm: In order to compute this final
exponentiation, we use the algorithm presented by Beuchat
et al. in [8]. This method exploits the special form of the
exponent M (see Table I) to achieve better performances than
with a classical square-and-multiply algorithm. Among other
computations, this final exponentiation involves the raising of
an element of F∗36m to the power of 3(m+1)/2, which Beuchat
et al. [8] perform by computing (m+1)/2 successive cubings
over F∗36m . Each of these cubings requiring 6 cubings and 6
additions over F3m , the total cost of this step is 3m+3 cubings
and 3m+ 3 additions.

We present here a new method for computing U3(m+1)/2

for U = u0 + u1σ + u2ρ+ u3σρ+ u4ρ
2 + u5σρ

2 ∈ F∗36m by
exploiting the linearity of the Frobenius map (i.e. cubing in
characteristic three) to reduce the number of additions. Indeed,

noting that σ3i

= (−1)iσ, ρ3i

= ρ + ib and (ρ2)3
i

= ρ2 −
ibρ+ i2, we obtain the following formula for U3i

, depending
on the value of i:

U3i

= (u0 − ε1u2 + ε2u4)3
i

+ ε3 (u1 − ε1u3 + ε2u5)3
i

σ

+ (u2 + ε1u4)3
i

ρ + ε3 (u3 + ε1u5)3
i

σρ

+ u3i

4 ρ
2 + ε3u

3i

5 σρ
2,

with ε1 = −ib mod 3, ε2 = i2 mod 3, and ε3 = (−1)i. Thus,
according to the value of (m+1)/2 modulo 6, the computation
of U3(m+1)/2

will still require 3m+3 cubings but at most only
6 additions or subtractions over F3m .

2) Hardware Implementation: Our first attempt at comput-
ing the final exponentiation was to use the unified arithmetic
operator introduced by Beuchat et al. [8]. Unfortunately, due
to the sequential scheduling inherent to this operator, it turned
out that the final exponentiation algorithm required more clock
cycles than the computation of Miller’s algorithm by our
coprocessor. We therefore had to consider a slightly more
parallel architecture.

Noticing that the critical operations in the final exponen-
tiation algorithm were multiplication and long sequences of
cubings over F3m , we designed the coprocessor for arithmetic
over F3m depicted in Figure 3. Besides a register file im-
plemented by means of DPRAM, our coprocessor embeds a
parallel–serial multiplier [45] processing D coefficients of an
operand at each clock cycle (typically D = 13 or 14), along
with a novel unified operator supporting addition, subtraction,
accumulation, Frobenius map (i.e. cubing), and double Frobe-
nius map (i.e. raising to the ninth power). This architecture
allowed us to efficiently implement the final exponentiation
algorithm described for instance in [8], while taking advantage
of the improvement proposed above.

3) Using Inverse Frobenius Maps: We adapt here the idea
behind the square-root-and-multiply algorithm for exponenti-
ation over binary finite fields given by Rodrı́guez-Henrı́quez
et al. in [37].

From the final exponentiation algorithm given in [8], it
can be noticed that Frobenius maps over F3m (i.e. cubings)
are needed only to perform an inversion over F∗3m [8, Algo-
rithms 10 and 11] and for raising an element of F∗36m to the
power of 3(m+1)/2, as already discussed in Section III-B.1.

As far as the inversion is concerned, note that the first two
lines of [8, Algorithm 10] are dedicated to computing u =
d(3m−3)/2 thanks to successive cubings and multiplications,
where d ∈ F∗3m is the element to be inverted. It is actually also
possible to compute that same element by means of only cube
roots and multiplications by making use of the identity 3i√

z =
z3m−i

for all z ∈ F3m , derived from Fermat’s little theorem.
Indeed, considering the family of elements (wi)0≤i<m such
that wi = d(3m−3m−i)/2, we note that w1 = d3m−1

= 3
√
d and

u = d(3m−3)/2 = wm−1. Since for any two integers n and n′

we also have

wn+n′ = d(3m−3m−n)/2 · d(3m−n−3m−n−n′ )/2 = wn · 3n√
wn′ ,

it follows that, given an addition chain of length l for m− 1,
we can compute u = wm−1 in l multiplications and m − 1
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Fig. 3. Coprocessor for the final exponentiation of the ηT pairing in characteristic three. (N.B. All control bits ci belong to {0, 1}.)

cube roots over F3m . This has to be compared to the l mul-
tiplications and m− 1 cubings required in [8, Algorithm 10]
to obtain the same u.

As for the raising of an element of F∗36m to the power of
3(m+1)/2, also part of the final exponentiation algorithm, we
simply apply Fermat’s little theorem once more to see that
z3(m+1)/2

= 3(m−1)/2√
z for all z ∈ F3m . Thus, we can directly

trade the 3m+3 required cubings (as explained in the analysis
given in Section III-B.1) for 3m− 3 cube roots over F3m .

Hence, from the previous considerations, it is possible to re-
place all Frobenius maps (cubings) by inverse Frobenius maps
(cube roots) in the final exponentiation. This is particularly
interesting since the irreducible polynomial used to represent
F3m was carefully chosen to allow for low-complexity cubings
and cube roots, as both are required for the computation of the
non-reduced ηT pairing. Furthermore, it appears that for the
considered irreducible trinomials, the complexity of the cube
root is always lower than that of the cubing. This is shown in
Table II, where the third column reports the total number of
required additions/subtractions over F3, and the fourth column
indicates the largest number of elements of F3 that need to be
added/subtracted to one another to compute a coefficient of
the result (for instance, cubing over F397 requires summing at
most four elements of F3 at a time).

In order to assess the impact of replacing the Frobenius
and double-Frobenius operators by inverse-Frobenius (cube
root) and double-inverse-Frobenius (ninth root) operators in
the architecture presented in Figure 3, we implemented the
different variants on Xilinx Virtex-4 LX FPGAs (xc4vlx40-
11). The place-and-route results, reported in the last two
columns of Table II, show that the use of cube roots usually
shortens the critical path, even though the circuits are then
slightly larger, as the cubing formulae generally involve more
common subexpressions which can then share the same logic
and decrease the total resource usage. All in all, it appears
that relying on inverse Frobenius maps to compute the final
exponentiation is by and large an effective optimization.

TABLE II
FROBENIUS VS. INVERSE FROBENIUS MAPS IN CHARACTERISTIC THREE,

AND THEIR INFLUENCE ON THE COPROCESSOR OF FIGURE 3.

Field representation Op.
Total # Max. # of Area Freq.
of add. elements [slices] [MHz]

F3[x]/(x97 + x16 − 1)
(·)3 106 4 4704 185
3√· 96 3 4722 192

F3[x]/(x167 − x71 + 1)
(·)3 229 5 7607 160
3√· 166 3 7682 175

F3[x]/(x193 + x64 − 1)
(·)3 234 4 9265 179
3√· 192 3 9092 179

F3[x]/(x239 − x5 + 1)
(·)3 242 4 11589 179
3√· 238 3 11848 177

F3[x]/(x313 − x187 − 1)
(·)3 558 6 15073 141
3√· 312 3 15117 172

IV. REDUCED ηT PAIRING IN CHARACTERISTIC TWO

An approach similar to that of characteristic three allowed
us to design a parallel coprocessor for the reduced ηT pairing
in characteristic two. The supersingular curves and the param-
eters of the algorithm are summarized in Table I.

A. Computation of Miller’s Algorithm

Applying the strategy we used for characteristic three to the
case of characteristic two, we adopted the reversed-loop algo-
rithm described in [7], which we recall here in Algorithm 3.
However, the scheduling turns out to be slightly more difficult
than in characteristic three since we have to perform three
tasks in parallel at each iteration of Miller’s algorithm.

1) Sparse Multiplication over F24m : The intermediate re-
sult F (i−1) computed during the previous iteration is multi-
plied by the sparse operand G(i) = g

(i)
0 +g(i)

1 s+t by means of
a parallel Karatsuba multiplier (Algorithm 3, lines 13 and 14).
This operation is easier than the standard multiplication over
F24m and requires only 6 multiplications and 14 additions over
the base field F2m , as explained in Algorithm 4. Thanks to the
careful scheduling given in Figure 5, the intermediate variables
a
(i)
0 , a(i)

1 , and a(i)
2 (Algorithm 4, lines 1 and 2) are generated
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c21

c20

β

f
(−1)
j

y
(i+1)
P

c1 0 1

x
(i+1)
Q

y
(i+1)
Q

x
(i+1)
P

c9

α

c4u(i+1) c5 v(i+1)

c11

c12

c19

c18–c17

c14–c13

c15

c16

c10 1 0

x
(i+2)
Q ←

x(i+1)
Q

2
, and y(i+2)

Q ←
y(i+1)
Q

2

x
(i+2)
P ←

√√√√x(i+1)
P , y(i+2)

P ←
√√√√y(i+1)

P ,

c220 1

c23

c26 0 1

m
(i)
0 or m(i)

3

A1 A2 A3A0

c25

f
(i)
j , 0 ≤ j ≤ 3

0110 00

(5 pipeline stages)

M0 M1

Fully parallel Karatsuba multiplier

c6

c7

w(i+1)

c8g
(i)
0

11

01

10

00

1

c3 0

c2

1

0

1

xP , xQ, yP , and yQ

c0

g
(0)
2

α

g
(i)
1

0100 10

u(i+1) · v(i+1)

v(i+1) · u(i+1),

m
(i)
0 ← g

(i)
0 · f

(i−1)
0 , m(i)

1 ← g
(i)
1 · f

(i−1)
1 ,

m
(i)
2 ← a

(i)
0 · a

(i)
1 ,

m
(i)
5 ← a

(i)
0 · a

(i)
2

a
(i)
0 ← g

(i)
0 + g

(i)
1 a

(i)
1 ← f

(i−1)
0 + f

(i−1)
1 or

a
(i)
2 ← f

(i−1)
2 + f

(i−1)
3

g
(i+1)
0 ← u(i+1) · v(i+1) + w(i+1),

g
(i+1)
1 ← u(i+1) + v(i+1) + α,

g
(0)
2 ← v(0) +

x(0)
P

2

w(i+2)← y
(i+2)
P + y

(i+2)
Q + β

v(i+2)← x
(i+2)
Q + α, and

u(i+2)← x
(i+2)
P + α,

f
(−1)
3 ← 0

f
(−1)
1 ← g

(0)
1 + 1,

f
(−1)
0 ← g

(0)
0 + g

(0)
2 ,

f
(−1)
2 ← 1, and

and f (i−1)
3

0, f (i−1)
2 ,

FI
FO

m
(i)
3 ← g

(i)
0 · f

(i−1)
2 , m(i)

4 ← g
(i)
1 · f

(i−1)
3 ,

0 1 c24

f
(i−1)
3

f
(i)
0 ← f

(i−1)
3 + 0 +m

(i)
0 +m

(i)
1 ,

f
(i)
1 ← f

(i−1)
3 + f

(i−1)
2 +m

(i)
0 +m

(i)
2 ,

f
(i)
2 ← f

(i−1)
0 + f

(i−1)
2 +m

(i)
3 +m

(i)
4 ,

f
(i)
3 ← f

(i−1)
1 + f

(i−1)
3 +m

(i)
3 +m

(i)
5

√
· (·)2

f
(i−1)
1

f
(i)
0 , f (i)

1 ,

f
(i−1)
0 , and FI

FO

Fig. 4. Coprocessor for the ηT pairing in characteristic two. (N.B. All control bits ci belong to {0, 1}.)
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Algorithm 3 Computation of the reduced ηT pairing in
characteristic two.†

Input: P = (xP , yP ), Q = (xQ, yQ) ∈ E(F2m)[`].
Output: ηT (P,Q)M ∈ F∗24m .

1. x
(0)
P ← xP ; y

(0)
P ← yP + δ̄;

2. x
(0)
Q ← xQ; y

(0)
Q ← yQ;

3. u(0) ← x
(0)
P + α; v(0) ← x

(0)
Q + α;

4. w(0) ← y
(0)
P + y

(0)
Q + β;

5. g
(0)
0 ← u(0) · v(0) + w(0);

6. g
(0)
1 ← u(0) + v(0) + α; g(0)

2 ← v(0) +
(
x

(0)
P

)2

;

7. x
(1)
P ←

√
x

(0)
P ; y

(1)
P ←

√
y
(0)
P ;

8. x
(1)
Q ←

(
x

(0)
Q

)2

; y
(1)
Q ←

(
y
(0)
Q

)2

;

9. u(1) ← x
(1)
P + α; v(1) ← x

(1)
Q + α;

10. w(1) ← y
(1)
P + y

(1)
Q + β;

11. F (−1) ←
(
g
(0)
0 + g

(0)
2

)
+
(
g
(0)
1 + 1

)
s+ t;

12. for i = 0 to m−1
2 do

13. G(i) ← g
(i)
0 + g

(i)
1 s+ t;

14. F (i) ← F (i−1) ·G(i);

15. g
(i+1)
0 ← u(i+1) · v(i+1) + w(i+1);

16. g
(i+1)
1 ← u(i+1) + v(i+1) + α;

17. x
(i+2)
P ←

√
x

(i+1)
P ; y

(i+2)
P ←

√
y
(i+1)
P ;

18. x
(i+2)
Q ←

(
x

(i+1)
Q

)2

; y
(i+2)
Q ←

(
y
(i+1)
Q

)2

;

19. u(i+2) ← x
(i+2)
P + α; v(i+2) ← x

(i+2)
Q + α;

20. w(i+2) ← y
(i+2)
P + y

(i+2)
Q + β;

21. end for

22. return
(
F ((m−1)/2)

)M
;

†Intermediate variables in uppercase belong to F24m , those in low-
ercase to F2m .

Algorithm 4 Sparse multiplication over F24m [7].

Input: G(i) = g
(i)
0 + g

(i)
1 s+ t ∈ F24m and

F (i−1) = f
(i−1)
0 + f

(i−1)
1 s+ f

(i−1)
2 t+ f

(i−1)
3 st ∈ F24m .

Output: F (i) = G(i) · F (i−1).
1. a

(i)
0 ← g

(i)
0 + g

(i)
1 ; a

(i)
1 ← f

(i−1)
0 + f

(i−1)
1 ;

2. a
(i)
2 ← f

(i−1)
2 + f

(i−1)
3 ;

3. m
(i)
0 ← g

(i)
0 · f

(i−1)
0 ; m(i)

1 ← g
(i)
1 · f

(i−1)
1 ;

4. m
(i)
2 ← a

(i)
0 · a

(i)
1 ; m

(i)
3 ← g

(i)
0 · f

(i−1)
2 ;

5. m
(i)
4 ← g

(i)
1 · f

(i−1)
3 ; m(i)

5 ← a
(i)
0 · a

(i)
2 ;

6. f
(i)
0 ← m

(i)
0 +m

(i)
1 + f

(i−1)
3 ;

7. f
(i)
1 ← m

(i)
0 +m

(i)
2 + f

(i−1)
2 + f

(i−1)
3 ;

8. f
(i)
2 ← m

(i)
3 +m

(i)
4 + f

(i−1)
0 + f

(i−1)
2 ;

9. f
(i)
3 ← m

(i)
3 +m

(i)
5 + f

(i−1)
1 + f

(i−1)
3 ;

10. return f
(i)
0 + f

(i)
1 s+ f

(i)
2 t+ f

(i)
3 st;
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v(i+2) g
(i+1)
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1 a

(i+1)
0 g

(i+1)
0 g

(i+1)
1 a

(i+1)
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0 f

(i)
1 a

(i+1)
1 f

(i)
2 f

(i)
3 a

(i+1)
2

Fig. 5. Scheduling of Miller’s algorithm in characteristic two.

on-the-fly by means of two accumulators. (Note that in order to
share the control bits c15 and c16 between both accumulators,
we compute a(i)

0 twice at each iteration of Miller’s algorithm.)
The addition of at most four operands belonging to F2m allows
for computing f (i)

j , 0 ≤ j ≤ 3 (Algorithm 4, lines 6 to 9).
It is worth mentioning that the datapath between the output

of the four-operand adder and the parallel multiplier is much
simpler than in characteristic three: it suffices to delay f

(i)
j ,

0 ≤ j ≤ 3, by one clock cycle and there is therefore no need
for a memory block to store the operands of the multiplier.
Dealing with inputs A0 and A1 of the four-operand adder
is unfortunately more difficult because of data dependencies
between the coefficients of F (i−1) and F (i) in Algorithm 4.
According to our scheduling, we update the coefficients of
F (i) in the following order: f (i)

0 , f (i)
1 , f (i)

2 , and eventually f (i)
3 .

Since f (i)
2 and f (i)

3 depend on f (i−1)
0 and f (i−1)

1 , respectively,
we have to keep a copy of those values until the end of the i-th
iteration of Miller’s algorithm. Instead of including a DPRAM
block in our design, we propose a solution based on two small
FIFOs (see Figure 6 for details). An advantage of characteristic
two over characteristic three is that the register file is smaller
in terms of circuit area and requires fewer control bits.

2) Computation of g0 and g1: Both coefficients g(i+1)
0 and

g
(i+1)
1 (Algorithm 3, lines 15 and 16) are involved in the

next sparse multiplication and thus have to be computed in
beforehand. The product u(i+1) · v(i+1) is evaluated by means
of our parallel Karatsuba multiplier. Then, two-operand adders
allow for working out g(i+1)

0 and g(i+1)
1 .

3) Computation of u, v, and w: The three values u(i+2),
v(i+2), and w(i+2) (Algorithm 3, lines 17 to 20) will be
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Fig. 6. Contents of the register file of our coprocessor for the ηT pairing in characteristic two.

required to calculate g
(i+2)
0 and g

(i+2)
1 during the next iter-

ation of Miller’s algorithm. Here we have to work with the
coordinates of points P and Q that are stored in a FIFO
and updated by means of squaring and square-root operators,
respectively (see Section IV-A.6). Then, an accumulator allows
for computing w(i+2) in two clock cycles. Depending on the
values of α and β, 1-bit adders (i.e. XOR gates) are necessary
to calculate the least significant bit of u(i+2), v(i+2), and
w(i+2).

4) Choosing the Adequate Karatsuba Multiplier: In these
settings, a Karatsuba multiplier with 5 pipeline stages can be
kept busy during the computation of the main loop, as shown
in Figure 5. Since we have to carry out 7 multiplications over
F2m at each iteration, the calculation time for the full loop is
equal to 7·(m+1)/2 clock cycles. It is again crucial to consider
an algorithm with inverse Frobenius maps (i.e. square roots)
in order to avoid squaring F (i) at each iteration of Miller’s
algorithm (see for instance [7] for a survey of algorithms
for the Tate pairing over supersingular curves in characteristic
two). Such an operation would lengthen the computation time
and pipeline bubbles would be inserted in the multiplier.

5) Initialization: The initialization step requires specific
attention. In order to start multiplying u(0) by v(0) as soon
as possible (Algorithm 3, line 5), we load the coordinates of

points P and Q in the following order: xP , xQ, yP , and yQ.
Thus, u(0) and v(0) are available after two clock cycles. Thanks
to this scheduling, we complete the initialization step in 15
clock cycles.

6) Irreducible Pentanomials Suitable for Low-Complexity
Square-Root Computation: Although irreducible trinomials
allowing for simple computations of squarings and square
roots exist in some binary finite fields, as detailed in [37],
this was not the case for several fields considered in this work
(see Table III). To tackle this issue, we present here a novel
family of irreducible square-root-friendly pentanomials that,
to the best of our knowledge, has not been proposed before
in the literature.

Let m and d be two odd positive integers with d < m/2
and such that the degree-m monic polynomial

f(x) = xm + xm−d + xm−2d + xd + 1

is irreducible over F2. We then represent the binary extension
field F2m as F2[x]/ (f(x)).

Note that, reducing modulo f , we have xm+2d+1 +xm+1 +
xm−2d+1 + x3d+1 = x, where all the exponents on the left-
hand side are even. It then follows that

√
x = x

m+2d+1
2 + x

m+1
2 + x

m−2d+1
2 + x

3d+1
2 .
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Therefore, using this expression for
√
x, we can compute the

square root of an element a ∈ F2m as [16]

√
a =

m−1
2∑
i=0

a2ix
i +
√
x

m−3
2∑
i=0

a2i+1x
i mod f(x).

Furthermore, one can show that if (2m−1)/7 ≤ d ≤ (2m+
1)/5 then the complete computation of the square root (i.e.
including the reduction modulo f ) will require the addition of
at most three elements of F2 at a time for each coefficient of
the result. And finally, choosing d ≥ (m−1)/6 ensures that a
squaring will involve only additions of at most four operands.

As reported in Table III, three pentanomials of this family
have been selected to represent the finite fields F2557 , F2613 ,
and F2691 , with d = 197, 185, and 243, respectively.

TABLE III
FROBENIUS VS. INVERSE FROBENIUS MAPS IN CHARACTERISTIC TWO.

Field representation Op.
Total # Max. # of
of add. elements

F2[x]/(x239 + x81 + 1)
(·)2 159 3√
· 119 2

F2[x]/(x313 + x79 + 1)
(·)2 195 3√
· 156 2

F2[x]/(x457 + x61 + 1)
(·)2 258 3√
· 228 2

F2[x]/(x557 + x360 + x197 + x163 + 1)
(·)2 752 4√
· 688 3

F2[x]/(x613 + x428 + x243 + x185 + 1)
(·)2 883 4√
· 733 3

F2[x]/(x691 + x448 + x243 + x205 + 1)
(·)2 932 4√
· 849 3

B. Final Exponentiation

The final exponentiation (Algorithm 3, line 22) is carried
out according to the algorithms proposed in [7] and [42], [43]
for ν = 1 and ν = −1, respectively. We took advantage of the
algorithm introduced in [12] when raising to the (2m + 1)-st
power over F24m . Here again, the linearity of the Frobenius
map allows us to reduce the number of additions when
computing U2(m+1)/2

for U = u0 + u1s+ u2t+ u3st ∈ F∗24m .
Noting that s2

i

= s + γ1 and t2
i

= t + γ1s + γ2, where
γ1 = i mod 2 and γ2 = b i2c mod 2, we obtain the following
formula for U2i

, depending on the value of i modulo 4:

U2i

= (u0 + γ1u1 + γ2u2 + γ3u3)2
i

+(u1 + γ1u2 + γ2u3)2
i

s

+(u2 + γ1u3)2
i

t+ u2i

3 st,

where γ3 = 1 when i mod 4 = 1, and γ3 = 0 otherwise.
According to the value of (m+ 1)/2 mod 4, the computation

of U2
m+1

2 requires 2m+2 squarings and at most four additions
over F2m .

Here again, a hybrid arithmetic operator, similar to the one
used in the case of characteristic three (see Figure 3), allows
us to perform the final exponentiation in slightly less clock
cycles than Miller’s algorithm without impacting too much on

the resource usage. The architecture is very similar to that of
characteristic three, except that we removed the multiplications
by 1 and −1, which are useless in characteristic two, and
replaced the double-cubing by a triple-squaring operator, to
accomodate for the longer chains of successive Frobenius
maps in the final exponentiation algorithm. The parallel–serial
multiplier processes here between D = 15 and D = 17
coefficients of its second operand per clock cycle.

It is worth noting that the trick of trading Frobenius for
inverse Frobenius maps used for the final exponentiation in
characteristic three can also be applied to the case of charac-
teristic two. Indeed, as reported in Table III, the complexity
of the square root is always lower than that of the squaring
over the considered finite fields.

However, putting this optimization into practice happens to
be more complex than in characteristic three. Apart from the
Frobenius maps required for the inversion over F∗2m and for the
raising to the power of 2(m+1)/2 over F∗24m , further squarings
are actually necessary to raise elements of F∗24m to the (22m−
1)-st and (2m+1)-st powers, as per [7, Algorithm 3] and [12,
Algorithm 3] respectively.

These few squarings could be replaced by actual multipli-
cations, which would then slightly increase the number of
clock cycles required to compute the final exponentiation.
Alternatively, we could take the fourth root of the result, which
by linearity of the square root would then cancel all the extra
Frobenius maps, but we would then end up computing a fixed
power of the ηT pairing and not the ηT pairing itself.

However, observing that in characteristic two the critical
path of the whole pairing accelerator lies in the non-reduced-
pairing coprocessor and not in the final-exponentiation one,
this is actually a moot point as there is no use trying to
shorten further the critical path in the final exponentiation. We
therefore decided against using this optimization altogether in
the case of characteristic two.

V. RESULTS AND COMPARISONS

A. Comparison with Previous Works

Thanks to our automatic VHDL code generator, we de-
signed several versions of the proposed architectures and pro-
totyped our coprocessors on Xilinx Virtex-II Pro and Virtex-
4 LX FPGAs with average speedgrade. Table IV details the
specifics of the considered supersingular curves, while Table V
provides the reader with a comparison between our work and
accelerators for the Tate and ηT pairings over supersingular
(hyper)elliptic curves published in the open literature. (Note
that our comparison remains fair since the Tate pairing can be
computed from the ηT pairing at no extra cost [7].) Finally,
these results are summarized in Figure 7, where post-place-
and-route computation time and area–time product estimations
are plotted against the achieved level of security.

Our architectures are also much faster than software im-
plementations. Mitsunari wrote a very careful multithreaded
implementation of the ηT pairing over F397 and F3193 [35]. He
reported a computation time of 92 µs and 553 µs, respectively,
on an Intel Core 2 Duo processor (2.66 GHz). Interestingly
enough, his software library outperforms several hardware
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TABLE IV
SUPERSINGULAR ELLIPTIC CURVES CONSIDERED IN THIS PAPER.

Field Curve equation Co-factor(s)
ECC security MOV security

Security†(log2 `) (log2 #Fpkm )
F2239 y2 + y = x3 + x+ 1 1 119 bits 956 bits 67 bits

F2313 y2 + y = x3 + x
5 · 1933526201 · 307168226569

97 bits 1252 bits 75 bits· 338431049916629
F2457 y2 + y = x3 + x+ 1 1 228 bits 1828 bits 88 bits
F2557 y2 + y = x3 + x 5 277 bits 2228 bits 96 bits
F2613 y2 + y = x3 + x 5 305 bits 2452 bits 100 bits
F2691 y2 + y = x3 + x 5 344 bits 2764 bits 105 bits

F397 y2 = x3 − x+ 1 7 75 bits 922 bits 66 bits
F3167 y2 = x3 − x+ 1 7 131 bits 1588 bits 83 bits
F3193 y2 = x3 − x− 1 1 153 bits 1835 bits 89 bits
F3239 y2 = x3 − x− 1 1 189 bits 2273 bits 97 bits
F3313 y2 = x3 − x+ 1 7 · 37561 · 477013 230 bits 2977 bits 109 bits

†Security is given here as the required key length for a symmetric-key cryptosystem of equivalent security.
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Fig. 7. Performance comparison in terms of pairing computation time (top) and area–time (AT) product (bottom) between the proposed architectures and
the coprocessors published in the literature, on Virtex-II Pro (left) and Virtex-4 (right) FPGAs.
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TABLE V
HARDWARE ACCELERATORS FOR THE TATE AND ηT PAIRINGS.

Curve
Security

FPGA
Area Frequency Calculation Area–time

[bits] [slices] [MHz] time [µs] product
Kerins et al. [30] E(F397) 66 xc2vp125 55616 15 850 47.3
Kömürcü & Savas* [31] E(F397) 66 xc2vp100 14267 77 250.7 3.6
Ronan et al. [38] E(F397) 66 xc2vp100-6 15401 85 183 2.8
Grabher & Page [19] E(F397) 66 xc2vp4-6 4481 150 432.3 1.9
Jiang [24] E(F397) 66 xc4vlx200-11 74105 78 20.9 1.55
Beuchat et al. [7] E(F397) 66 xc2vp20-6 4455 105 92 0.41
Beuchat et al. [11] E(F397) 66 xc2vp30-6 10897 147 33 0.36
This work† E(F397) 66 xc2vp50-6 18367 147 5.78 0.106

E(F397) 66 xc4vlx60-11 18701 192 4.42 0.083
Shu et al. [43] E(F2239) 67 xc2vp100-6 25487 84 41 1.04
Shu et al. [43] E(F2239) 67 xc4vlx200-10 29920 100 36.5 1.09
Beuchat et al. [7] E(F2239) 67 xc2vp20-6 4557 123 107 0.49
This work E(F2239) 67 xc2vp50-6 15919 190 4.49 0.071

E(F2239) 67 xc4vlx60-11 16203 247 3.46 0.056
Keller et al. [28] E(F2251) 68 xc2v6000-4 27725 40 2370 65.7
Keller et al. [29] E(F2251) 68 xc2v6000-4 13387 40 2600 34.8
Li et al. [32] E(F2283) 72 xc4vfx140-11 55844 160 590 32.9
Shu et al. [43] E(F2283) 72 xc2vp100-6 37803 72 61 2.3
Shu et al. [43] E(F2283) 72 xc4vlx200-10 36481 100 46.1 1.68
Ronan et al. [39] E(F2313) 75 xc2vp100-6 41078 50 124 5.1
Ronan et al. [40] C(F2103) 75 xc2vp100-6 30464 41 132 4.02
This work E(F2313) 75 xc2vp70-6 22395 154 7.24 0.162

E(F2313) 75 xc4vlx80-11 23254 235 4.73 0.110
This work† E(F3167) 83 xc2vp100-6 40765 118 12.3 0.50

E(F3167) 83 xc4vlx100-11 40974 175 8.24 0.34
Barenghi et al. [1] E(Fp512) 87 xc2v8000-5 33857 135 1610 54.5
Shu et al. [43] E(F2457) 88 xc4vlx200-10 58956 100 100.8 5.94
This work E(F2457) 88 xc2vp100-6 42965 147 11.0 0.47

E(F2457) 88 xc4vlx100-11 44223 215 7.52 0.33
Beuchat et al. [7] E(F2459) 89 xc2vp20-6 8153 115 327 2.66
Beuchat et al. [7] E(F3193) 89 xc2vp20-6 8266 90 298 2.46
This work† E(F3193) 89 xc2vp100-6 46135‡ 130 12.8 0.59

E(F3193) 89 xc4vlx200-11 47260 179 9.33 0.44
Shu et al. [43] E(F2557) 96 xc4vlx200-10 37931 66 675.5 25.62
This work E(F2557) 96 xc4vlx200-11 55156 149 13.2 0.73
This work E(F3239) 97 xc4vlx200-11 66631 179 11.5 0.77
This work E(F2613) 100 xc4vlx200-11 62418 143 15.1 0.95
This work E(F2691) 105 xc4vlx200-11 78874 130 18.8 1.48
This work† E(F3313) 109 xc4vlx200-11 97105‡ 159 16.9 1.64

*No final exponentiation, non-reduced pairing only.
†The inverse Frobenius map was preferred over the Frobenius map to compute the final exponentiation, as per Section III-B.3.
‡The design exceeds the FPGA’s capacity: the ηT pairing and final-exponentiation coprocessors were placed-and-routed separately.

architectures proposed by other researchers for low levels of
security. When we compare his results with our work, we
note that the gap between software and hardware increases
when considering larger values of m. The computation of
the ηT pairing over F3193 on a Virtex-4 LX FPGA with a
medium speedgrade is for instance roughly fifty times faster
than software. This speedup justifies the use of large FPGAs
which are now available in servers and supercomputers such
as the SGI Altix 4700 platform.

Kammler et al. [26] reported the first hardware implemen-
tation of the Optimal Ate pairing [46] over a Barreto–Naehrig
(BN) curve [5], that is an ordinary curve defined over a
prime field Fp with embedding degree k = 12. The proposed
design is implemented with a 130 nm standard cell library and
computes a pairing in 15.8 ms over a 256-bit BN curve. It
is however difficult to make a fair comparison between our
respective works since the level of security and the target
technology are not the same.
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B. Characteristic Two vs. Characteristic Three

It is worth noting that, in order to achieve the same level
of security for the ηT pairing over supersingular curves in
characteristics two and three, the extension degree m of F2m

has to be larger than that of F3m′ . More precisely, we have
the ratio

m

m′
=

3 log 3
2 log 2

≈ 2.4,

since the embedding degree is 6 in characteristic three, against
4 in characteristic 2. This ratio also applies asymptotically
to the number of iterations in Miller’s algorithm, which is
(m+ 1)/2 and (m′ + 1)/2, respectively.

However, the arithmetic over F24m required for the com-
putation of the pairing in characteristic two is much simpler
that the arithmetic over F36m′ : one iteration of Miller’s al-
gorithm requires only 7 multiplications over F2m , against 17
multiplications over F3m′ in the case of characteristic three.
Coincidentally, the ratio between the two is also 17/7 ≈ 2.4.

Thus, although necessitating 2.4 times as many iterations
as in characteristic three, the ηT pairing over F2m requires
almost exactly as many products over the base field as the ηT
pairing over F3m′ . Furthermore, a smaller extension degree m′

compensates for the arithmetic over F3 being more expensive
than that over F2.

That close similarity in terms of performances between
characteristics two and three at a constant level of security,
as hinted at by this short analysis, can actually be observed in
the place-and-route results of our coprocessors (Figure 7), even
though characteristic two appears to have a slight advantage
for low security.

VI. CONCLUSION

We proposed novel architectures based on a parallel
pipelined Karatsuba multiplier for the ηT pairing in charac-
teristics two and three. The main design challenge we faced
was to keep the pipeline continuously busy. Accordingly, we
modified the scheduling of Miller’s algorithm in order to
introduce more parallelism in the pairing computation. We
also presented a faster way to perform the final exponentiation
by exploiting the linearity of the Frobenius map and/or taking
advantage of a simpler inverse Frobenius map in certain cases.
Both software and hardware implementations can benefit from
these techniques.

To our knowledge, the implementation of our designs on
several Xilinx FPGA devices improved both the computation
time and the area–time trade-off of all the hardware pairing
coprocessors previously published in the open literature [1],
[7], [11], [19], [24], [28]–[31], [38]–[40], [42], [43].

However, as of today, the design of pairing accelerators
providing a level of security equivalent to that of AES-128
remains a problem of major interest. Although Kammler et
al. [26] proposed a first solution over a Barreto–Naehrig curve,
several questions remain open. For instance, is it possible to
achieve such a level of security in hardware with supersingular
(hyper)elliptic curves at a reasonable cost in terms of compu-
tation time and circuit area? Since several protocols rely on

such curves, it seems crucial to us to address this topic in a
near future.

Another interesting direction for further work is to investi-
gate the use of the hybrid operator (Figure 3) to compute the
complete Tate pairing and not only the final exponentiation.
From our experiments, this operator should offer a competitive
balance between the area-efficient unified operators of [7] and
the latency-oriented architectures presented here.
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