SSPS 軌道間輸送の新しい制御法^{*1} A New Control Method for SSPS Orbital Transfer

歌島 昌由*2

Masayoshi UTASHIMA

Key Words: Space Solar Power Systems, Optimal Orbital Transfer, Solar Electric Propulsion, Thrust Vector Control

Abstract: A new control method for the orbital transfer of the Space Solar Power Systems (SSPS) by the solar electric propulsion is presented. In this method, SSPS is launched from a place near the equator such as the Christmas Island, both yaw and pitch angles of the thrust direction are fixed to zeros, and the thrust-off periods are assigned optimally near the perigee in the final stage of the transfer. This method, especially for large spacecrafts such as SSPS, has the advantage that the heavy momentum wheel for the thrust vector control is not necessary.

記号の説明

- E_{ON}:推力オフ期間を指定する最適化パラメータ. 離心近点離角.
- N :最適化パラメータの個数.
- N_B:軌道変換期間の分割数.
- P₀:初期発生電力.

1. はじめに

将来のエネルギー供給の役割を担うべく, 宇宙太 陽発電システム(SSPS:Space Solar Power Systems)の検 討が宇宙開発事業団を中心に行われている.現時点 では、SSPS は低軌道で組み立てられた後、静止軌道 (GEO)まで電気推進系を用いて数ヵ月以上の期間を かけて運搬されると想定されている. 文献 1)では宇 宙機の運動を赤道面内のみで考え, 推力方向を円周 方向に固定し推力の大きさも一定とした簡易なモデ ルを使って、低軌道から静止軌道への軌道間輸送用 途のイオン推進機に要求される性能を評価している. 地球による蝕のために短時間でのオン/オフの繰り返 し性能等が要求されることを明らかにしている.文 献 1)では無視されているが、蝕中に推力をオフする ために離心率が大きくなり、単に円周方向噴射を続 けるだけでは離心率ゼロの静止軌道を実現すること はできない、そのため、従来は1周内で推力方向を面 内面外とも周期的に大きく変えていた²⁾.面外の推力 方向制御は、宇宙機が赤道上にない射点から打ち上

^{*1}©2003 日本航空宇宙学会 平成 15 年 4 月 9 日,第 34 期日本航空宇宙学会年会講演会 にて講演,平成 15 年 4 月 15 日原稿受理 げられる場合に必要になる.推力方向の変更には宇 宙機全体の姿勢変更が必要であり、大型柔軟構造物 である SSPS には望ましくない.何とか姿勢制御でき るとしても、これをスラスタで行うと燃料消費量が 増大し、モーメンタム・ホィールで行うと超大型宇宙 機の SSPS では大質量のモーメンタム・ホィールが必 要となる.宇宙機質量に対するホィール質量の比は、 宇宙機の回転半径(L)とホィールの回転半径(rw)の比 の2乗に比例するため、rwをLに比例して大きくでき ない場合は更にホィール質量が増大する.なお、電気 推進系には一般にジンバル機構が取り付けられてい るが、それは推力軸が宇宙機の重心を通るように使 用されるものであり、本論文で議論する推力方向制 御のためには宇宙機全体の姿勢制御が必要となる.

本論文では、推力方向のヨー角(面外成分)をゼロ に固定するためにクリスマス島等の赤道近くの射点 から傾斜角0度のLEO (Low Earth Orbit)への打上げを 考え、更に面内ピッチ角もゼロに固定する新しい制 御法を提案する.

2. 従来法で必要な最大ピッチ角

まず,傾斜角0度のLEO(高度500kmの円軌道を 仮定)からの軌道変換において、どの程度の大きさの ピッチ角が必要かを検討する.想定した電気推進系 のパラメータを第1表に掲げる.電源比質量は、単位 電力当りの太陽電池パドル、電力供給装置、スラス タなどの質量の和である.

第1表	電気推進系パラメータ		
構造係数	0.05		
電源比質量	25 kg/kW		
比推力	3000秒		
推進系効率	0.72		

^{*2}宇宙開発事業団 技術研究本部

地球重力場の扁平性,地球による蝕,放射線によ る太陽電池の劣化を考慮したピッチ角可変の最適解 を文献 2)の方法で求めた.電気推進系は大きな電力 を必要とし大面積の太陽電池パドルを搭載している 蝕中は太陽電池から電力を得られず推力を発生でき ない.蝕中も推力を発生できるだけのバッテリー等 を搭載するとペイロードが大きく低下するため採用 されない.軌道変換の期間は 180 日とした.放射線 による太陽電池の劣化(文献 3)のモデルを使用)につ いては,静止軌道 10 年で発生電力が 92.5%まで低下 するパラメータを使用した.

第1図に各月1日にLEOを出発した場合の軌道変 換中の蝕の発生状況(軌道1周内の蝕期間)を示す.3 月(9月)出発の場合に最も早く(約100日後)蝕期間が 終わり、5月(11月)出発の場合は終盤まで蝕が発生し ている.ピッチ角の最大値は、蝕の発生状況に大きな 影響を受ける.蝕の期間は電気推進系の推力を使用 できず、そのために離心率が大きくなる.大きくなっ た離心率をゼロにするためにピッチ角の制御が必要 になるからである.

第2図に出発日によるピッチ角振幅の変化を示す. 前半は数度程度のピッチ角であり専ら長半径を大き くする制御になっているが、後半は離心率をゼロに することも考慮してピッチ角が大きくなっている. 蝕期間が最も早く終わる3月(9月)出発の場合は最大 ピッチ角振幅は約28度であるが、5月(11月)出発の場 合は70度近い値になる.

第3図に出発日による最大ピッチ角の変化を描いた.半年周期の変化をしており,春と秋に出発の時小 さく,夏と冬に出発の時大きい.最小でも約30度以 上のピッチ角が必要であり,SSPSのような超大型の 宇宙機には負担が大きい.

3. ピッチ角ゼロ固定の新制御法

本章では、面内ピッチ角を常に0度に固定し、軌道 変換期間の最適な時期の近地点付近で推力をオフし て離心率を制御する方法を検討する.ピッチ角可変 の前章の方法に比べて損失が十分小さければ有望で ある.この方法を用いると、地球指向姿勢の宇宙機 (or SSPS)の西側面に電気推進系を固定するだけで良 く、宇宙機は特別な姿勢制御を行う必要がない.この 新制御法は通常のサイズの宇宙機でもメリットがあ るが、SSPS のような超大型柔軟構造物にとって大き なメリットである. 3.1 最適化の定式化 以下の定式化の非線型計 画問題を逐次 2 次計画法(SQP:Sequential Quadratic Programming)⁴で解き,推力オフ期間を最適化する. 宇宙機の初期質量は1000 kgとし,軌道変換の期間は 従来法と同じ180日とした.

最適化パラメータ (N個)

- (a)近地点を中心に推力をオフする期間(軌道変換 期間を N_B分割した各時点で定義する)
 - ・推力を再開する点の離心近点離角 E_{ON}(radian) を使用.
 - ・蝕が存在しない場合は E_{ON}~2 E_{ON}範囲で推 力を使用し、蝕が存在する場合は蝕期間も推力 をオフする.
- (b)初期発生電力 P₀
- 目的関数

初期発生電力 P₀を最小にする.これはペイロード 質量を最大にするのと等価である.

<u> 等号制約 (2 個)</u>

(a)終端の軌道長半径=静止軌道半径

(b)終端の離心率=0

不等号制約 (N_B+2 個)

(a)P₀ > P₀下限值

(b) E_{ON} 0 (N_B+1 個)

分割数 N_B と最適化パラメータ数 N の間には N = $N_B + 2$ の関係があり、ここでは $N_B = 20$ とする.軌道 計算に要する時間を短縮するため、運動方程式は軌 道周期で数値的に平均したものを使用し²⁾、その平 均操作には次数 20 のガウス積分を使用した⁵⁾.

本章での解析法は従来法の解析に用いた方法²⁾と 基本的には同じであり,制御法が変わるために最適 化パラメータを変えただけである.分割数,ガウス積 分次数も従来法の解析と同じ値を用いている.文献 2)の方法は,変分法と比較して誤差が1%以下である ことが確認されている²⁾.

3.2 解と考察 ピッチ角ゼロ固定の場合の解を, ピッチ角可変方式の解と比較して第2表に示す.1 月1日出発の場合である.

第2表	ピッチ角ゼロ固定とピッチ角可変の解の比較
-----	----------------------

ピッチ角	ゼロ固定	可変	評価	
初期発生電力(k₩)	9.949	9.836	1.15%大	
GEO 到着時の諸量				
長半径誤差(km)	-0.001	-0.033		
離心率	0.000006	0.000000		
宇宙機質量(kg)	857.512	855.521		
燃料消費量(kg)	142.488	144.479	1.38%小	
Payload 質量(kg)	601.276	602.007	0.12%小	
発生電力の保存率	0.557	0.556		
有効 Payload 質量	335.167	334.832	0.1%大	

(注)有効 payload 質量: payload 質量×保存率.

GEO 到着時のペイロード質量は、ピッチ角可変の

場合より 0.12%小さく、放射線による劣化を受けた 後の太陽電池セルの保存率とペイロード質量の積(有 効ペイロード質量)は0.1%大きい、ピッチ角ゼロ固定 の制御方式に損失は殆ど無いと言える.しかし、初期 発生電力はピッチ角ゼロ固定方式の方が 1%余り大 きく、僅かに大きな推力を使用している.一方、燃料 消費量はピッチ角ゼロ固定方式の方が 1%余り少な い.これは以下のように説明できる.円に近い軌道 の場合、長半径制御は円周方向の噴射がほぼ最適で あり、離心率制御はアプシス点での円周方向噴射が 最適である.ピッチ角ゼロ固定方式はこれらの最適 な制御になっているが、 ピッチ角可変方式は 蝕以外 は噴射を続けてピッチ角のみ制御するために少し口 スがある.但し、ピッチ角ゼロ固定方式は推力オフ期 間のために軌道変換に要する期間が長くなる傾向が あり、ピッチ角可変方式と同じ 180 日間で GEO に到 着するため、初期発生電力を大きくして推力を上げ ている.

第4図に新方法とピッチ角可変法の解における1 周内の蝕期間の変化を示す.両者に違いは殆ど無い.

第5図に長半径と離心率の変化を示す.100日頃ま ではピッチ角可変方式との違いは小さい.100日頃か ら150日頃の間で,長半径はより大きくなり,離心率 の減少は小さくなっている.ピッチ角ゼロ固定方 式は,150日頃以降において,離心率の制御にも比重 をかけている.

ピッチ角可変方式は、約 100 日以降の全期間に対 してピッチ角振幅に比例して離心率を制御している のに対し、ピッチ角ゼロ固定方式は、前半で長半径 に比重を置き、後半で離心率に比重を置いている.

後半で離心率の制御に比重を置いていることは、 第6図の推力オフ期間の変化に明確に現れている.1 周内の推力オフ期間(分単位)と、その時の軌道周期

との比を第6図に示す.約150日までは蝕による以 外の推力オフは不要である.その後,推力オフ期間が 発生して次第に長くなり,最大で335分の推力オフ となる.これはその時の軌道周期の27.4%に相当する 出発日を変えた時の、推力オフ期間立上がり時期

とそれが最大になった時の軌道周期との比を第7図 に示す.立上がり時期は推力オフ期間が1分を超え る点とした.第7図から、以下のことが言える.

- (1)出発から約 130 日~150 日までは離心率制御の ための推力オフは不要である.
- (2)移行の終端付近で推力オフ期間が最大となるが, その値は軌道周期との比で約0.13~0.3である.
- (3)推力オフ期間の最大値は、春と秋に出発する時 に短く、夏と冬に出発する時に長くなる.

第8図に出発日を変えた時の有効ペイロード質量 とペイロード質量の変化を描いた.実線はピッチ角 ゼロ固定の場合,破線はピッチ角可変の場合である. この図より、以下のことが言える.

- (1)新方法によるペイロード質量は、最大で 0.26% だけ従来法より小さく、有効ペイロード質量は、 最大で 0.11%だけ小さい.
- (2)新方法のペイロード質量が従来法よりも小さいのは、従来法の最大ピッチ角振幅が約50度よりも小さい場合であることが、第3図と第8図の比較より判る.
- (3)従来法の最大ピッチ角振幅が約 50 度よりも大 きくなると、新方法のペイロード質量は従来法 の値と殆ど一致していることが、第 3 図と第 8 図より判る.

(4)(有効)ペイロード質量は、蝕の影響の小さい春 と秋に出発する時に大きい. 従来法での最大ピッチ角振幅が約50度を超える場合は、新方法を使うことによる損失は無いと考えて良い.従来法での最大ピッチ角振幅が約50度以下の場合でも、新方法を使うことによるペイロード質量の減少の最大値は僅かに0.26%に過ぎない.これは殆ど無視し得る量であると考えられるが、宇宙機構造の柔軟さ及び従来法で必要となるホィール質量などの検討も行った上でどちらの制御法を使用するか判断することになろう.

4. おわりに

傾斜角ゼロの LEO から出発し, 面外ヨー角だけで なく面内ピッチ角も 0 度に固定する軌道間輸送の新 しい制御法を提案した.この方法では, 終端離心率を ゼロにするために軌道変換の終盤の近地点近傍に推 力オフ期間を最適に設ける.従来のピッチ角可変方 式に比べて, 損失は小さいことが確認された.特に, 従来法で最大ピッチ角振幅 50 度以上が必要な場合で は, 損失は無いと言って良い.この制御法を採用すれ ば、電気推進系のスラスタを固定した宇宙機を、地 球指向姿勢に保持するだけで最適な軌道間輸送が可 能となり、特に SSPS のような超大型柔軟構造の宇宙 機ではメリットが大きい.

参考文献

- 1)竹ケ原春貴,大川恭志:イオン推進機の軌道間輸送への適用検討, 日本航空宇宙学会誌,44 (1996), pp. 306-313.
- 2)Kluever, C. A. and Oleson, S. R.: Direct Approach for Computing Near-Optimal Low-Thrust Earth-Orbit Transfers, *Spacecraft Rockets*, 35 (1998), pp. 509-515.
- 3)Sackett, L. L., Malchow, H. L. and Edelbaum, T. N.: Solar Electric Geocentric Transfer with Attitude Constraints; Analysis, NASA Lewis Research Center Contract NAS 3-18886, NASA CR-134927, 1975.
- 4)茂木俊秀, 福島雅夫: FORTRAN77 最適化プログラミング (岩波 コンピュータ サイエンス シリーズ), 岩波書店, 東京, 1991.
- 5) 歌島昌由: 電気推進系による静止軌道への軌道変換の最適化, 宇 宙開発事業団技術報告 NASDA-TMR-020027, 2003.