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Abstract 
 

The conventional methods of boundary-conformed 2D surfaces generation usually yield some 
problems. This paper deals with two boundary-conformed 2D surface generation methods, one 
conventional approach, the linear Coons method, and a new method, boundary-conformed interpolation. 
In this new method, unidirectional 2D surface has been generated using some of the geometric properties 
of the given boundary curves. A method of simultaneous displacement of the interpolated curves from the 
opposite boundaries has been adopted. The geometric properties considered for displacements include 
weighted combination of angle bisector and linear displacement vectors at all the data-points of the two 
opposite generating curves. The algorithm has one adjustable parameter that controls the characteristics of 
transformation of one set of curves from its parents. This unidirectional process has been extended to bi-
directional parameterization by superimposing two sets of unidirectional curves generated from both 
boundary pairs. Case studies show that this algorithm gives reasonably smooth transformation of the 
boundaries. This algorithm is more robust than the linear Coons method and capable of resolving the 2D 
boundary-conformed parameterization problems. 
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1. Introduction 
 

Surfaces and their descriptions play an important role in design and manufacturing. In 

CAD/CAM, the mathematical models of surfaces are usually represented as parametric patches. In a 

variety of science and technological problems, 2D surfaces need to be parameterized according to the 

predefined boundaries. A number of different parametric representations of free-form surfaces have been 

intensively studied and developed by many researchers so far [1-11, 13-15]. The most common method of 

free-form surface generation has been boundary interpolation [6, 7]. In this case, the available 

conventional technique is the linear Coons method [2]. Application of this existing method to highly 

irregular boundaries yields some shortcomings. In the earlier work by Yang D.C.H. et. al. [14], the 

anomalies of Coons method were addressed and a solution was proposed by using normal offset vector at 
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every data point on the curves to avoid overcrossing and a curvature-averaging function to control the 

spacing between interpolated curves and crowdedness. The Hermite Interpolation Mapping (HIM) 

scheme has been discussed by Wang & Tang [11] for generation of quadrilateral grid in a given 2D region. 

The conventional HIM gives the problem of self-overlapping grids when boundaries are concave and 

convoluted. This problem has been resolved by adjusting the tangent functions and the twist vectors 

through a constrained functional optimization scheme in three stages. Wang & Tang [10] discussed a 

structured grid generation method for a 2D region bounded by any number (n-sided) of parametric 

boundary curves with C1 continuity. The initial algebraic grids have been constructed through Gregory 

patch mapping and the self-overlapping of resulting grids has been eliminated by functional optimization. 

Wang & Tang, in their work [9], introduced adaptive non-trivial blending functions in Coons patch, which 

have been determined by functional optimization method to avoid the self-overlapping of Coons patch.  

In the present work, a study on the parameterization of 2D patches with highly irregular 

boundaries has been presented in terms of both the conventional and new methods. A new approach called 

boundary-conformed interpolation method has been introduced. Applicability and drawbacks of these two 

methods have been examined and a comparative study has been carried out on some typical cases. The 

conventional method for 2D surface parameterization has been discussed in sub section 1.1. The new 

boundary-conformed interpolation method has been discussed in detail in sections 2 & 3 and some case 

studies have been shown in section 4. 
 

1.1 The linear Coons method 
 

In linear Coons method, a surface patch S(u,v) enclosed by four known boundary curves as 

shown in Fig. 1, where u, v Î [0,1]. Let B(u,0), B(u,1), B(0,v) and B(1,v) are the four boundary curves 

and P(0,0), P(1,0), P(0,1), and P(1,1) be the position vectors of the four corner points. A bilinear blending 

function is used for the interior of the surface patch. The bilinear Coons surface representation [2, 4, 10, 

11] of S(u,v) in terms of the four boundary curves and the four corner points is:  
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The linear Coons method can generate reasonably good 2D surface for relatively simple 

boundaries, as shown in Fig. 2.(a), but, this method gives anomalies like skew, crowdedness and 

overcrossing of the interpolated curves if the irregularities of given 2D boundaries are relatively high, as 
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shown in Fig. 2.(b). 

                                

  

                                               

                                                                  

                                                                      

                                     

                                                                                                                         

          

                 

                            

         

      

                                                                      

Fig. 1.  Representation of a Bi-linear Coons surface patch 
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Fig. 2.  Bi-linear Coons patch  (a)  with simple boundaries  (b)  with irregular boundaries 

 

2. Boundary-Conformed Interpolation Method 
 
This is the new method introduced here to resolve the anomalies faced in the linear Coons 

method as stated in section 1.1. The intermediate curves have been generated by considering the position 
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and angle bisector vectors at all the data-points of the two opposite generating curves. In the following 

sections the detail of developing the algorithm for this new method has been discussed. 

 

2.1 Unidirectional displacement 
 

The boundary-conformed interpolation method will now be presented for unidirectional cases. In 

case of unidirectional surfaces, the intermediate curves are interpolated by only one pair of opposite 

boundary curves and the directions of displacement of the interpolated curves are defined as the direction 

from one of the opposite boundaries to the other. In linear Coons method, a linear blending function is 

used to interpolate the opposite boundary pair. Because of linear blending function, every time the linear 

Coons method calculates an intermediate point (between the opposite boundaries) by interpolating only a 

pair of points each on one of the two opposite boundaries and hence it is insensitive to the shape of the 

boundary curves. This is the main reason that causes parameterization anomalies when the irregularity of 

the boundaries is high in linear Coons method. Hence, in boundary-conformed interpolation algorithm the 

angle bisector vectors of both boundaries have been considered in addition to position vectors as 

discussed in the following sections.  

 

Before detailing the new algorithm an overview is presented to look deeply into the plotting 

mechanism of any curve. A curve is always plotted by joining a finite number of data-points, as calculated 

by the concerned algorithm, with straight lines between each pair of successive data-points as shown in 

Fig. 3. So, on a curve every set of three consecutive data-points constructs an angle at the mid-point of the 

set and this angle can always be bisected to form an angle bisector vector.   

 

        

                    
                  (a)                                                 (b) 

 
Fig. 3.  A Bézier curve  (a) the entire curve visually smooth  (b) magnification shows the curve is 

composed of multiple straight lines 
 

In light of the above phenomenon the interpolated curves can be represented as functions of four 
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geometric parameters,  

 
Cj = f (B0(u), B1(u), b0(u), b1(u))       (2) 

 
Here, B0 and B1 is a pair of opposite boundary curves or generating curves, and b0 and b1 are the 

angle bi-sectors at all the intermediate data-points of curves B0 and B1 respectively. At any of the two end 

data-points of a curve, it has been assumed that the curve is infinitesimally extended with the same slope 

as that of the end segment of the curve and hence the angle bisectors at the end data-points are normal to 

the curve at the respective points. The new sets of curves are generated by simultaneous interpolation 

from the two opposite boundary curves. This simultaneous displacement process continues till the entire 

surface is covered. So the entire surface is treated as if divided into two halves. Therefore, basic algorithm 

is denoted as 
 

Cj(u) = Cj-1(u) + dj(u)        (3a) 
 
C j(u) = C j-1(u) + d j(u)        (3b)  
 
where dj(u) and d j(u) are displacement vectors; j = 1...n, and n is the total number of interpolated 

isoparametric curves on each half of the surface. 

Cj(u) and C j(u) are the interpolated curves in ‘v’ direction. 
 

Let m (which is user defined) be the total number of curves including the boundaries, to be generated on 
the entire surface, then,  
 

n = (m/2)-1 when m is even       (4a)                  
 

n = ((m+1)/2)-1 when m is odd       (4b)           
  
 

 
The generalized form of the interpolated isoparametric curves can be given by,  
 
Cj(u) = P(u,vj) ;  where   u Î [0,1]  &  vj = j/(m-1)    (5a)      
 
and  C j(u) = P(u, v j) ; where   u Î [0,1]  &  v j = 1 - j/(m-1)   (5b)  
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2.2 Design of the displacement vector 
                             
 

 

Fig. 4.  Displacement vector and its constituents 

 
Referring to Fig. 4, B0(u) and B1(u) are the two boundary curves and between them the 

intermediate curves are to be interpolated. From B0(u) and B1(u) the new sets of interpolated curves Cj(u) 

and C j(u) will be generated, where j = 1...n, by moving their respective displacement vectors towards 

each other. Since this displacement process is symmetrical, as depicted in Eq. (3), the formulation of 

displacement vectors dj(u) and d j(u) will be same. Therefore, the formulation of dj(u) only will be 

detailed. 

 

Let 

d j(u) = D j(u) R j(u) 
dj(u) = Dj(u) Rj(u)        (6) 
 
where Dj(u) and Rj(u) represent the displacement magnitude and the unit displacement direction of dj(u) 

respectively. The explanation of design and development of the displacement vector dj(u) have been 

presented in the following subsections. 

 

 

dj(u) = Dj(u) Rj(u) 

d j(u) = D j(u) R j(u) 
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2.2.1 Determining the displacement magnitude 
 

Referring to Fig. 4, the displacement magnitude can be calculated as  
 

Dj(u) = -1Y ( ) 
2( - )+2

j u
n j

   for odd number of curves m     (7a) 

Dj(u) = -1Y ( ) 
2( - )+3

j u
n j

 for even number of curves m     (7b)    

where Yj-1(u) is the distance between C j-1(u) and C j-1(u) 

 

2.2.2 Designing a linear displacement direction 
 

Now if the displacement direction is considered as a linear vector, then, 
 

Rj(u) = 
1 1

1 1

( ) ( )

( ) ( )
j j

j j

u u

u u
- -

- -

-

-

C C

C C
 = Lj(u)      (8) 

where Lj(u) represents the unit linear displacement vector. This algorithm has been applied in two sample 

cases as shown in Fig. 6.(a), which has relatively simple boundaries whereas boundaries in Fig. 6.(b) are 

much more irregular. The results are quite good for simple boundaries as shown in Fig. 6.(a)-I, but when 

the boundaries are more irregular this algorithm fails due to the anomalies like crowdedness and over-

crossing (Fig. 6.(b)-I.)  

 

2.2.3 Considering an angle bisector displacement direction 
 

To resolve the problem of over-crossing of the curves, the displacement direction could be 

defined by angle bisector vectors at all the data-points (except endpoints where normal vectors are to be 

taken as discussed in 2.1) of the two opposite generating curves.  

Referring to Fig. 3.(b) it is evident that on a curve every set of three consecutive data-points can 

make a triangle and a vector directing towards the incentre of the triangle from the mid-data-point of the 

concerned set of three data-points constructs the angle bisector vector of the included angle at the mid-

data-point. If three consecutive data-points lie on the same straight line then the angle bisector vector 

becomes the normal to the straight line at the mid-data-point and hence normal vector is to be calculated 

at that point. The directions of these angle bisectors have to be checked and changed by rotating the 
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vectors 180 degree so that these vectors should always be directed towards opposite boundary curve. 

Direction checking criteria would be whether the value of the included angle, as shown in Fig. 5, at the 

mid-point of a set of three consecutive data-points is greater than 180 degree; e.g., for the upper half of 

the surface each intermediate curve should move downwards that is towards the lower boundary, hence if 

the included angle is greater than 180 degree then the direction of angle bisector vector is to be changed 

through 180 degree. Converse is true for the lower half.  

 

 

        
 
 
 
 
 
 

   
 
 
 
 
 
 

 

Fig. 5.  Included angle and angle bisector vectors (magnified) 

 

So with this consideration let the displacement direction be based solely on the angle bisector 

directions of the parent curves, i.e.,  

 

Rj(u) = Aj(u)         (9) 
 
where Aj(u) represents the unit angle bisector vector. This new algorithm has been applied to the same 

sample cases as plotted in Fig. 6.(a)-II & 6.(b)-II. For simple boundaries this algorithm provides the 

complete solutions but for irregular boundaries, though this algorithm gives the solution for the 

overcrossing problem, but does not give the smooth blending of the curves approaching each other at the 

middle.   
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X             X  
 

X             X  
 

X             X  
               
    (a)                                                 (b) 

 
Fig. 6.  Two examples for the development of displacement vector  (a) with simple boundaries  

(b) with highly irregular boundaries    
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2.2.4 Combining the displacement directions 
 

The total displacement vector may be expressed as the resultant of linear and angle bisector 

vectors multiplied each by a weight function. The weight functions ensure that as the interpolated curves 

move towards middle of the surface, the effect of angle bisectors on the resultant vector reduces and the 

influence of linear displacement vectors increases. This confirms the smooth blending of two facing 

curves at the middle.  

Thus the unit displacement vector with weighted combination of linear and angle displacement 

vectors is designed as 

 

Rj(u) = 
(1- ) ( )  ( )
(1- ) ( ) ( )
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j j

f u f u
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      (10) 
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       (11) 

 
Here, f is a blending function. The weight functions (1-f) & f have been constructed in such a way 

that the emphasis on angle bisector vector will be more near the boundaries and gradually diminishes 

towards the middle and consequently the linear vector will be emphasized less near boundaries and more 

at the middle.  
 
The characteristics of (1-f) and f have been plotted in Fig. 7. The user defined parameter p can be 

set to different values (a real number ≥0) to control the speed of shifting of weight from angle bisector to 

linear vector in Eq. (10). The larger the value of p faster the shifting will be. The value of p may be taken 

smaller or larger as it suits to the surface. Now as shown in Fig. 6.(b)-III., where p=0.5 has been taken, 

the earlier problems have completely been resolved by this weighted combination of angle bisector and 

linear vectors. 
 
The effects of different values of p on the interpolated curves for the same boundary pairs have 

been tested with yet another example as shown in Fig. 8.  
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Fig. 7.  Shifting of weights between angle bisector & linear vectors with the position of interpolated curve 
for different values of p 

 

X  X  X  

            (a)  p=0.5                        (b)  p=20                       (c)  p=200 

 

Fig. 8.   Effect of different values of user defined parameter p 

 

2.3  The complete algorithm of boundary-conformed interpolation  
 

The complete algorithm for boundary-conformed interpolation method can now be summarized 

as:  

Cj(u) = Cj-1(u) + dj(u)        (12) 

dj(u) = Dj(u) Rj(u)        (13) 
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where, 

 Dj(u) = -1Y ( ) 
2( - )+2

j u
n j

       (14) 

  (for odd number of total curves m) 
 n = ((m+1)/2)-1        (15) 
 

 Dj(u) = -1Y ( ) 
2( - )+3

j u
n j

        (16) 

(for even number of total curves m) 

 n = (m/2)-1         (17) 

 

Rj(u) = 
(1- ) ( )  ( )
(1- ) ( ) ( )
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3.  Bi-directional surface 
 

The bi-directional surface can be generated using the same unidirectional mechanism. Each pair 

of opposite boundaries can be treated separately as a unidirectional problem. A bi-directional 2D surface 

is nothing but the algebraic summation of two unidirectional surfaces minus the duplicating surface, as in 

case of conventional method.  
  

4.  Case studies — results and comparisons 
 

Five more cases have been presented in this section to examine and compare the two 2D 

parameterization methods presented in this paper. Both the methods have been written in MATLAB7. In 

Fig. 9, 10, 11 12 & 13 the results have been given side by side for comparing the capabilities of these two 

methods. From Case-I to Case-V, the irregularities of the boundary curves have been increased gradually 

to show the shortcomings of linear Coons method. 



 
 

13 
 

   X
Y

 

     

     (a)  Linear Coons method               (b)  Boundary-conformed interpolation method 
 

Fig. 9.  Case – I 

 

Case-I is composed of simple boundaries and the outcomes of both the linear Coons and 

boundary conformed interpolation methods are satisfactory as evident from Fig. 9. It has 60x60 grids and 

for both horizontal and vertical direction, p equals to 1.  

 

  
X

Y

 

 

     (a)  Linear Coons method               (b)  Boundary-conformed interpolation method 
 

Fig. 10.  Case – II 
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Case-II, as shown in Fig. 10., is a surface of 72x80 grids and the values of parameter p for both 

horizontal and vertical directions have been made equal to 0. Here only the top boundary is irregular and 

all the other three boundaries are comparatively simple. As a result, linear Coons method shows the 

problem of overcrossing, though the boundary-conformed interpolation method gives a satisfactory result 

by resolving the overcrossing problem. 
 
 

    
X

 

 

         
X

 
 

      (a)  Linear Coons method                (b)  Boundary-conformed interpolation method 
 

Fig. 11.  Case – III 

  

Case-III in Fig. 11., is a clear example of versatility of boundary-conformed interpolation method. 

It has 250x60 grids and the values of parameter p for horizontal and vertical directions are 0 and 1 

respectively. Here two extremely irregular boundaries have been used. It is clear from the results the 

linear Coons method produce severe crowdedness problem at the portions where irregularities of 

boundaries are too high, but boundary-conformed interpolation method gives well-distributed grids 
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throughout the surface, which is evident from the enlarged sectional views. 
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           (a)  Linear Coons method                 (b)  Boundary-conformed interpolation method 

 
Fig. 12.  Case - IV 

 
Case-IV, as shown in Fig. 12., is a surface of 130x60 grids. The value of parameter p for 

horizontal direction is 100 and vertical direction is 1. Here the top & the bottom boundaries are highly 

irregular and the other two boundaries are simple. It is clear from the enlarged views of the part of the 

corresponding surfaces, the linear Coons method shows the problem of self-overcrossing and the 

intermediate mesh goes outside the specified boundary, though the boundary-conformed interpolation 

method gives a satisfactory result by resolving both the problems. 
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X    X  
 

     (a)  Linear Coons method                (b)  Boundary-conformed interpolation method 

 
Fig. 13.  Case - V 

 

Case-V is a surface composed of all the four highly complex boundaries as shown in Fig. 13. The 

differences in results of the two methods are visibly clear. Linear Coons method yields the problems of 

severe overcrossing and crowdedness whereas the boundary-conformed interpolation method provides a 

very good solution of all these problems. The value of parameter p for horizontal direction is 2 and 

vertical direction is 0. It has 70x69 grids, which show the consistency of the algorithm of boundary-

conformed interpolation method for both odd and even number of grids generations.  
 
The above case studies show that boundary-conformed interpolation method is capable of 

resolving the shortcomings, which encountered by linear Coons method, in generating 2D surfaces with 

high degree of irregular boundaries to a very satisfactory level.    

 

5. Conclusions 
 

In this work, a conventional approach to generate 2D surfaces viz. the linear Coons method, has 

been reviewed. A new method, called boundary-conformed interpolation has been developed to resolve 

the problem of overcrossing, skewness and crowdedness, which are observed in linear Coons method. In 

this method, simultaneous displacement of the interpolated curves from the opposite boundaries has been 

adopted to ensure smooth transition of the geometric properties from the boundary curves. The geometric 

properties considered for displacements include algebraic summation of weighted linear and angle 

bisector vectors at all the data-points of the two opposite generating curves. The algorithm has one 
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adjustable (user defined) parameter ‘p’ that controls the characteristics of transformation of one set of 

curves from its parents.  

The new algorithm involves combination of two different vectors; one is the linear displacement 

vector as used in Coons method and another is the angle bisector vector. The linear displacement vector 

does not guarantee the non-overcrossing (i.e. an interpolated curve may intersect the others) of the 

interpolated curves but the angle bisector vector ensures that there will be no overcrossing i.e. an 

interpolated curve will not intersect the others though there is possibilities of self-intersection (an 

interpolated curve may intersect itself). Here Boundary-conformed interpolation method involves some 

heuristics in determining the displacement magnitude Dj(u) to avoid self-intersection. Displacement 

magnitude is nothing but the distance between the two consecutive curves on the patch. Therefore Dj(u) 

can be controlled by varying the number of intermediate curves to be generated. So more the number of 

intermediate curves less will be the magnitude of Dj(u) and hence eliminating the chances of self-

intersection of interpolated curves. Therefore the mesh size (i.e. the number of curves including 

boundaries in each direction on the patch, which is user defined) should be determined heuristically. From 

the experiences gathered through different case studies it has been noticed that, when there is small 

curvature (i.e. very sharp irregularity) involved at any point on any one of a set of opposite boundaries 

then the number of interpolated curves should be made large enough to avoid self-intersection in that 

particular direction. This will take care of the fact that the magnitude of displacement Dj(u) should be 

smaller than the radius of curvature of the given curve. The angle bisector vector solely does not ensure a 

smooth blending of the two sets of interpolated curves approaching each other at the middle of the surface, 

which on the other hand, linear displacement vector can ensure. So the weighted combination of these 

two vectors has been used. Now by giving a suitable value of the user defined parameter ‘p’, the 

crowdedness of the resultant grid can be controlled. 

Different case studies show that this algorithm gives reasonably smooth transformation of the 

intermediate curves from irregular boundary curves. This new method can be relied upon for resolving 

the 2D boundary-conformed parameterization problems. 
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