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Abstract 

 

Domain mapping is a bijective transformation of one domain to another, usually from a complicated 

general domain to a chosen convex domain. This is directly useful in many application problems like 

shape modeling, morphing, texture mapping, shape matching, remeshing, path planning etc. A new 

approach considering the domain as made up of structural elements, like membranes or trusses, is 

developed and implemented using the nonlinear finite element formulation. The mapping is performed in 

two stages, boundary mapping and inside mapping. The boundary of the 3-D domain is mapped to the 

surface of a convex domain (in this case, a sphere) in the first stage and then the displacement/distortion 

of this boundary is used as boundary conditions for mapping the interior of the domain in the second 

stage. This is a general method and it develops a bijective mapping in all cases with judicious choice of 

material properties and finite element analysis. The consistent global parameterization produced by this 

method for an arbitrary genus zero closed surface is useful in shape modeling. Results are convincing to 

accept this finite element structural approach for domain mapping as a good method for many purposes. 
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1. Introduction 

 

Domain mapping is the task of mapping one region to another. Complicated general domains are mapped 

to chosen well-shaped domains where one can perform the required task easily. For example, planning an 

optimal path between two points in a general (non-convex) domain is a complicated problem, since 

segment(s) of a straight line path joining a pair of points may fall outside the domain. But the same task is 

trivial in a convex domain. So, naturally, one would ask for a mapping of the original domain to a convex 

one, so as to find the path and invert it back to the original domain. This mapping is called domain 

mapping. Besides path planning, domain mapping has applications in many fields of science and 
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engineering. Morphing, where the task is to transform one domain to another (e.g. dog face to cat face), is 

regularly needed in animation. Surface approximation, scattered data fitting, reparameterization, 

remeshing are regular applications related to computer graphics and geometric modeling. Molecular 

modeling, protein docking etc are some of its potential applications related to computational biology. 

 

Domain mapping is also known as shape blending, shape transformation and metamorphosis. 

Suryawanshi et al. [1] considered the given domain D as composed of triangular elastic rubber sheets 

sewn together along their edges, and the boundary of the domain D is stretched over the boundary of a 

polygon/polyhedron P according to a mapping h. If ‘h’ is a mapping from one manifold to another and if 

‘E(h)’ is the energy associated with it, then any deformation of ‘h’ (i.e., topological irregularity) due to 

folds and wrinkles will increase the energy ‘E(h)’. The domain mapping is established through 

minimization of the total energy ‘E(h)’. Such a mapping is bound to be bijective, because such an 

assembly of material objects would indeed seek a least-energy configuration and overlapping of material 

particles is physically ruled out. Even though not essential, this physical analogy helps in appreciating the 

following essential characteristics associated with mapping. 

 

• Existence: Mapping will always exist as long as two regions are topologically equivalent. 

• Non-uniqueness: Such a mapping is not unique as final equilibrium configuration achieved 

depends on physical properties also. 

• Bijectivity: The particles will never overlap through elastic deformation though they can come 

closer. 

Yuan et al. [2] showed a new direction for the correspondence problem in shape transformation. They 

developed new algorithms for geometric transformations between two genus zero 3-D polyhedral models 

by generating two new models, which possess the common topology and allow transformations from one 

to another to be easily computed. During morphing from a 3-D shape to the target shape, the original 

shape has to be parametrized onto a sphere. This spherical parametrization for 3-D case is attempted by 

many people. Kent et al. [3] proposed a spherical parametrization scheme for general cases. They 

simulate a balloon inflation process, but are not able to guarantee a bijective map. More recently, Sheffer 

et al. [4] formulated this spherical parameterization problem as an optimization problem by deriving the 

necessary and sufficient conditions for mapping using spherical geometry. Praun et al. [5] also proposed a 

spherical parameterization and remeshing approach without cutting the domain. Alexa [6] used a spring-

like relaxation process. The relaxation solutions may collapse to a point, or experience fold-overs, 

depending on the starting state. He demonstrated several heuristics that help the solution converge to 

valid maps. Grimm [7] partitioned the surface into six charts, and mapped these to faces of a cube, and 

from there to a sphere. Schemes based on a priori chart partitions constrain the spherical parametrization. 

Gotsman et al. [8] showed a nice relationship between spectral graph theory and spherical parametrization, 



 

 

and embedded simple meshes on the sphere by solving a quadratic system. Quicken et al. [9] 

parametrized the surface of a voxel volume onto a sphere. Their nonlinear objective function exploits the 

uniform quadrilateral structure of the voxel surface and seeks to equalize areas and preserve right-angles 

of surface elements. Their scheme is not applicable to general triangular meshes. Khodakovsky et al. [10] 

designed a global parameterization approach by optimizing the patch layout subject to metric distortion 

criteria etc. But choosing the base domain is cumbersome and, moreover, this is not efficient for large 

unstructured meshes. Floater [11] developed a method based on graph theory for creating global 

parameterizations for surface fitting. The parameterizations are the solutions of linear systems based on 

convex combinations. Voruganti et al. [12] illustrated a general method of mapping planar non-convex 

region to a convex region by using artificial potential field. The potential filed is developed using 

harmonic functions which are free of local minima. The potential value along with the angle made by 

streamline at the center are two unique parameters for domain mapping. In the methodology proposed by 

Suryawanshi et al. [1] for 3-D domain mapping, the 3-D non-convex region is mapped onto 3-D convex 

region in two steps: boundary mapping and inside mapping. First, the outer boundary is mapped layer-

wise onto a sphere, then the inside nodes are interpolated to the interior of the sphere using finite element 

formulation and the obstacles/voids are mapped to points in the target domain. For boundary mapping, 

the outer boundary is divided into a number of layers. But some non-convex regions cannot be divided 

easily into layers. For such type of regions, roadblocks are encountered during boundary mapping. The 

present work is an improvement of the above method, using a different method for mapping the outer 

boundary onto a 2-D atlas by dissecting it into four parts. The major part of the boundary is mapped by 

minimization of the virtual work (using nonlinear finite element formulation). The algorithmic details of 

the present work are presented in the next section followed by results in the third section. Finally, the 

paper is concluded with a brief summary and some remarks on future avenues of research in this direction. 

 

 

 

2. Methodology 

 

Domain Mapping is carried out in two stages, boundary mapping and inside mapping. The set of triangles 

on the outer surface of a domain constitutes its boundary which will be mapped first. Here, we follow the 

analogy of making a latitude-longitude (φ –θ) atlas from the globe. The non-convex outer boundary 

undergoes distortion to get mapped onto a sphere. Using this distortion as boundary condition, the inside 

mapping is achieved. The domain is discretized to start with. This can be accomplished using the standard 

solid modeling softwares or a triangulation algorithm [13] if the domain is defined by a point cloud. We 

used 4-noded tetrahedron elements for discretization. This produces triangular faces on the boundary 



 

 

surface. This triangulation is, in a way, a piecewise linear approximation of a smooth surface with 

triangles. 

2.1. Boundary mapping 

 

For mapping the boundary of the domain to the surface of a sphere, which is our target convex domain, 

the boundary triangles are to be determined using the ‘sharing test’
1
. This mapping is the same as 

parameterizing the outer surface onto 2-D atlas. The aim is to prepare a (φ –θ) atlas of the outer boundary. 

This can be done by stretching or flattening the outer boundary to a 2-D (parametric) plane, but it can not 

be performed directly for closed surfaces. So we dissect the boundary to make it an open surface and then 

map it to 2-D plane, appropriately. This procedure is elaborated below.  

 

2.1.1. Dissection of boundary 

 

Inheriting the procedure of making the ‘atlas’ from the ‘globe’, the same naming convention has been 

followed. Two extreme points of the domain are named as north pole (Np) and south pole (Sp) 
2
. The set 

of triangles neighboring the south pole and the north pole are termed as south cap and north cap, 

respectively. The path peel is the set of triangles neighboring a ‘path’ lying on the outer boundary and 

connecting south pole to north pole. As the outer boundary surface is closed, it is cut into four parts viz., 

south cap, north cap, path peel and cut-out shell. This gives the major part of the closed boundary surface, 

normally the cut-out shell, as an open surface, as shown in Fig. 1.  

 

Identification of south cap and north cap  

 

South pole and north pole are two extreme points on the domain which can be found out by sorting one of 

the coordinates of all vertices. For forming the south cap and north cap, we first search for the triangles to 

which the north pole and south pole belong. Next, the immediate neighbors to the triangles containing the 

south pole and north pole are identified. This is performed using the ‘sharing’ test again, but this time it is 

sharing of an edge. These triangles form the first layer of cap. Again, searching for the neighbors to the 

first layer triangles gives the second layer. This is continued up to three layers
3
. The three layers at south 

pole constitute south cap. A similar process is carried out for north cap also. These caps are then 

separated from the domain.  
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Formation of the path peel  

 

Here, the path is a curve connecting south pole and north pole and lying on the boundary of the domain. 

A shortest path is determined using the Dijkstra algorithm [14] so as to have minimum distortion in the 

final mapping. This path will be mapped to the arc of zero degree longitude on the target sphere. This 

path is defined by a set of nodes on the boundary of the domain. The set of triangles sharing these nodes 

will form the ‘path peel’ as shown in Fig. 1.  

 

Fig. 1. Exploded view of dissected boundary of domain. 

This path peel is also separated from the domain. After removing south cap, north cap and path peel, the 

left out part of the domain boundary is termed as the cut-out shell.  

 

 

 

 

2.1.2. Mapping to the atlas 

 

Now the outer boundary of the domain is in the form of four pieces. We map all of them to the (φ –θ) 

atlas. In other words, we need to determine unique values of θ and φ for each node. Before mapping, the 

radius of the target sphere is determined using the following relation  

 

surface area of sphere = λ (surface area of domain), i.e. 

          (1) 

The essence of this exercise is to obtain the major part of the surface, 

the cut-out shell, as an open surface, which lends itself easily to a 

parameterization over a rectangular domain of parameters.  



 

 

where r is the radius of sphere, A is the surface area of the domain and λ is a constant. South pole and 

north pole are assigned 0 and π as latitude values
4
, respectively. For the rest of the nodes on both the caps, 

we use the method proposed by Suryawanshi et al.[1]. This involves mapping cap layers (LVS1, LVS2, 

LVN1, LVN2 in Fig. 2) one by one to the sphere. Each layer of a cap contains a node belonging to the 

path which is considered as the starting node for the determination of θ. The path itself is mapped to zero 

degree longitude (θ) arc on the sphere. The latitude (φ) for each node on the path is determined in 

proportion to the segment length as shown schematically in Fig. 2. 

 

Fig. 2. [a]. Domain with path and layers at both the caps. [b] Caps and path nodes on the mapped sphere. 

 

The cut-out shell boundary has four parts, viz. ‘south cap boundary’ on the left, ‘north cap boundary’ on 

the right, ‘path bottom’ in the bottom and ‘path top’ in the top. These are to be mapped to corresponding 

sides of a plane sheet of rectangular shape
5
.  After stretching, there should be no folds on the surface and 

the mapping should be bijective, i.e. when a ray is passed normal to the sheet at an arbitrary point, it 

should intersect the mapped plane exactly once.  

Here, the cut-out shell is considered as a thin membrane structure made of rubber. This is to be stretched 

on to sphere. The deformations required for this stretching at every node of discretized cut-out shell itself 

are the boundary conditions of finite element (FE) problem. Hence, there are no force boundary 

conditions. This mapping is performed through a nonlinear finite element formulation, considering each 

face as an incompressible triangular membrane element with hyper-elastic material (rubber) properties 

[17]. This finite element problem is solved by large-deformation formulation with an updated Lagrangian 

technique. The material of the membrane is assumed to obey a Mooney-Rivlin constitutive law though 

any other hyper-elastic law will also suffice.  Considering the complexity of domain, geometric 

nonlinearity is also included in the formulation. This is implemented effectively in the FEA software, 

                                                      
4 Longitude value is not defined at a pole. 
5 Size of the rectangle is to be found based on the size of the domain and number of iterations of FE analysis 



 

 

ABAQUS, which is used for the nonlinear Mooney-Rivlin membrane analysis. Formulation details 

related to Mooney-Rivilin analysis can be found in a standard text-book or in [16]. 

 

Atlas of the cut-out shell  

 

The displacement of each node on the cut-out shell is available after the finite element analysis solution. 

Adding these displacement values to the original coordinates gives the position of all nodes on the target 

sphere. Now, by projecting the final shape of the cut-out shell onto the plane of stretch, we develop a 

chart (say S) as shown in Fig. 3(a). Now this chart is scaled to get the final atlas. The horizontal axis, or 

longitude (θ), is restricted between θptop and θpbottom whereas the vertical axis, or latitude (φ), is restricted 

between φscb and φncb as shown in Fig. 3(b). Here θptop and θpbottom are the longitude values of the top node 

and bottom node on the path peel and similarly for φscb and φncb. With this, we have the complete atlas of 

the entire domain boundary. The coordinates of the points on the mapped sphere are calculated using 

 

x′ = r sinφ cosθ,  y′ = r sinφ sinθ,  z′ = r cosφ.    (2) 

 

Fig. 3. [a]: Projection of deformed cut-out shell onto the plane of stretch. [b] (φ−θ) atlas of the cut-out 

shell. 

 

2.2. Inside mapping 

 

The set of triangles of the domain which do not fall on the boundary represent the interior of the domain. 

For completing the mapping of the domain, we map this part to the interior of the target sphere and hence 

find the coordinates for all nodes. This step is achieved by solving a simple finite element problem. Here, 

the domain is visualized as 3-D structural assemblage of many ‘trusses’. Each edge of a tetrahedron is 



 

 

considered as a truss element. As we already have the displacement of boundary nodes from the previous 

boundary mapping, we use these values as boundary conditions and solve for inside nodes. Now, the 

problem is stated as, “when boundary nodes of the original domain are mapped to the surface of the 

sphere, what are the locations of inside nodes?” This is relatively less complicated than boundary 

mapping. Using the standard procedure [15], we calculate stiffness matrix for each truss and assemble 

them all to form the global stiffness matrix. Then we apply boundary conditions and solve the resulting 

linear system of equations. This procedure is elaborated below. 

 

2.2.1. Determination of element stiffness matrix [Ke] 

 

In the present problem, the truss is a 2-noded element in 3-D reference frame. The finite element problem 

is solved by minimization of strain energy using weighted residual method. For a uniform bar of length l, 

cross-sectional area A, and Young’s modulus of elasticity E, the force-displacement relation is 

          (3) 

where, {Fi} = [F1x F1y F1z F2x F2y F2z ]
T

 = vector representing force components acting on the element at its 

nodes, and {ui} =[u1 v1 w1 u2 v2 w2]
T

 = vector representing displacement components of the nodes of an 

element. The force displacement relation derived above is with respect to local coordinate system (X, Y, 

Z). It has to be transformed to global coordinate system (X0, Y0, Z0) before assembling into the global 

stiffness matrix. Hence, the final force-displacement relation with respect to global coordinate system is 

    ,     (4) 

where [T] is the transformation matrix
6
. The final form of the element stiffness matrix in global 

coordinates is given by 

         (5) 

where, A is the cross-sectional area, E is Young’s modulus of elasticity and l is the length of uniform bar 

and   

    ,     (6) 

 

 Cmn = CxmCxn; m = x
0
, y

0
, z

0
; n = x

0
, y

0
, z

0
; 

 

Cx,y0 = direction cosine of OX with respect to OY
0 
=  etc. 
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 The transformation matrix T is orthogonal, hence = . 



 

 

2.2.2. Assembly and boundary conditions 

 

Using the connectivity information, all the element stiffness matrices are assembled into a single matrix 

called the global stiffness matrix [Kglob]. The global force-displacement relation is  

 

{Fglob} = [Kglob] {uglob}.    (7) 

The vector differences between the coordinates of the nodes on the original 3-D domain and the 

coordinates of the corresponding nodes on the sphere is calculated, which give the displacement boundary 

conditions for the finite element problem to solve for the displacement of the internal boundary nodes. As 

there is no external force, the force vector {Fglob} is zero. 

 

2.2.3. Solution of the system of equations 

 

The matrices [Kglob] and {Fglob} will get modified, after applying the boundary conditions. Boundary 

conditions can be treated using either penalty approach or elimination approach [15]. We used elimination 

approach which involves modifying the above linear system by eliminating the rows and columns 

corresponding to the nodes at which boundary conditions are specified. This will reduce the size of the 

linear system. The force-displacement equation (Eq. 7) is then solved by using Gauss-elimination method 

to obtain the nodal displacement vector, {U}. By adding this vector to the vector of initial positions of the 

nodes in the original region, we get the positions of these nodes in the mapped region. This completes the 

mapping of the domain. 

Since this mapping has been arrived at through the minimization of a positive definite energy function, it 

turns out to be bijective. As a consequence, in particular, it guarantees that the inside nodes of the original 

domain are mapped to the interior of the sphere. 

 

3. Results 

 

The entire method is implemented in MATLAB programming environment except the Mooney-Rivlin 

analysis part which is carried out using the standard FEA solver, ABAQUS. For all cases, the material 

properties used are same. To demonstrate the utility of the domain mapping, we also applied this method 

for path planning. Even though we tested the method for many cases, only three of them are reported here. 

The following results show the effectiveness of the method. Unlike the existing works, we show the 

resulting mapping on latitude–longitude chart of the target sphere instead of the sphere itself. Though the 

mapping shown on a sphere is more appealing it is not visible on the entire domain since a complete 

sphere is never visible on the paper. This atlas representation followed here clearly shows the quality of 

mapping over the entire domain. 



 

 

3.1. Domain I 

 

The region shown in the Fig. 4(a) is a surface of revolution and it is simply connected. 

 

Fig. 4. Domain I: [a] Discretized region. [b] Latitude(φ)-longitude(θ) atlas of boundary of the region. [c] 

Path between source and destination points. [d] Obstacle avoidance and curvature parameter of the path. 

 

This has been constructed by making a curve using the free spline in the XY- plane and then rotating it 

about the Y-axis. This region is mapped to the sphere and the atlas is prepared as shown in Fig. 4(b). The 

mapping obtained is bijective, without any folds. As an application of this method, we planned a few 

paths in the domain. One such path is shown in Fig. 4(c). Since it is a simply connected region, difficulty 

is posed by boundary only. As we can see, the paths planned are away from boundary. This is verified by 

calculating the distance between the boundary and path which is shown in Fig. 4(d). Whenever the source 

or destination points are close to boundary, the path bends to avoid collision, otherwise it is almost 

straight. This is measured by calculating the curvature of the planned path. Except when the path is close 

to the boundary, the curvature value is almost zero along the path can be seen in Fig. 4(d). 

 



 

 

3.2. Domain II 

 

The second region illustrated here is a 3-D maze. This case is much more complicated. 

 

 

The region is constructed by drawing a cube, then extruding several rectangular blocks into the cube and 

thereby making the rectangular blind holes by Boolean operations. The domain is discretized using 

tetrahedral elements as shown in Fig. 5(a). Using the same hyper-elastic material properties, the resulting 

FE problem is solved to get the final atlas of the domain as shown in Fig. 5(b). Computationally, this case 

was found more expensive than the previous one as it is more complicated. An iterative approach is 

followed in solving the nonlinear FE problem instead of flattening the cut-out shell in a single stretch. 

The mapping is bijective. To demonstrate this, an optimal path is planned between two points which are 

close to the boundary as shown in Fig. 5(a). Because of the cavities present on the outer boundary, the 

layer based approach of Suryawanshi et al.[1] fails in this case. 

 

3.3. Domain III 

 

This domain is a 3-D star shaped one. To construct this region, first an ellipse is drawn, then a copy of the 

same ellipse is revolved through  about Z-axis. Again, another copy of the resulting ellipsoid is 

generated and revolved through  about the Y-axis. The union of the three ellipsoids gives the shape 

of the region. The complete discretized region and (φ−θ) atlas of its boundary are shown in Fig. 6(a) and 



 

 

6(b), respectively. This region is also mapped to a sphere successfully without any folds, thereby 

providing the bijectivity. 

 

 

Fig. 6. Domain III: [a] Discretized region. [b] Latitude(φ)- longitude(θ) atlas of boundary of the region. 

 

Mapping is performed for many other cases which are not presented here. In all cases, mapping was 

always bijective. Number of iterations taken by FE solver was dependent on the complexity of the 

domain. 

 

 

4. Conclusions 

 

The domain mapping method is an effective general method for reducing a complicated 3-D domain to a 

simple one, thereby simplifying the problem. The effectiveness of the method is demonstrated using 

several complicated domains. The (φ−θ) atlas produced is a spherical parameterization of the original 

complicated domain. 

 

There are several possible continuations of the present work. In principle, bijectivity is always guaranteed 

by this method. As one can see, the principle of this method can be extended to any dimension. In 

implementation, as mentioned earlier, choosing the appropriate material properties and its behavior is an 

important aspect. The bijectivity is lost if the chosen material does not allow the stretching required for 



 

 

the mapping. Such cases can be handled by some modifications like taking different material properties 

for different parts of domain, solving the finite element problem in more iterations etc. An inherent 

advantage of this method is that the loss of bijectivity is localized in the cases where bijective mapping is 

not obtained. This means that some local corrective strategy is enough for ensuring bijectivity. There is 

no need to restart the method afresh as in some other methods. Hence this method has strong potential for 

many application problems. 
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