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Abstract

In this paper, we present a new shape descriptor,
which is named Poisson equation-Fourier-Mellin
moment Descriptor. We solve the Poisson equation in
the shape area, and use the solution to get feature
function, which are then integrated using
Fourier-Mellin moment to represent the shape. This
method develops the Poisson equation-geometric
moment Descriptor proposed by Lena Gorelick, and
keeps both advantages of Poisson equation-geometric
moment and Fourier-Mellin moment. It is proved
better than Poisson equation-geometric moment
Descriptor in shape recognition and classification
experiments.
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1. Introduction

Shape is one of the most important features of
objects, and how to recognize and classify shapes is an
important topic not only in pattern recognition, but
also in computer vision. At present, shape variant is
the mainstream of the shape recognition methods, and
the Moment method is widely used. Fourier-Mellin
Moment is one of complex Moments, and it can be
transformed to Rotation-and- Translation Invariant. It
attains good result in shape recognition. However,
moment can only describe the global feature of the
shape, and can not include the detail ones.

In 2006, Lena Gorelick with her group proposed a
novel approach using the solution to the Poisson
equation to represent a shape[l]. They used the
solution to the Poisson equation in the shape area, to
extract useful properties of a shape, which are then in
tegrated using geometric moment. We improve this
method by integrating the properties with Fourier-Mel
lin moment instead of the geometric moment,and
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obtain Poisson equation-Fourier-Mellin moment Des
criptor. This new method combines the advantages of

Poisson equation-geometric moment descriptor and
Fourier-Mellin moment. It can be transformed to Rot
ation-and-Translation Invariant, and also describe a s
hape more accurately. We use both methods in shape
recognition and classification experiments, and find o
ur method obtain better results. Here, we introduce
Poisson equation-geometric moment Descriptor
proposed by Lena Gorelick first.

2. The Poisson Equation-geometric
moment Descriptor
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Figure 1. A collection of shapes.

Consider a shape S (Figure 1) surrounded by a
simple, closed contour 6S . Based on the thought of
random walk, we calculate the mean time required
for every point in the shape to hit the boundaries.

Let U(x,y) denote this measure, we can get

AU(x,y)=-1 (D
(x,y)eds ,subject to Dirichlet boundary conditions
U(x,y)=0, at the bounding contour s .

Solve the equation, we can get this measure. Then
use this measure to construct feature function:

2
#(x,3) = U, )+ [VU(x, ) e
@#(x,y) is used in hierarchical representation. By
simply thresholding @, we can divide a shape into

parts.

Another feature function is the leading
eigenvector of the Hessian matrix of U, which
describes the local orientation of the shape.

Using these two features, construct two measures:

H (x y) = e 710-la oyl 3)

PR
-7/2<a(x,y)<z/2 , and y is a constant (we
used ¥=3 ). This measure identifies vertical and
horizontal regions of a shape by detecting points for



which the orientation computed with the Hessian
matrix is close to either zero or z/2 .

Denote by ¢(x, ), the function ¢(x, ) centered about
its saddle point value (the value at the point where U
is maximal) and normalized so that its maximal
absolute value is 1.

K,(x,y)= 1/1 +e 0 “4)

(We used o6=4 ). The second measure

K,(x,y) identifies concave regions as well as

elongated convex sections by emphasizing points
with high values of ¢ .

Then the two measures are integrated by geometric

moment in [1], instead of which, we will use

Fourier-Mellin moment. Before that, we introduce
Fourier-Mellin moment first.

3. Fourier-Mellin Moment

Definition:

¥ 2p g o
F@=|_ [ e strgdrdg )

is called Fourier-Mellin moment of g(r,6) ,where
(r,0)1s the polar coordinate of image , g(r.0) is the
weight function in polar coordinate, 1 is a integer, k is
a positive integer which is called the order of the
moment.

Fourier-Mellin moment is a common complex
moment. To make sure the descriptor will be a
Rotation-Translation-and Scale-Invariant, we
transform it into Fourier-Mellin moment invariant.

First, we calculate the moment center (x,y,) , and
then move the original point of polar coordinate to
the moment centre. This makes sure it is Translation
invariable. Second, we will consider the relationship
between the original moment and the moment after
rotation and scale transformation.

When a shape rotates an angle o, the scale factor
of the scale transformation is § , the relationship bet-
ween the Fourier-Mellin moment after rotation-scale
transformation and the original shape moment is:

F}c/’(g) = Skeimﬂl (g) (6)
To ensure it is Translation-and Scale-Invariant,
here we make / = 0, then definite

lPko(g):Fko(g)/on (&) )
Easily proved:
¥ (8)=",(2) (®)

¥, (¢) is the Fourier-Mellin moment invariant of
¢ .Next, we use ¥, to describe a shape, and

construct Poisson equation-Fourier-Mellin moment
Descriptor.

4. Poisson equation-Fourier-Mellin
moment Descriptor

As we can see in part 2, for each shape, we get 3
measures: H,(x,y), H,,(x,y) andK,(x,y) . We change

the 3 functions into polar coordinate form, and we
get H/(r0) » H,'(r0) and K/(r,6) . Then we
calculate

(‘I’ko(HO’),‘PkO(H”/z'),‘PkO(Kq,')) k=012, (10)

The function we got is named Poisson equation-
Fourier-Mellin moment Descriptor ( PFD ).

5. The Shape Simplicity

To calculate the simplicity between shape i and j,
we calculate the distance between Poisson
equation-Fourier-Mellin moment Descriptors:

PFD, and PFD; :

distance= \/Z |PFD, (1)~ PFD, 1) (11)

The smaller the distance is, the more similar the
two shapes will be.

6. Shape Recognition and Classification
Experiments

In this part, we calculate Fourier-Mellin moment
invariant when k = 0,1,2,3 . For each shape, we got
PFD which is a 12 dimensions vector.

6.1. Shape Recognition Experiment

To the 12 shapes in Fig. 2.(from general shape
database, the first 6 are in same class, and the rest
from different ones), we use ( PFD ) and ( PGD )
in our shape recognition experiment. The results are
in table 1 and table 2.
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Figure 2. 12 shapes from general shape database



Table 1. PGD Shape recognition experiment result (Threshold is 0.23)

1 2 3 4 5 6 7 8 9 10 11 12
1 0.000 0.151 0.221 0.316 0.196 0.318 0.393 0.494 0.596 0.664 0.469 0.269
2| 0.151 0.000 0.139 0.200 0.097 0.189 0.355 | 0.453 0.683 0.703 0.348 0.284
3] 0.221 0.139 0.000 0.139 0.146 0.140 0.285 | 0.341 0.722 0.673 0.282 0.207
4| 0316 0.200 0.139 0.000 0.176 0.046 0.260 0.345 0.835 0.678 0.172 0.296
5| 0.196 0.097 0.146 0.176 0.000 0.181 0.335 0.413 0.695 0.692 0.299 0.279
6] 0.318 0.189 0.140 0.046 0.181 0.000 0.287 0.373 0.835 0.702 0.188 0.314

Table 2. PFD Shape recognition experiment result ( Threshold is 0.23)

1 2 3 4 5 6 7 8 9 10 11 12
1| 0.000 0.048 0.079 0.205 0.082 0.125 0.605 0.588 0.403 0.566 0.568 0.456
2| 0.048 0.000 0.082 0.226 0.071 0.139 0.634 0.607 0.356 0.611 0.598 0.495
3| 0.079 0.082 0.000 0.146 0.025 0.067 0.558 0.525 0.395 0.561 0.521 0.428
4/ 0.205 0.226 0.146 0.000 0.167 0.113 0.413 0.383 0.519 0.464 0.377 0.301
5| 0.082 0.071 0.025 0.167 0.000 0.079 0.581 0.542 0.370 0.582 0.542 0.451
6| 0.125 0.139 0.067 0.113 0.079 0.000 0.522 0.481 0.428 0.513 0.474 0.381

Table 1 and table 2 shows the simplicity of 12 shapes in
Figure 2. The black data is those figures which are lower
than threshold and the red data higher than threshold (The
same below). We can see the simplicity of most shapes
from different classes are above the threshold, while the
simplicity of shapes from same class are below.
Comparing the two methods, the accuracy of PFD is
100%, while the accuracy of PGD is 90.3%, which
proves the former is better than the latter.

6.2. Shape Classification Experiment

We take apple, children, rat, cell phone, face etd. 5
classes from the general shape database, 5 shapes each
class (Fig. 3.), then use them in shape classification
experiment. The result is showed in attached list.
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Figure 3. Shapes used in shape classification experlment

In the attached list, G is the experiment result of PGD ,
F is of PFD.We can see that the two shape descriptors

both can attain good result, and if we take a appropriate
threshold (it is 0.1 for PGD , while 0.13 for PFD ), they both
can get 100% accuracy.

7. Conclusion

Through the experiments we can see that compared
with Poisson equation-geometric moment Descriptor,
Poisson equation-Fourier-Mellin moment Descriptor is
Rotation-Translation-and Scale -Invariable, so it is
superior in classifying a large number of shapes. In the
future, we hope to find a fast algorithm, and induce the
time of shape classification experiment.
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