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Abstract 
 

The compression of CAD models is a key technology for realizing Internet-based collaborative 
product development because big model sizes often prohibit us to achieve a rapid product information 
transmission. Although there exist some algorithms for compressing discrete CAD models, original 
precise CAD models are focused on in this paper. Here, the characteristics of hierarchical structures in 
CAD models and the distribution of their redundant data are exploited for developing a novel data 
encoding method. In the method, different encoding rules are applied to different types of data. Geometric 
data is a major concern for reducing model sizes. For geometric data, the control points of B-spline curves 
and surfaces are compressed with the second-order predictions in a local coordinate system. Based on 
analysis to the distortion induced by quantization, an efficient method for computation of the distortion is 
provided. The results indicate that the data size of CAD models can be decreased efficiently after 
compressed with the proposed method. 

 
Key Words: Collaborative product development, model compression, hierarchical structure, B-spline, 
second-order prediction 
 

1. Introduction 
 

With rapid development of economic globalization and Internet Technology, manufacture 

enterprises have extended from traditional regional cooperation mode to global collaboration mode. In the 

course of product development, a great deal of CAD product models are exchanged and shared between 

cooperators via network transmission. With products becoming increasingly complex, increased products 

data have brought a heavy burden to storage and transmission, resulting in drastic efficiency reduction of 

cooperated product development under distributed network environment. To compress product model 

data for fast network transmission has become a bottleneck technology that needs an urgent solution [1]. 

Until now, little work has been done on the study of compression and transmission algorithms 

for precise CAD product models. Although many researchers have made studies to the compression of 3D 

model and presented a lot of efficient algorithms [2-6], most of them are for approximate polygon mesh 

models, unsuitable for 3D CAD models created with accurate mathematical representations. Recently, 

research to the accurate CAD model transmission has gained more and more attentions [7-9]. These 

studies focus on the incremental transmission of boundary representation (BREP) CAD model without 
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covering the analysis of structural redundant data and pertinent compression method. 

Compression methods for polygon mesh model have been studied for a long time and have a 

vast literature. Taubin [2], Touma [3] and Bajaj [4] have each developed an efficient coding strategy of 

single-resolution mesh compression. The basic idea of single resolution compression is to traverse each 

triangle or vertex of the mesh and represent the results into a symbol sequence, which is then coded. In 

this way, the connectivity of polygon can be compressed. Using the encoding order of traversal, the 

position of a vertex can be predicted by the positions of previously encoded vertices. The difference 

between the actual position and the predicted position is encoded as an integer. Other attributes such as 

normal, color, etc. can be compressed in the same way. To ease the contradiction between limited 

bandwidth and fast transmission of huge models, an algorithm for progressive transmission is proposed. 

The idea of the algorithm is to transmit a group of basic meshes to remote clients first, then, provides 

clients with a gradually refined model and as a result, the model is increasingly refined to approximate 

the original model eventually. Hoppe [5] introduced Progressive Mesh (PM) which transforms the 

original mesh models into simpler base meshes and a sequence of detail records that represents how to 

gradually restore base meshes to the original model. Taubin [6] improved the PM algorithm and 

developed Progressive Forest Split (PFS) scheme. 

Due to the inherent limitation of polygon mesh model in representation of product model, some 

researchers turn to the study of accurate geometry model compression. Martin [10] proposed a method for 

compressing floating-point coordinates with predictive coding in a completely lossless manner. The 

predicted and the actual floating-point values are broken up into sign, exponent, and mantissa and their 

corrections are compressed separately with context-based arithmetic coding. Diego [11] presented a 

method for compressing NURBS 3D models with a small and controllable loss. The method employs a 

DPCM coder with parallelogram predictors and a uniform scalar quantizer, followed by entropy coding. 

Wang [12] simplified complex CAD model by removing Non-geometric data and fitting B-spline surfaces 

with sample points less than original. 

In summary, compression and fast transmission of 3D models are highlights of this field. 

However, polygon based 3D models are approximation to the accurate CAD models and the 

corresponding compression algorithms are unsuitable for accurate CAD product models. The 

compression of accurate models remains to be a research issue that needs to be addressed. In fact, the 

internal structures of accurate CAD models are highly similar. It is crucial to efficient compression and 

fast transmission of 3D models to study the features of model structures and the law of the redundancy 

information distribution. 

This paper analyzes the structure and redundancy information of CAD product models and 

presents an encoding scheme for the features data in hierarchical structure of CAD models. The 

distribution of free-form curves and surfaces in the geometric data are analyzed, and a second-order 

prediction algorithm under local coordinate system is proposed to compress control points. The prediction 

errors are quantized and entropy coded. The distortion introduced by quantization is also analyzed, and a 

method to compute quantization distortion of curves and surfaces rapidly from quantization errors of 



 
 

control points is provided. 

The remainder of this paper is organized as follows. In Section 2 we give a brief overview of 

hierarchical representation of CAD models. After this, Section 3 introduces the compression of feature 

layer and geometry layer, which is focused on the predictive encoding of free-form curves and surfaces in 

geometric data. Then, Section 4 describes system implementation and Section 5 gives compression 

results. Finally, the paper is finished with a summary to our contributions in Section 6. 

 

2. Hierarchical structure of CAD models 
 

A complete product model contains geometric data, feature information, assembly information, 

product attributes, manufacture information, etc. Product information is usually abstracted as attributes 

layer, geometry layer, topology layer and assembly layer. Figure 1 shows the structure of traditional CAD 

model. 

 

 
Fig. 1 CAD model structure. 

It’s difficult to analyze the information redundancy and transmit model incrementally, due to the 

tight coupling of layer data in traditional model structure. Therefore, the model data are reorganized and a 

B-rep based hierarchical representation structure is set up. 

 

 
Fig. 2 Hierarchical structure of CAD models. 

As Figure 2 shows, the bidirectional relationships between layer data are decoupled in 

hierarchical structure, and translated to a structure of single direction list. The process of reorganization is 

as follows. First, Hierarchical Data Buffer (HDB) is introduced to store the model data of every layer. 

Five HDBs are provided correspond to the number of layers. Second, all nodes of the layer data are 



 
 

tagged. Finally, the directed graph of nodes is traversed and every node is wrote to the HDB according to 

it’s layer. After finishing the traverse of graph, the model data are decomposed and every layer data are 

stored in the HDBs. In the hierarchical structure, the relationships between nodes are maintained by the 

tag. The node of topper layer records the tag of lower layer node, then the structure of model data can be 

described as a single direction list. The detailed layer information is described as follows: 

The attribute layer, which can be described as },...,,{ 21 maaaATT = , is a set of attributes, 

including not only part attributes but also feature and geometric attributes. The attribute data describe 

name, identification, engineering attribute, physical attribute and color, texture, etc. 

The geometric layer records the geometric shape of model accurately. It can be described as 

},,{ SURFCUVPTGEOM = , where PT denotes the set of points, CUV denotes the set of curves, 

and SURF denotes the set of surfaces. The points are recorded with coordinates. The analytic curves and 

surfaces are expressed in the form of equation. The free-form curves and surfaces are defined with knots 

and control points. 

The topology layer records the relationships of geometric element by B-rep. It is represented as 

},,,,|{ jiGEOMgeomgeomgeomgeomtopTOP jiji ≠∈><= , where geom denotes the 

element in geometric layer. 

The feature layer is represented as },{ GFFET = , where },...,,{ 21 kfffF =  denotes the 

set of feature nodes, },,),,(|{ jiFffffggG jiji ≠∈==  denotes the constraint graph of features, 

which describing the constraint relations between feature nodes. 

The assembly layer is described as },{ CPASM = , where },...,,{ 21 npppP =  denotes 

the set of parts, },,,,|{ jiPppppccC jiji ≠∈>=<=  represents the assembly relations. 

Organized in such a hierarchical structure, CAD models can be analyzed, and a compressive 

algorithm for hierarchy information can be developed. Moreover, the hierarchical structure is convenient 

for incremental transmission. 

 

3. Compression of CAD models 
 

The data of the feature layer and geometric layer weighs heavily in a product model. Therefore, 

compression of a complex product model can be achieved by compressing the data in both the layers just 

mentioned. Any complex CAD model is formed from a series of simple features through Boolean operati

on and local operation. A few feature operations such as sweeping, rounding, etc. are frequently used in C

AD modeling. Therefore, the feature data can be entropy coded based on statistic law. On the other hand, 

the geometric information in a CAD model is expressed by a uniform representation based on B-

spline, and stored in a form of tensor matrix. Some feature operations such as approximation, offsetting, e

tc. often generate surfaces containing a great deal of control points. Based on analysis of the distribution l



 
 

aw of these control points, geometric prediction can be used to compress it. The compression algorithms f

or the feature layer and geometric layer are respectively described below. 

3.1 Feature layer compression 

The feature node can be represented as: 

Feature={ID, Type, Name, Parameter, Attribute, Topology_ID, Operator} 

Where ID denotes the feature identification, which is an integer value; Type, Name and 

Attribute are textual values. Parameters are float-point values. Topology_ID records the ID of related 

topology element. The data of feature nodes can be compressed according to their data type respectively. 

For numerical values in feature node such as ID, Topology_ID and Parameter, incremental 

compression scheme is applied. 

Name and Attribute record the feature information for design and manufacturing, and the terms 

of which can be normalized or even standardized. Taking advantage of this characteristic, Name and 

Attribute can be encoded by dictionary encoding [13]. A dictionary encoding assigns an integer to each 

new word in Names and Attributes, and stores the mapping from codes to strings in a dictionary. The 

pseudo-code is shown below: 

Initialize Dictionary; 

e←the first text; 

while (TRUE) do 

 Input the next text N; 

 if N not exist then 

 Output Index of e; 

Break; 

end if 

if eN exist in Dictionary then 

 e←eN; 

else 

 Output Index of e; 

 Add eN to Dictionary; 

e←N; 

end if 

end while 

At the beginning of encoding, the dictionary is empty, which is built up dynamically in the 

course of coding. Therefore, the compression rate is low in the beginning. To overcome this disadvantage, 

the frequently appearing Names and Attributes in features are obtained by statistics before coding and the 

compression rate will be improved by adding these Names and Attributes to dictionary when initialization. 

Similarly, other textual data can be compressed with the same algorithm. 

3.2 Geometry layer compression 

The shape of CAD model is described by geometry layer which is composed of points, curves, 



 
 

surfaces, etc. The analytic curves or surfaces are expressed in the form of equation with only a small 

amount of information, and free-form curves or surfaces are computed from control polygon, which often 

contains a great number of control points resulting in a drastic increase of model data. For example, the 

offset surfaces and transition surfaces in a CAD model are often approximated with B-spline surfaces, 

where a great amount of control points are often generated for higher precision. As shown in Figure 3, the 

size of model data is 29K before fillet operation, which drastically increases to 538K after filleting and 

approximating with B-spline. The approximate surface contains 344×25=8600 control points. Therefore, 

the geometric data can be compressed through encoding the control points of B-spline curves and 

surfaces. 

 
Fig. 3 Control polygon of free-form surface. 

B-splines are defined with knots and control points. The knots and control points usually show 

certain regularity as well as some redundancy. Therefore, they can be compressed with predictive coding. 

Parallelogram rule is commonly used in predictive coding of polygon mesh model, i.e. assuming that the 

adjacent two triangles form a parallelogram. However, the prediction accuracy of parallelogram rule for 

control points in B-spline is low. When analyzing the B-spline in a CAD model, we can find that the 

curve or surface curvatures are normally continuous with very few cusps. The trend of control polygon is 

basically the same as that of curves and surfaces. The predictive accuracy can be improved with the help 

of continuity of curvature. 

According to the above analyses, a second-order prediction algorithm in local coordinate is 

presented for control polygon. The procedure of the algorithm includes the following steps. First, local 

coordinate systems (LCS) are set up on each control point. And the control points are predicted linearly 

with first-order predictor in LCS to obtain the first-order prediction errors which describe the trend of 

curvature. Second, the first-order prediction errors are predicted linearly to obtain the second-order 

prediction errors. Finally the second-order prediction errors are transmitted to quantizer and entropy coder. 

The points after quantization are fed back to the first-order predictor. The LCS is set up to eliminate the 

influence of the world coordinate system. Predict under such a local coordinate system of each point, the 

values of prediction errors can be reduced and the distribution can be more centralized. The quantized 

point is fed back to the first-order prediction of next control point to avoid the propagation of the 

quantization error. The knot vector is decomposed into break vector and multiplicity map. The 

multiplicity map is entropy coded without prior processing. For the break vector, prediction and uniform 

scalar quantization are used prior to entropy coding. 

3.2.1 Predictive coding of control points 

The predictive algorithms of curve and surface control points are described below respectively. 

1) Predictive coding of curves 
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(a) Curve control points          (b) First-order prediction for previous control point 
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(c) Prediction for current control point 
Fig. 4 Prediction of B-spline curve control point. 

Given control point vector ),...,1,0( nidi = , degree k, knot vector [ ]110 ,,, ++= knuuuU , 

the B-spline curve equation is defined as ∑
=

=
n

i
kii uNdup

0
, )()( , where )(, uN ki  denotes the ith B-

spline function. Figure 4 shows the B-spline curve prediction, where Figure 4(a) shows the control 

polygon of curve, Figure 4(b) shows the first-order prediction of previous control point, Figure 4(c) 

shows the prediction of current control point. )( zyx −−  denotes the world coordinate system. id  is 

the current coding control point. 1−id , 2−id , 3−id , 4−id  denote the actual control points. The coded 

points fed back to first-order predictor are denoted by 1
ˆ
−id , 2

ˆ
−id , 3

ˆ
−id , 4

ˆ
−id . The prediction 

algorithm is as follows: 

1 Construction of the local coordinate systems 

The local coordinate system )( iii zyx −−  of current coding point is set up with 2
ˆ
−id  as 

the origin, ( 2
ˆ
−id , 1

ˆ
−id ) as axis x, the plane formed of the points 1

ˆ
−id , 2

ˆ
−id , 3

ˆ
−id  as xoy plane. The 

unit vectors of the axes in )( iii zyx −−  are expressed as follows: 

21

21

ˆˆ
ˆˆ

−−

−−

−

−
=

ii

ii
i

dd
ddOX , ( ) ( )

( ) ( )2321

2321

ˆˆˆˆ
ˆˆˆˆ

−−−−

−−−−

−×−

−×−
=

iiii

iiii
i

dddd
ddddOZ , iii OXOZOY ×=  

Similarly, the local coordinate system )( 111 −−− −− iii zyx  of previous control point is set up. 

The unit vectors of the axes are 1−iOX , 1−iOY , 1−iOZ . 

2 First-order prediction of control points. 

As Figure 4(b) shows, the previous control point is predicted using parallelogram rule and the 



 
 

predictive point is 321
ˆˆ2 −−− −=′ iii ddd  in world coordinate system with the first-order prediction error 

111
ˆ

−−− ′−= iii ddE . Transforming 1−iE ` to local coordinate system )( 111 −−− −− iii zyx , 1−′iE  is 

obtained and its coordinates are 1311 *)ˆ(. −−−− −=′ iiii OXdExE , 1311 )ˆ(. −−−− ∗−=′ iiii OYdEyE , 

1311 )ˆ(. −−−− ∗−=′ iiii OZdEzE , where “*” denotes dot product operation. 

Similarly, the first-order prediction error of the current coding control point is computed and 

transformed to LCS. The first-order prediction point is 21
ˆˆ2 −− −=′ iii ddd . The first-order prediction 

error is iii ddE ′−= . iE′  is obtained by transforming iE  to )( iii zyx −− . 

3 Second-order prediction and quantization 

As Figure 4(c) shows, a vector 1−iλ  is obtained by mapping 1−′iE  from LCS 

( 111 −−− −− iii zyx ) to LCS ]_[0 unumλ , that is, the lengths of 1−iλ  and 1−′iE  are equal, and the 

angles between the vectors and their respective LCS axes are also equal. Predicted in )( iii zyx −− , the 

second-order prediction error iE ′′  is obtained using 1−−′=′′ iii EE λ . By quantizing iE ′′ , we obtain the 

quantized prediction error iÊ , which is sent to entropy coder. The detailed algorithms of quantization 

and entropy coding will be described in Section 3.2.3. 

4 Feedback. Transforming vector 1
ˆ

−+ iiE λ  to world coordinate system, we obtain iE~ . The 

quantized control point is computed using iiii Eddd ~ˆˆ2ˆ
21 +−= −− . id̂  is fed back to the predictor for 

the prediction of next control point to avoid the propagation of the quantization error. 

Repeat the above steps until all control points have been coded. 

2) Predictive coding of surfaces 

The prediction of B-spline surface is similar to that of curve. The primary difference is that the 

surface prediction uses the adjacent multiple first-order errors together to second-order predict. Figure 5 

shows the B-spline surface prediction. 
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(a) B-spline surface control polygon        (b) First-order prediction of current coding control point 
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(c) Second-order prediction 
Fig. 5 Prediction of B-spline surface. 

Figure 5(a) shows the control polygon of B-spline surface. jid ,  is called the current coding 

control point. Coded and quantized the actual control points jid ,1− , 1, −jid , 1,1 −− jid , the coded control 

points jid ,1
ˆ
− , 1,

ˆ
−jid , 1,1

ˆ
−− jid  are obtained, which are fed back to the first-order predictor. The 

quadrangle formed of points jid , , jid ,1
ˆ
− , 1,

ˆ
−jid , 1,1

ˆ
−− jid  is called the current coding quadrangle. 

Detailed algorithm is as follows: 

1 Construction of the local coordinate systems 

The local coordinate systems of previous row coded quadrangle, previous column coded 

quadrangle and current coding quadrangle are set up respectively. The coded quadrangle of the previous 

row is ( jid ,1
ˆ
− , 1,1

ˆ
−− jid , 1,2

ˆ
−− jid ,ε ). Using 1,2

ˆ
−− jid  as the origin, ( 1,2

ˆ
−− jid , jid ,2

ˆ
− ) as axis x, the plane 

formed of triangle ( 1,1
ˆ

−− jid , 1,2
ˆ

−− jid , jid ,2
ˆ
− ) as xoy plane, local coordinate system σ  is set up. 

Similarly, the local coordinate system )( 1,1,1, −−− −− jijiji zyx  of previous column and 

)( ,,, jijiji zyx −−  of current point are set up. 

2 First-order prediction of control points. 

Figure 5(b) shows the first-order prediction of current coding control point. The first-order 

prediction error is jijiji ddE ,,, ′−= , where 1,1,11,,
ˆˆˆ

−−−− −+=′ jijijiji dddd  is the point of 

parallelogram prediction in world coordinate system )( zyx −− . jiE ,′  is obtained by transforming 

jiE ,  to local coordinate system ( jijiji zyx ,,, ). Similarly, the first-order prediction errors jiE ,1−′  and 

1, −′ jiE  of pre-row and pre-column are obtained respectively. 

3 Second-order prediction and quantization 

As Figure 5(c) shows, similarly to that of curve, two vectors ji ,1−λ  and 1, −jiλ  are obtained 

by mapping jiE ,1−′  and 1, −′ jiE  to the local coordinate system )( ,,, jijiji zyx −− . Then the second-

order prediction error in LCS )( ,,, jijiji zyx −−  is jijiji EE ,,, λ−′=′′ , where 

2/)( ,11,, jijiji −− += λλλ . jiE ,′′  is quantized and entropy coded. 



 
 

4 Feedback. To avoid the propagation of quantization errors, the quantized coordinates of 

current coding point are computed and fed back to the first-order predictor for the prediction of next 

control point. 

Since the prediction of one point need the points of the previous two rows and two columns, the 

boundaries of surfaces are handled in a different way. The coordinates of 0,0d  are recorded directly. The 

first row { jd ,0 } and first column { 0,id } are predicted using the method of curve. The row { jd ,1 } and 

column { 1,id } are predicted by { jd ,0 } and { 0,id } using the parallelogram rule. All other points can be 

handled using the above second-order predictive algorithm. 

3.2.2 Knot vectors coding 

The knot vector [ ]110 ,,, ++= knuuuU  is a non-decreasing sequence. It is decomposed into 

the break vector [ ]ltttt ,,, 10=  and the multiplicity map [ ]lrrrr ,,, 10= . The break vector 

contains the values of the knot vector, but where multiple knots appear only once, while the multiplicity 

map expresses the multiplicity of each knot, minus one. The sum of all multiplicity is 2
0

++=∑
=

knr
l

i
i . 

The multiplicity map is entropy coded without prior processing. For the break vector prediction 

is used prior to entropy coding. The current coding knot is it . The predicted value for it  is 

21
ˆˆ2 −− −=′ iii ttt , where 1

ˆ
−it  and 2

ˆ
−it  are coded knots. Then we obtain the prediction error 

iii tt −′=ζ . iζ  is quantized and entropy coded. The quantized current knot is fed back to predict the 

next knot. 

3.2.3 Quantization of second-order prediction error 

The quantization is synchronous with prediction. The purpose of quantization is to map the 

prediction errors in the form of floating-point numbers to an integer interval. The length of the interval is 

determined by quantization parameter. The quantization index is Δ= /iiQ ε , where iε  is the 

prediction error, Δ  is a given quantization parameter and 〈〉  denotes the rounding operator. The value 

of the quantization parameter Δ  determines the magnitude of iQ . In the meanwhile quantization has 

also resulted in quantization error, which is Δ /2 for the maximum. A larger quantization parameter leads 

to a small value of iQ  but higher quantization error. In contrary, a smaller quantization parameter cause 

a lower quantization error but a larger value of iQ , that is, the distortion is small. The quantization 

parameter Δ  can be determined by the allowed distortion together with the compression rate to be 

achieved. 

As a B-spline surface is calculated from control points, the quantization errors of control points 

will definitely lead to the errors of surface. Given a surface f , the decoded surface is denoted as f ′ . 



 
 

The distortion between the coded and original surfaces is measured by means of the Hausdorff distance. 

However, evaluating the Hausdorff distance directly on the surface is an extremely difficult task. 

Furthermore, it is only a measure of the shortest distance between two surfaces, which is unable to reflect 

the movements of equal parameter points on surface. The other method is to compute the distances 

between the equal parameter points on f  and f ′  as the quantization distortion of a surface. More 

specifically, the method is to divide the parameters in direction u and v into n and m equal parts 

respectively. The quantization distortion is calculated by 

( ) ( )( )
mn

vufvuf
l

n

i

m

j
jiji

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′−

=
∑∑
= =

2
1

1 1

2,,
 

 This method is also a computationally expensive operation. In this paper, the following 

method is used: using curve as an example, the matrix form of a curve is NDP = , where P is a vector 

of the points to be calculated on the curve, N is the basis function, D is the matrix of control points. After 

the quantization distortion DΔ  of control points is introduced, the new points on the curve are 

)( DDNPnew Δ+= , then the quantization distortion for the curve is DNP Δ=Δ . Similarly, the 

surface distortion can be computed. 

The prediction errors are entropy coded after quantization. As the prediction errors are not 

completely uncorrelated, QM arithmetic coder [14] is used to eliminate the correlation between prediction 

errors to further improve the coding efficiency. 

The process flow of the second-order predictive coding of the surfaces control points is shown 

in Figure 6. 

 

 
Fig. 6 Process flow of second-order predictive coding algorithm. 

3.2.4 Decoding of control points 

After compression, the CAD models can be stored and transmitted. The original models can be 

restored by decoding. Decoding is a reverse process of the prediction step in coding. The construction of 

local coordinate system and first-order prediction are similar to that in the coding. Using surface as an 

example, the decoding steps are described below: 

(1) Calculate the first-order prediction error ]_[0 unumλ  in the first row of u direction under 

the local coordinate system; 

(2) Construct the local coordinate system of the previous column and calculate the first-order 



 
 

prediction error 1, −jiλ  in the local coordinate system; 

(3) Set the previous row first-order prediction error ji ,1−λ  to ][0 jλ ; 

(4) Calculate the current first-order prediction error with 2/)(ˆ
,11,,, jijijiji E −− ++= λλλ , 

where jiE ,
ˆ  is the second-order prediction error of current control point. Set jij ,0 ][ λλ = ; 

(5) Construct the local coordinate system of current decoding point and compute the 

parallelogram prediction point jid ,′ . Then the decoded point is jijiji dd ,,,
ˆ λ−′= ; 

(6) Repeat steps 2~5 to obtain the decoded values of all control points. 

The original B-spline surface can be restored after decoding the knot vector and control points 

respectively. 

4. System implementation 

The above algorithms are implemented in the prototype system, which provides such functions 

as remote collaborative browse, check, comment, assembly, edit of animation and explosion, etc. 

 

 
Fig. 7 System framework for prototype system. 

Figure 7 shows the modules and principles of the prototype system. The product models 

designed in different CAD systems are imported into the prototype system through the interface 

developed with API provided by CAD systems. The compressed accurate models are obtained by 

analyzing the redundancies, coding the feature data and free-form curves and surfaces and entropy coding. 

Then the compressed accurate models can be transmitted incrementally through network and be used in 

such fields as collaborative development, mass customization and model retrieval. 

 

5. Experimental results 



 
 

 

Figure 8 shows the histograms of the quantized prediction error for the control points of the 

turbine model, calculated over 16698 values, with the quantization parameter being 10-4. As it can be seen, 

the distribution of the proposed second-order prediction error is more skewed than that of the 

parallelogram. The results of the both algorithms satisfy the Laplace distribution. The mean square 

deviation σ  of prediction error ε  computed from proposed scheme is 25.023, in comparison to that 

from parallelogram prediction being 133.609, where the σ  is computed by ])[( 2εεσ EE −= . 

Therefore the proposed algorithm has more concentrated error distribution, smaller mean square 

deviation and higher compressive efficiency. 

 
 

 

(a) Turbine model           (b) second-order prediction   (c) parallelogram prediction 
Fig. 8 Histogram of quantized control point prediction errors for the turbine model. 

Figure 9 shows the rendered models after decoding. The Cylinder and Car body model come 

from UG, the Gear and Handle from ACIS, and the Phone from SolidWorks. 

 
(a) Cylinder            (b) Car body              (c) Gear       (d) Phone   (e) Handle 

Fig. 9 Decoded models. 

Table 1 shows the data sizes of the feature. It is clearly seen that the feature data can be 

compressed more effectively by applying differential encoding according to the data type. The structure 

of features has a big effect on the compression ratio. The implementation result is better for those models 

contain similar internal structures. 
Table 1 Compressed size of feature data. 

 Uncompressed 
feature data (KB)

Compressed with 
proposed method (KB)

Compressed 
with Gzip (KB) 

Cylinder 16053.72 2624.54 4051.28 
Car body 3950.35 856.07 1143.21 

Gear 153.21 31.76 54.83 
Phone 337.21 76.06 101.74 
Handle 34.01 9.58 10.26 

Table 2 illustrates the compression performance of B-spline surfaces of our predictive scheme 



 
 

in comparison to standard gzip compression and general parallelogram prediction at different 

quantization levels. The files are stored in binary form, and bits/coordinate denotes the number of bits per 

coordinate. 
Table 2 Compressed result of B-spline surface. 

  Cylinder Car body Gear Phone Handle 
 Uncompressed (KB) 1682.44 5379.26 240.12 33.56 15.04 
 Number of control points 71784 229515 10245 1432 642 
 Gzip (KB) 539.32 2059.28 144.28 18.8 8.58 

Second-order prediction (KB) 142.69 471.89 30.04 8.24 6.72 
bits/coordinate 5.43 5.61 8.01 15.72 28.58 

Average quantized distortion 0.37×10-5 0.75×10-5 0.8×10-5 0.7×10-5 0.43×10-5

Quantized 
parameter 

10-6 
Parallelogram prediction(KB) 220.31 768.36 58.91 13.52 7.32 
Second-order prediction (KB) 65.05 116.3 8.38 4.63 4.53 

bits/coordinate 2.47 1.38 2.24 8.85 19.27 
Average quantized distortion 0.63×10-3 0.55×10-3 0.74×10-3 0.37×10-3 0.32×10-3

Quantized 
parameter 

10-4 
Parallelogram prediction(KB) 173.05 286.82 17.61 7.75 5.63 
Second-order prediction (KB) 22.64 58.16 2.39 3.18 3.03 

bits/coordinate 0.86 0.69 0.64 6.07 12.89 
Average quantized distortion 0.36×10-1 0.41×10-1 0.16×10-1 0.53×10-1 0.21×10-2

Quantized 
parameter 

10-3 
Parallelogram prediction(KB) 83.56 135.63 10.78 5.02 4.71 

The experimental results verify that the proposed scheme achieves higher compression rates. 

The larger the quantizing parameter is, the smaller the data sizes and the higher the quantization 

distortion will be. Different CAD systems generate B-spline in different method, which results in the 

compression ratio varying greatly. As there are a lot of ruled surfaces in the gear model, the compression 

ratio is high; as the curvature of the surfaces changes a lot in the handle model, the compression ratio is 

low. 

 

6. Conclusion 
 

This paper analyzes the characteristics of the hierarchical structure in accurate CAD models, 

develops a hierarchy information compression algorithm and resolves effectively the bottleneck problem 

of complicated model transmission existing in collaborative design. For feature information in feature 

layer, a new coding algorithm is given according to the data type. For free-form curves and surfaces in 

geometric layer, a second-order prediction algorithm in local coordinate system is developed, by which 

the error distribution is more centralized than that of general parallelogram prediction, the mean square 

deviation is less, the compression ratio is higher and the quantized distortion is smaller and more 

controllable. Several experimental results are given to verify the effectiveness of the proposed algorithm. 
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