

CBAbench: An AutoCAD-based Dynamic Geometric

Constraint System

Xiong Gong∗, Bo-xing Wang and Li-ping Chen

National CAD Support Software Engineering Research Center, Huazhong University of Science and
Technology, Wuhan 430074, P.R.China

Abstract

In this paper, an integration framework of Geometric Constraint Solving Engine and AutoCAD is

presented, and a dynamic geometric constraint system is introduced. According to inherent orientation
features of geometric entities and various Object Snap results of AutoCAD, the proposed system can
automatically construct an under-constrained geometric constraint model during interactive drawing. And
then the directed constraint graph in a geometric constraint model is real-time modified in order to
produce an optimal constraint solving sequence.

Due to the open object-oriented characteristics of AutoCAD, a set of user-defined entities
including basic geometric elements and graphics constraint relations are defined through derivation. And
the custom-made Object Reactor and Command Reactor are also constructed. Several powerful
characteristics are achieved based on these user-defined entities and reactors, including synchronously
processing geometric constraint information while saving and opening DWG files, visual constraint
relations, and full adaptability to Undo/Redo operations. These characteristics of the proposed system can
help the designers more easily manage geometric entities and constraint relations between them.

Key Words: Geometric constraint solving, Constraint relation decomposition, Geometric constraint
graph, Object Snap, Constraint display

1. Introduction

The traditional CAD systems such as AutoCAD have few powerful capabilities in representing

and processing constraint relations between geometric entities. Most systems are actually drafting-boards,

and lack of efficient product design functions for the designers. The abilities to represent, solve and

maintain geometric constraints have become a distinct characteristic to distinguish modern and traditional

CAD systems [23]. Despite all that, these traditional CAD systems have been applied widely in industry

community. Therefore, it is very important to extend constraint solving abilities to traditional CAD

systems.

Geometric Constraint Solving (GCS) is one of the key technologies of parametric CAD systems,

which enables the designers to make modifications to existing designs by changing parametric values.

Many practical problems in engineering design fields can be regarded as Geometric Constraint

∗ Corresponding author:
Tel: +86-(27)-87463786
Fax: +86-(27)-87453986
E-mail: gongx@hustcad.com

Satisfaction Problem (GCSP), including parametric design and drawing, automatic assembly, planar or

spatial mechanism analysis, layout problem and so on.

There are four major approaches to geometric constraint solving: the numerical solving

approach [14, 19], the symbolic computing approach [6, 12], the graph-based analyzing approach [7, 8, 9,

15, 21], and the rule-based reasoning approach [1, 5, 10, 13, 16]. These methods have their own

advantages and drawbacks about applied scope and solving speed, therefore, they are often combined to

obtain the best results [2, 4, 11, 17, 18].

Nowadays, the 2D geometric constraint solving technology used in existing CAD systems has

been developed perfectly, and applied successfully. However, in 3D geometric design fields, due to their

own diversity and complexity, many problems about constraint solving have been not settled well. In fact,

the underlying essence of geometric constraint problems in 2D and 3D fields are consistent, and the

differences between them consist in that whether the constraint solvers are easy to be achieved. Moreover,

for the multi-body system analysis problems in engineering design fields, they actually have the same

geometric characteristics with those of geometric constraint systems.

Over the past years, most researches about geometric constraint satisfaction problems have been

processed separately according to their own spaces and problem types. For instance, the solution to planar

drafting is much different from that to spatial assembly. Essentially, all these applications are concerned

with constraint matching, constraint sorting and constraint decomposing, which are regarded as common

problems of constraint solving.
Based on above considerations, we have carried out the researches on general geometric

constraint solving engine. The major goal is to construct an efficient and united geometric constraint

solver, called Constraint Broadcasting Automation (CBA) [22]. It is hoped that CBA can be applied to

matching, sorting and decomposing of 2D/3D constraints, and furthermore to mechanism kinematics and

dynamics analysis. Moreover, CBA should have enough platform-independent compatibility and

transplantability.

This work follows our previous researches on general geometric constraint solving engine.

Using the existing open CAD system as a geometric engine, we try to study the integration framework of

CBA and the geometric engine, and develop a new application system. In the existing parametric systems

based on AutoCAD [2, 23, 24], following drawbacks should be attended.
1. Due to excessive dependence of geometric constraint systems on the given CAD platform,

the transplantability of constraint solver was restricted.
2. Most systems often used separate data files to store geometric constraint information. As a

result, the geometric constraint models would possibly be inconsistent with engineering drawings.

3. Various Object Snap results were simply discarded. Therefore, the descriptive geometric

constraint models could not be automatically constructed during interactive drawing.

4. Invisible constraint information would possibly result in complex actions in managing and

maintaining constraints.

5. Undo/Redo operations were not adapted well all along.

The thinking and relevant algorithms about geometric constraint solving will not be detailed in

this paper. Instead, we present a new 2D computer-aided drafting system based on geometric constraint

solving, called CBAbench. The proposed system demonstrates a seamless integration framework of

independent geometric constraint solving engine and AutoCAD, and those problems will be solved well

in this system.

The rest of this paper is organized as follows. In Section 2, we state the notations and

conventions used in this paper, and give the software architecture of CBA. Next, in Section 3, the

integration framework of the proposed system is presented. And, Section 4 detailed explains the

implementation methods of major functions, followed by several illustrative examples in Section 5.

Finally, we offer some conclusions and discuss future works in Section 6.

2. CBA overview

2.1 Decomposition of constraint relation

Generally, the geometric constraints in a plane fall into two groups: structural constraints and

dimension constraints. The structural constraints can be implicit or explicit. The implicit structural

constraints describe the inherent orientation features of geometric entities, such as Point-On-Line,

horizontality and verticality. The explicit structural constraints describe the relative positional and

connective relations between geometric elements, such as parallelism, perpendicularity and tangency.

And, the dimension constraints are made through dimensioning, including distance and angle.

From the viewpoint of granularity, the geometric constraints can be also classified into two

types. One is the macro-definition for end users, called Constraint Relation, and the other is the micro-

definition used in internal solving, called Constraint Component. Each constraint relation is equivalent to

one or more constraint components. For example, the constraint relation produced by a distance

dimension between two parallel lines can be decomposed into two constraint components, that is, Line-

Line parallelism and Line-Line distance.

The two important notions, that is, Degree of Freedom (DOF) and Degree of Constraint (DOC),

are often used to quantify geometric entities and constraint relations between them. DOF is defined by the

number of independent movement variables of geometric entities, denoted by , and is a

given entity. The DOF of points, straight lines of infinite length, circles of variable radius in a plane is

equal to 2, 2, 3 respectively.

)(eDOF e

DOC is defined by the reduced number of the DOF of geometric entities due to geometric

constraints placed on them, denoted by , and is a given constraint relation. A constraint

relation is actually equivalent to a group of independent algebraic constraint equations, which are

quadratic in the coordinates of the geometries [21]. Due to various constraints placed on them, the

movements of geometric entities are restricted, and their DOF reduces consequently [1].

)(cDOC c

According to above explanations, the DOC of a constraint relation should be equal to the

number of relevant constraint components, and to the number of equivalent independent algebraic

constraint equations. The constraint relations whose DOC is greater than 1 should be decomposed,

therefore, the constraint solver can consistently maintain the decomposed constraint components whose

DOC is always equal to 1. Table 1 shows several general constraint relations the DOC of which is greater

than or equal to 1.

Table 1. Constraint relations and relevant constraint components
Constraint Relation DOC Constraint Component(s)

Point-fixed 2
X-coordinate-fixed

Y-coordinate-fixed

Point-Point coincidence 2
X-coordinate-equal

Y-coordinate-equal

Point-Line symmetry 2
Line-Line perpendicularity

Point-Line equidistance

Line-Line coincidence 2
Line-Line parallelism

Line-Line distance = 0

Distance dimension between

two parallel lines
2

Line-Line parallelism

Line-Line distance

Line-Line perpendicularity 1 Perpendicularity between two lines

It can be seen from the following segments that the decomposition of constraint relations is

helpful for representation and solving of geometric constraint models. And the persistent storage of

constraint relations is more easily achieved.

From now on, we will not distinguish constraint relations from constraint components, and call

them constraints instead, provided that no mistake arises.

2.2 Representation of geometric constraint model

In this work, Geometric Constraint Graph (GCG) is introduced to describe geometric constraint

models. In a directed constraint graph,),(AVGGCG = , is a set of vertices denoted by ,

where is denoted by a geometric element; is a set of directed arcs denoted by , where is

denoted by a constraint component between two geometric elements.

V }{v

v A }{a a

The directed arc is made with the following steps. Let constraint be matched with

vertex ; and represent the head and tail of a directed arc respectively. If is matched with

, is created by using to represent its tail vertex and to denote its head vertex. The other

a c

v hv tv c

hv a tv hv

definitions concerning the structural properties of the constraint graph are provided in Ref. [17].

 (a) (b)

P3

P2

L2

P5

L3

L1

C

P1

P4

P6

L4

O

O

D

O

O O

D O

T

CX

CY

O

OTO
O: On (incidence)

D: Distance

T: Tangency

CX: X-coord of center

CY: Y-coord of center

A

A: Angle

Fig. 1. A geometric constraint model and its optimized GCG. (a) a geometric constraint model,

and (b) the optimized geometric constraint directed graph.

The work in Ref. [3] provides more detailed algorithms about how to construct, match and

optimize a directed constraint graph. As an example, the GCG in Fig.1(b) is constructed through

recognizing the constraint relations in the geometric drawing in Fig.1(a), and it has been dynamically

optimized in order to decrease the constraint solving scale (explained below). As shown in Fig.1(b), the

GCG clearly represents geometric entities and constraint relations between them in the geometric

constraint model.

Practically，the vertex can be classified into two types: basic vertex denoted by

and compound vertex denoted by . Here, encapsulates basic geometric elements, such as

points, straight lines and circles; encapsulates a directed sub-graph , which represents a

condensed strong component of the directed graph . The analogous methods about how to condense

strong components to compound vertices in a directed graph are reported in Ref. [8].

v)(evb

)(ss Gv bv

sv sG

G

A directed constraint graph has the following characteristics. First, the directed arc

represents one and only constraint , where c is matched with the head vertex of . Second, the

number of the constraints matched with , which is equal to the in-degrees of , should be less than

or equal to the DOF of .

G a
c a

)(ev v

e
Thus it can be seen, the key point to construct a geometric constraint graph is to search a vertex

 to match the new constraint . If no appropriate v is found, is redundant. The analogous

conclusion can be also seen in Ref. [3].

v c c

2.3 Dynamic solving planning

In a directed constraint graph, the arc’s direction indicates the dependence of its head vertex on

its tail vertex. Then, the vertices whose out-degrees are equal to zero are independent on any other

vertices. As shown in Fig.1(b), P6 is independent on P1, L1 and L4. The condensed directed acyclic

graph indicates a partial-order between the set of vertices, and a global-order solving sequence can be

produced with Topological Sort method.

For example, the directed acyclic graph in Fig.1(b) has no strong components. Therefore, the

solving sequence, {P6, L1, L4, P1, L2, P2, L3, C, P3, P4, P5}, can be made by using Topological Sort.

Since the global solving is too slow and consumes too much space to satisfy real-time

interactive operations, certain dynamic planning strategies must be taken to decrease the constraint

solving scale. As a matter of fact, the arc’s direction in a directed graph implies the broadcasting scope of

the variations caused by the constraint’s change, called Constraint Broadcasting Scope (CBS) [3]. In a

directed acyclic graph, the CBS for vertex and the constraint matched with is defined by a set of

vertices denoted by , which can be produced through forward Depth-First-Search from .

0v 0v

}{v 0v

As shown in Fig.1(b), if the radius dimension d4 matched with the arc C is modified, only the

vertices in {P3, P4, P5}, which are equivalent with the CBS of vertex C and d4, must be re-solved.

2.4 Software architecture of CBA

CbaObject

CbaModel

CbaModel2d

CbaGeomEntity

CbaPoint2d

CbaLine2d

CbaArc2d

CbaBody

CbaBody2d

CbaGraph

CbaGraph2d

CbaDiVertex

CbaDiEdge

CbaSolveUnit

CbaSolveUnit2d

CbaRelation

CbaConstraint

CbaConstraint2d

CbaDimension

CbaDimension2d

(a)

CbaModelCbaGeomEntity

CbaBody

CbaRelation CbaGraph

CbaSolveUnit

CbaDiVertex

CbaConstraint CbaDiEdge : Inheritance

: Aggregation

: Reference

(b)

Fig. 2. Software structure of CBA. (a) object hiberarchy of CBA, and (b) aggregation and

reference relations between CBA objects.

Based on above explanations, we give the software structure of CBA in the object-oriented

form, as shown in Fig.2. The object hierarchy of CBA presents most classes in the geometric constraint

solver except those used in 3D constraint solving, which are beyond the scope of this work and have been

ignored. The object inheritance relations are shown in Fig.2(a), and expressed with hollow arrows. Next,

the aggregation and reference relations are shown in Fig.2(b) with rhombic nodes and arrows respectively.

The brief descriptions for CBA objects are given as follows.

As the base-class of all the other objects, CbaObject provides necessary common interfaces and

services, including object identification and debugging.

CbaModel encapsulates all objects of a geometric constraint system, including a set of virtual

bodies denoted by {CbaBody}, a set of geometric entities denoted by {CbaGeomEntity}, a set of

constrain relations denoted by {CbaRelation}, a directed constraint graph denoted by CbaGraph related to

the geometric constraint model, and a dynamic solving sequence denoted by {CbaSolveUnit}.

Since the geometric constraint solving engine does not directly manage actual geometric

elements, CbaBody in this work is defined as Virtual Body. The virtual body contains the DOF of a given

geometric body and a set of basic geometric elements, where the basic geometric elements are attached to

the virtual body and have various constraint relations with other entities. The virtual body links to the

actual geometric elements through their unique handles from CAD systems.

Correspondingly, CbaGeomEntity encapsulates the common properties of all types of basic

geometric elements. And, the basic geometric elements are constructed through derivation from it, such

as points denoted by CbaPoint2d, straight lines denoted by CbaLine2d and circular arcs denoted by

CbaArc2d.

CbaConstraint is used to describe a constraint component. As the minimal solving unit, it is

associated with a unique algebraic constraint equation. And, CbaRelation encapsulates a group of (mostly,

only one) constraint components, which can be seen through the user interface.

CbaDiGraph represents a directed constraint graph. It provides the operations of constructing,

searching and traversing for directed graphs, and searching and condensing for strong components. The

vertex and directed arc in a constraint graph are described with CbaDiVertex and CbaDiEdge respectively.

Finally, CbaSolveUnit is used to explain one step in a solving sequence，which is actually

bound with a basic or compound vertex in a directed constraint graph.

CBA can be easily used to represent geometric constraint models, and many crucial algorithms

for constructing, matching and decomposing constraint directed graphs are also developed for practical

applications [3]. Among these classes, CbaBody is one of the most important objects for 2D/3D united

constraint solver for its properties vary from different spaces and problems [22]. Furthermore, other

classes and their sub-classes including CbaModel, CbaGraph, CbaConstraint and CbaSolveUnit will be

used to deal with various problems in different fields.

3. Integration framework in CBAbench

3.1 Open characteristics of AutoCAD

Before introducing the integration framework of CBAbench, we begin to explain the object-

oriented characteristics of AutoCAD. First, due to its open application architecture, AutoCAD can be

regarded as a general geometric kernel. Then, a third-party application can be developed based on this

system or transplanted to this platform, and seamlessly integrated with it.

Second, the object hierarchy of AutoCAD can be further extended. Besides providing various

objects and functions in the object-oriented form, AutoCAD permits new objects to be constructed

through derivation from existed classes, and provides relevant methods to manage them.

Third, AutoCAD provides powerful message mechanism. It reports various internal events

(such as creations or deletions of entities, calling commands) to external applications. And the latter can

process them in time.

Last, the graphics database of AutoCAD is open. Like existing internal objects, the new objects

of external applications constructed through derivation can be saved into the graphics database, and

managed and maintained by AutoCAD consistently.

3.2 Integration framework of CBA and AutoCAD

AutoCAD
Graphics
Database

CBADB
Constraint
Broadcasting
Automation

ObjectARX CBA for AutoCAD

Dynamic
Navigation

(a)

CbaDbEntity

CbaDbPoint

CbaDbLine

CbaDbArc

AcDbEntity

CbaDbRelation

AcDbObjectReactor

CbaObjectReactor

AcEditorReactor

CbaCommandReactor

(b) (c)

Fig. 3. Intergration framework in CBAbench. (a) integration framework of CBA and AutoCAD,

(b) CBADB: run-time objects, and (c) object reactor and command reactor.

Practically, CBA is an independent calculation model, and CBA object information is temporary

and cannot be persistently saved. The correlations between the object instances of CbaBody,

CbaGeomEntity, CbaRelation and the platform-dependent entities can be built only by using unique

handles, which helps to construct an integration framework of CBA and AutoCAD. In this work, a

seamless integration framework shown in Fig.3 has been accomplished based on ObjectARX [20].

Among these sub-systems, Dynamic Navigation in Fig.3(a) is a set of interactive tools used to

draw lines and dimension, which uses the Object Snap functions of AutoCAD to draw exact lines and

extract accurate constraint relations between them. Moreover, in this framework, Dynamic Navigation is

used as a bridge to communicate the geometric constrain solving engine with AutoCAD.

In this framework, CbaDbEntity and its sub-classes in Fig.3(b), including CbaDbPoint,

CbaDbLine and CbaDbArc, are defined as actual geometric elements, and used in Dynamic Navigation to

create geometric entities during interactive drawing.

Besides being the storage carrier of geometric constrains in AutoCAD, CbaDbRelation is used

to really display the types and states of constraints. And that, the function of synchronously processing

constraint information while saving and opening DWG files is also achieved based on it.

The two reactors, that is, CbaObjectReactor and CbaCommandReator in Fig.3(c), are defined to

implement Object Reactor and Command Reactor respectively. And, these reactors are combined to

achieve the full adaptability to Undo/Redo operations. This will help the system automatically update

geometric constraint models.

In a geometric constraint graph, the vertices and directed arcs are associated with different types

of graphics entities. In this work, those actual geometric elements, defined by CbaDbPoint, CbaDbLine

and CbaDbArc, are associated with the basic vertices, and the constraint entities defined by

CbaDbRelation are related to the directed arcs.

Through unique handles, called AcDbHandle in ObjectARX [20], the correlations between the

temporary run-time objects in CBA (such as CbaGeomEntity and CbaRelation) and the persistent user-

defined entities in AutoCAD (such as CbaDbEntity and CbaDbRelation) can be created conveniently.

4. System implementation

4.1 Construction of geometric constraint model

As mentioned above, Dynamic Navigation has two major sets of functions, that is, drawing

lines and dimensioning. And it plays an important role in automatically constructing geometric constraint

models during interactive drawing.

The functions of drawing lines in Dynamic Navigation are similar to those existing commands

in AutoCAD. During drawing lines, Dynamic Navigation completes two major works (explained below)

and outputs necessary results to the constraint system in an appropriate form.

The first is to create actual geometric elements, such as points, straight lines and circular arcs,

which are the instances of CbaDbPoint, CbaDbLine and CbaDbArc respectively.

The second is to collect snap types and target entities of Object Snap during interactive

operating. The typical snap types include end-point, perpendicular-point and tangent-point and so on.

Subsequently, the relevant constraints are extracted from the Object Snap results, and then

exported into the geometric constraint system. For example, the Point-On-Line constraint is obtained

from the end-point snap. The same is true for the perpendicularity constraint from the perpendicular-point

snap, and the tangency constraint from the tangent-point snap.

The dimensioning functions in Dynamic Navigation have some inferential characteristics.

According to the selected entities and mouse’s movement, the dimension types can be automatically

determined, such as Point-Point distance, Line-Line angle, Radius and Diameter. Subsequently, the

dimensions and their associated entities are converted into relative constraints, which are submitted into

the geometric constraint system finally.
Through analyzing the results submitted by Dynamic Navigation, the system obtains geometric

entities and various types of constraints, including implicit structural constraints, explicit structural

constraints and dimension constraints. Then, an under-constrained geometric constraint model is

automatically constructed by using the methods in Section 2.2. Finally, the GCG is optimized to meet the

requirement of decreasing the constraint solving scale.

P3

P2

L2

P5

L3

L1

C

P1

P4

P6

L4

SC1

SC2

SC3

SC: Strong component

Fig. 4. Initial GCG of the geometric constraint model in Fig.1(a).

As an example, the initial GCG of the geometric constraint mode in Fig.1(a) is shown in Fig.4,

and the optimized GCG is shown in Fig.1(b). The differences between the two figures present the GCG’s

transition in various states.

Apparently, more than one strong component exists in the GCG shown in Fig.4. Therefore, a

global solving sequence cannot be obtained only by using simple Topological Sort method. Furthermore,

for the modifications of some constraints, the local solving sequence cannot be made only by using the

CBS method in Section 2.3.

As a coupled problem, the strong component in a GCG can be solved only through the

numerical computing methods, such as Newton-Raphon’s iteration or its variants [22].

Comparatively, the GCG in Fig.1(b) is more applicable to produce a serial solving sequence,

which can be orderly solved with algebraic analysis methods [21].

4.2 Storage and restoration of constraint information

AutoCAD permits that the user-defined objects derived from AcDbObject can be persistently

saved into the graphics database of AutoCAD through overriding the following virtual functions,

including dwgInFields(), dwgOutFields(), dxfInFields() and dxfOutFields() [20]. And, as the AcDbObject

is the base-class of AcDbEntity, therefore, above rules can be also applied to CbaDbRelaton.

Since the user-defined objects are accessed as a part of DWG files, the object instances of

CbaDbRelaton can be the storage carrier of constraint relations in AutoCAD to preserve the consistency

of constraint information with geometric drawing.
On the basis of the fact that the decomposition mode from constraint relations to constraint

components is invariable in CBA, certain simplified measures can be taken to decrease the storage scale

of constraint information in DWG files. For example, when a DWG file is saved, the whole GCG is

ignored because it can be re-built from geometric entities and correlative constraint relations between

them. The storage methods used in this work are given as follows.

First, all constraint relations in current geometric constraint model, including their types and

geometric elements associated with them, are saved into DWG files.

Second, the states of each constraint component decomposed from the given constraint relations,

for example, whether it is redundant or not, are also stored.

In this way, when a DWG file is saved in AutoCAD, all of necessary data about constraints are

stored in the graphics database simultaneously. While the DWG file is opened, all the data about

constraint relations and constraint components are extracted, and then a geometric constraint model is re-

built as done during interactive drawing. If needed, the geometric constraint graph is optimized

automatically. Subsequently, new design starts.

4.3 Display and deletion of constraints

AutoCAD permits that the user-defined graphics entities derived from AcDbEntity can be

displayed according to given styles by overriding worldDraw() and other virtual functions [20]. And, by

calling Erase command, the designers can directly select the displayed entities and delete them in

AutoCAD’s graphics window.

Since the object instances of CbaDbRelation resident in the graphics database of AutoCAD can

be displayed, the designers can learn the types and states of the constraint relations in current geometric

model in AutoCAD’s graphics window, and directly select and delete them. This will help the designers

maintain the constraint system conveniently.

In CBAbench, the normal constraints are displayed in green color, and the redundant constraints

are displayed in red color. In Fig.5, the types and states of the normal constraints in the drawing of

Fig.1(a) are displayed in green color, including one horizontality constraint, two verticality constraints,

two Line-Circle tangency constraints. But, the L1-L2 perpendicularity constraint is displayed in red color

because it is apparently redundant. Then the designers can easily learn the state of a given constraint

according to its color.

: Normal horizontality

: Normal verticality

: Normal Tangency

: Redundant perpendicularity

Fig. 5. Real display of constraints.

When a graphics constraint entity is deleted, the constraint engine can be notified due to Object

Reactor (explained below), and some actions are automatically taken to deal with the delete event. On

this condition, we establish the Truth Maintenance Scheme (TMS), which can be used to automatically

maintain the remainder set of constraints placed on geometric entities, where the geometric entities are

associated with the deleted constraint. The truth maintenance scheme is briefly explained as follows.

When a constraint entity is deleted, the system automatically checks the geometric element

matched with the deleted constraint. Assume that a redundant constraint exists in the remainder set

of constrains matched with . If the number of the existing normal constraints matched with is less

than the degrees of freedom of , the state of can be turned normal, that is, is activated.

e

rc

e e

e rc rc

As shown in Fig.5, if the verticality constraint placed on L2 is removed, the L1-L2

Perpendicularity constraint matched with L2 can be turned normal, and can be activated immediately.

4.4 Adaptability to Undo/Redo

In AutoCAD, AcDbObjectReactor and AcEditorReactor are used to create object reactors and

command reactors for special applications respectively. The applications can make use of both the

reactors to capture the user’s intents, and automatically make responses.

As shown in Fig.3, the user-defined object reactors, called CbaObjectReactor, is defined

through derivation from AcDbObjectReactor. The implementation of CbaObjectReactor needs overriding

the following callback functions, such as erased(), modified(), modifyUndone(), reappended() and

unappended(). After the object reactor is attached to the objects resident in the graphics database of

AutoCAD, all actions operated on the given objects can be captured, and relevant notifications are sent

automatically.

And, the command reactor, called CbaCommandReactor, is defined through derivation from

AcEditorReactor. The implementation of CbaCommandReactor needs overriding the following callback

functions, such as commandWillStart(), commandEnded(), commandCancelled() and commandFailed().

After the command reactor is registered in AutoCAD, one or more of the user’s commands can be

captured.

CBAbench combines the object reactor and command reactor to achieve the full adaptability to

Undo/Redo operations. The approximate steps are described as follows.

First, the object reactor captures the actions operated on geometric entities, and records

operation types and target entities.

Second, the command reactor captures the command callings of Undo or Redo. When the

command comes to an end, the geometric constraint model is automatically updated according to

previous operating information.

Actually, while running Undo or Redo command, the objects of CBADB and constraint

relations resident in the graphics database of AutoCAD might be modified due to the previous actions

operated on them. Once the relevant events happen, the object reactors capture them, and record

necessary information. When the command comes to an end, the system will automatically update the

geometric constraint model. As an example, the system’s response to an Undo command is given briefly

as follows.

While running the Undo command, the new-created geometric elements and constraint entities

are deleted from AutoCAD. When the command comes to an end, the relevant vertices and directed arcs

are automatically removed from the GCG with necessary optimizations. These delete events are detected

by the object reactors, and the operation types and target entities are detailed recorded. If a Redo

immediately follows the Undo command, the effects of Undo will be reversed.

5. Illustrative examples

CBAbench introduced in this paper meets well the requirements of interactive designs, and can

be applied to the routine product designs supported by geometric constraints. Two industrial models made

with CBAbench are shown below.

(a)

 (b)

Fig. 6. Industrial models made with CBAbench. (a) drafting of a cross gimbal, and (b)

engineering drawing of a valve in the motor-engine.

In Fig.6, Fig.6(a) shows the drafting of a cross gimbal without dimension constrains, and

Fig.6(b) shows the engineering drawing of a valve in the motor-engine with a complete geometric

constraint model.

6. Conclusions and future works

It can be seen from this work, as a general geometric constraint solving engine, CBA is

independent on special CAD systems and geometric modeling kernels. As shown in Fig.3, when

CBAbench is transplanted to other systems with necessary capabilities summarized in Section 3.1, only

the run-time classes of CBA, i.e. CBADB, need be re-constructed with minor modifications made to the

other modules. Similar works have been carried out based on ACIS.

CBAbench introduced in this paper meets well the requirements of interactive designs, and can

be applied to the routine product designs supported by geometric constraints. The advantages of the

proposed system are given as follows.

1. Dynamic Navigation connects the run-time classes of CBA with AutoCAD efficiently. Based

on it, the system succeeds in automatically constructing geometric constraint models in the course of

interactive drawing. In fact, the geometric entities with more complex shapes, i.e. formed features, such

as holes and key-slots, can be also defined through derivation. And their characteristic points for Object

Snap can be defined and obtained by Dynamic Navigation. Moreover, their DOF and sub-entities can be

consistently maintained with the Virtual Body. These aspects will help to extend this system to

incorporate other applications beyond mechanical scope.

2. The constraint information is persistently stored as a part of DWG files. CBAbench preserves

the consistency of constraint models with geometric drawings. And, the types and states of constraints in

a geometric constraint model can be shown in a visual form.

3. The user-defined geometric and constraint entities can be managed in a manner analogous to

that for other types of existing entities in AutoCAD. And, the full adaptability to Undo/Redo operations

gives a good help to end users in interactive designs.

In actual design process, the engineering constraints expressed with formulas or equations are

often used to satisfy the given functional, manufacturable and structural design requirements. If the

interpretive design languages, such as InteBasic [24] or VBScript, are introduced to convert complex

engineering constraints into parametric geometric constraints, the proposed system can become more

flexible. As one of leading CAD systems, AutoCAD has been widely applied in various industrial fields.

The secondary developmental modules with parametric capabilities will improve the designers’ work

efficiency further.

7. Acknowledgements

This work was supported by the National High Technology Research and Development

Program of China (863 Project, #2003AA411044) and the National Natural Science Foundation of China

(NSFC, #60503069). The authors are grateful to all the CAD staff at the National CAD Support Software

Engineering Research Center, Huazhong University of Science and Technology.

References

1. Aldefeld B. (1988), Variation of geometries based on a geometric reasoning method,

Computer-Aided Design, 20(3), 117-126.

2. Chen L.P., Tu Z.B., Luo H. and Zhou J. (1996), A new method about constraint management

of parametric drawing, Journal of Software, 7(7), 394-399.

3. Chen L.P., Wang B.X., Peng X.B. and Zhou J. (2000), An optimal method of bipartite graph

matching for under-constrained geometry solving, Journal of Computers, 23(5), 523-530.

4. Durand C. and Hoffmann C.M. (2000), A systematic framework for solving geometric

constraints analytically, Journal of Symbolic Computation, 30(5), 493-529.

5. Gao X.S. and Chou S.C. (1998), Solving geometric constraint systems I: A global

propagation approach, Computer-Aided Design, 30(1), 47-54.

6. Gao X.S. and Chou S.C. (1998), Solving geometric constraint systems II: A symbolic

approach and decision of re-constructibility, Computer-Aided Design, 30(2), 115-122.

7. He W., Tang M., Dong J.X. and He Z.J. (2003), A constraint solving approach based on

graph decomposition, Journal of Image and Graphics, 8(8), 926-931.

8. Hoffmann C.M., Lomonosov A. and Sitharam M. (1997), Finding solvable subsets of

constraint graphs, Berlin: Springer, 463-477.

9. Hoffmann C.M. and Vermeer P.J. (1995), Geometric constraint solving in R2 and R3. In: Du

D.Z. and Huang F., eds. Computing in Euclidean Geometric, Singapore: World Scientific

Publishing, 170-195.

10. Joan-Arinyo R. and Soto A. (1997), A correct rule-based geometric constraint solver,

Computers & Graphics, 21(5), 599-609.

11. Joan-Arinyo R. and Soto A. (1999), Combining constructive and equational geometric

constraint-solving techniques, ACM Transactions on Graphics, 18(1), 35-55.

12. Kondo K. (1992), Algebraic method for manipulation of dimensional relationships in

geometric models, Computer-Aided Design, 24(3), 141-147.

13. Kramer G.A. (1992), Solving geometric constraints systems: a case study in kinematics,

Cambridge MA: MIT Press.

14. Lamure H. and Michelucci D. (1996), Solving geometric constraints by homotopy, IEEE

Transactions on Visualization Computer Graphics, 2(1), 28-34.

15. Latham R.S. and Middleditch A.E. (1996), Connectivity analysis: a tool for processing

geometric constraints, Computer-Aided Design, 28(11), 917-928.

16. Lee J.Y. and Kim K. (1998), Geometric reasoning for knowledge-based design using graph

representation, Computer-Aided Design, 28(10), 831-841.

17. Lee K.Y., Kwon H., Lee J.Y. and Kim T.W. (2003), A hybrid approach to geometric

constraint solving with graph analysis and reduction, Advances in Engineering Software,

34(2), 103-113.

18. Li Y.T., Liu S.X., Hu S.M. and Sun J.G. (2002), Geometric constraint solving techniques

based on symbolic algebra and graphical reduction, Journal of Tsinghua University (Sci. &

Tech.), 42(10), 1410-1413.

19. Lin V.C., Gossard D.C. and Light R.A. (1981), Variational geometry in computer-aided

design, Computer & Graphics, 15(3), 171-177.

20. ObjectARX 2002 (July 10, 2002), http://www.autodesk.com/objectarx.

21. Owen J. (1991), Algebraic solution for geometric from dimensional constraints, ACM

symposium, New York: ACM Press. 397-407.

22. Peng X.B. (2002), Study of principles and methods of 2D/3D united geometric constraint

solver, PhD dissertation, Wuhan: Huazhong University of Science and Technology.

23. Wang, B.X., Chen L.P. and Zhou J. (1998), Study and practice of key technologies of

geometric constraint driven function in traditional drafting systems, Computer Research &

Development, 35(10), 935-940.

24. Zhou J.L., Chen L.P., Wang B.X. and Zhou J. (1999), The total solution for parametric

engineering drawing, Computer Engineering and Design, 20(3), 39-41.

	Abstract
	1. Introduction
	2. CBA overview
	3. Integration framework in CBAbench
	4. System implementation
	5. Illustrative examples
	6. Conclusions and future works
	7. Acknowledgements
	References

