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Abstract 
 

Based on the smoothness criterion of minimum curvature variation of the curve, tangent angle 
constraints guaranteeing an optimized geometric Hermite (OGH) curve both mathematically and 
geometrically smooth is given, and new methods for constructing composite optimized geometric 
Hermite (COH) curves are presented in this paper. The comparison of the new methods with Yong and 
Cheng’s methods based on strain energy minimization is included. 
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1. Introduction 
 

Given endpoint conditions (positions and tangent vectors) can determine one and only one 
Hermite curve. Although the Hermite curve has the minimum strain energy (adopting the integrated 
squared second derivative of the curve as the approximation of the strain energy) among all C1 cubic 
polynomial curves satisfying the same endpoint conditions, its shape may be unpleasant. It may have 
loops, cusps or folds, namely, not geometrically smooth. Hence, additional degrees of freedom are needed 
to meet the geometric smoothness requirements. Obviously, adjusting the magnitudes of the given tangent 
vectors can make the Hermite curve geometrically smooth, and such Hermite curve is known as 
geometric Hermite curve. 

Research on geometric Hermite curves can be classified into two categories. The first one 
focuses on building a low degree geometric Hermite curve with high order geometric continuity and 
approximation accuracy. The second one focuses on producing a G1 geometric Hermite curve without 
loops, cusps and folds. Meek and Walton [6,7] use a T-cubic curve to get pleasing shape by implicitly 
restricting the directions of the input tangent vectors. T-cubic curves can be joined with circular arcs to 
form nice spirals if the curve segment is short enough. Yong and Cheng [9] present a new class of curves 
named optimized geometric Hermite (OGH) curves, such a curve is defined by optimizing the 
magnitudes of the endpoint tangent vectors in the Hermite interpolation process in order to minimize the 
strain energy of the curve, and they also give the geometric smoothness conditions and techniques for 
constructing 2-segment and 3-segment composite optimized geometric Hermite (COH) curves. Hence, an 
explicit way can be used to quantize the smoothness of a curve in the geometric Hermite interpolation 
process both mathematically and geometrically. However, the criterion to measure the smoothness of a 
curve is not unique, usually minimum strain energy (MSE) or minimum curvature variation (MCV) is 
used. Yong and Cheng use MSE as the smoothness criterion, but it cannot make the curvature variation 
minimum at the same time. Hence, the curves may have unpleasing shape in some cases. 
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For above disadvantage, MCV is used as the new smoothness criterion of curve in this paper 
and the integrated squared third derivative of curve is chosen as the approximate form of the curvature 
variation, i.e., object function. The extended definitions of OGH and COH curves and the tangent angle 
constraints (tangent direction preserving conditions and geometric smoothness conditions) under which 
an OGH curve would be mathematically and geometrically smooth are given. New methods for 
constructing 2-segment and 3-segment COH curves are presented, and by extension, they can cover 
tangent angles of all possible cases. Finally, the COH curves based on new criterion are compared with 
the COH curves by Yong and Cheng. 

 

2. Description of the problem 
 

The extended definition of the optimized geometric Hermite (OGH) curves based on MCV is 
given first. 

Definition 1 Given two endpoints 0 and 1P P , and two endpoint tangent vectors , a 
cubic polynomial curve 

0 1 and V V

0 1( ), [ , ]P t t t t∈ , is called an optimized geometric Hermite (OGH) curve with 
respect to the endpoint conditions  if it has the smallest curvature variation among all 
cubic Hermite curves 

0 1 0 1{ , , , }P P V V

0 1( ), [ , ]P t t t t∈ , satisfying the following conditions: 

0 0 1 1 0 0 0 1 1( )  , ( )  , ( )  , ( ) 1P t P P t P P t V P t Vα α′ ′= = = =                                  (1) 
where 0  and 1α α  are arbitrary real numbers, and the cubic Hermite curve

0 1( ), [ , ]P t t t t∈ , satisfying the 
constraints (1) can be expressed as 

2 2 2 2
0 1 1 0 0 0 1 0 1 1( ) (2 1)( 1) ( 2 3) (1 ) ( ) ( 1) ( )P t s s P s s P s s t t V s s t t Vα α= + − + − + + − − + − −         (2) 

where 0 1 0( ) /( )s t t t t= − − . The object function, i.e., the approximate curvature variation of the curve 

( )P t on is defined as 0 1[ , ]t t 1

0

2[ ( )]
t

t
E P t′′′= ∫ dt , where ( )P t′′′ is the third derivative of ( )P t . 

Such an OGH curve absolutely exists and has the smallest curvature variation, i.e., the curve is 
mathematically smooth under such smoothness criterion. However, there exist two matters: one is that the 
endpoint tangent vectors of the OGH curve may be opposite to the given endpoint tangent vectors; and 
the other is that it may have loops, cusps or folds. Either of these is certainly not desired. So we should 
discuss the tangent angle constraints that ensure tangent direction preserving and geometric smoothness 
of the OGH curve. 

 

3. Tangent angle constraint 
 

The explicit values of 0  and 1α α  which define the OGH curve ( )P t  can be got easily from 

definition 1. The theorem is as follows: 
Theorem 1 Given two endpoints 0 and 1P P , two endpoint tangent vectors , and a 

parameter space , the value of 
0  and V 1V

10 1[ , ]t t 0 and α α  related to an OGH curve  with respect 
to the endpoint conditions 

0 1( ), [ , ]P t t t t∈

0 1 0 1{ , , , }P P V V  is obtained as follows: 
if  are unparallel，then 0  and V 1V

2
1 0 0 1 1 0 1 0 1

0 2 2 2
0 1 0 1 1 0

2
1 0 1 0 1 0 0 0 1

1 2 2 2
0 1 0 1 1 0

2[( ) ] 2[( ) ]( )
[ ( ) ( ) ]( )

2[( ) ] 2[( ) ]( )
[ ( ) ( ) ]( )

P P V V P P V V V
V V V V t t

P P V V P P V V V
V V V V t t

α

α

⎧ − ⋅ − − ⋅ ⋅
=⎪ − ⋅ −⎪

⎨
− ⋅ − − ⋅ ⋅⎪ =⎪ − ⋅ −⎩

                                  (3) 

if  are parallel，then 0  and V 1V 10  and α α  satisfy the equation 



 
 

2 1 0 0
0 0 1 0 1

1 0

2( )
  

P P V
V V V

t t
α α

− ⋅
+ ⋅ =

−
                                               (4). 

Proof. From Eq. (2), the curvature variation of E ( )P t can be represented as a function of 

0  and 1α α  as follows: 

2 2
1 0 1 0 0 0 1 1 0 0 1 15 4 3

1 0 1 0 1 0

144 144 36( ) ( )( ) (
( ) ( ) ( )

E P P P P V V V
t t t t t t

α α α α= − − − + + +
− − −

)V

1

 

The optimization problem is equivalent to finding the minimum point of the above equation. Theorem 1 
can be obtained by solving the corresponding linear equations. 

0  and α α  defined in Eqs. (3) and (4) are called the optimized coefficients of the tangent 
vectors of at , respectively. Obviously, ( )P t 0 and t 1t 10 and α α  are not necessarily positive, so the 
magnitudes of the endpoint tangent vectors of the OGH curve may be zero, or the directions may be 
opposite to the given tangent vectors. Neither of these is desired. Hence, we discuss the tangent angle 
conditions ensuring 0 and 1α α  positive, subsequently. 

Theorem 2 , is an OGH curve with respect to the endpoint conditions 
,

0 1( ), [ , ]P t t t t∈

0 1 0 1{ , , , }P P V V 0  and 1α α  are the optimized coefficients of the tangent vectors of at , 
respectively. 

( )P t 0 1 and t t

0  and 1α α  are positive if and only if the following tangent direction preserving conditions 
         sin( ) 0     cos cos( 2 )
                                   cos cos( 2 )

        cos 0 
     

and
and

or and
or

θ ϕ θ θ ϕ
ϕ ϕ θ

θ ϕ θ
θ ϕ π

− ≠ > −
> −

= >
− = ±

  
  

     
                               (5) 

are satisfied, where θ  is the counterclockwise angle from vector 0 1P P
uuuur

 to , 0V ϕ  is the 

counterclockwise angle from vector 0 1P P
uuuur

 to , 1V , [0,2 )θ ϕ π∈ ，and θ ,ϕ  are named tangent angles. 
Proof. Without loss of generality, we assume ,  are both unit 

vectors. Thus, 
0 1[0,0] , [1,0]T TP P= = 0  and V 1V

T
0 1[cos ,sin ] , [cos ,sin ]TV Vθ θ ϕ= = ϕ

1V

. We discuss in two cases: 

1) When  are unparallel, substitute the coordinates of  into Eq.(3), we obtain 0  and V 0 1 0 1, , ,P P V V

   
0 2

1 0

1 2
1 0

2[cos cos cos( )]
sin ( )( )

2[cos cos cos( )]
sin ( )( )

t t

t t

θ ϕ θ ϕα
θ ϕ

ϕ θ θ ϕα
θ ϕ

− −⎧ =⎪ − −⎪
⎨ − −⎪ =
⎪ − −⎩

   

Obviously, 0 1  are unparallel if and only if  and V V sin( ) 0θ ϕ− ≠ , which can ensure denominator of 
the above two equations not to be zero. Therefore, 

0 0α > , if and only if cos cos cos( ) 0θ ϕ θ ϕ− − > , 

1 0α > , if and only if cos cos cos( ) 0ϕ θ θ ϕ− − > . 
Simplifying the above two inequalities, we get 

cos cos( 2 ) and cos cos( 2 )θ θ ϕ ϕ ϕ θ> − > − . 
2) When  are parallel, i.e., 0  and V 1V sin( ) 0θ ϕ− = , 0 and 1α α  merely satisfy Eq. (4), substitute the 

coordinates of  into Eq. (4), we obtain 0 1 0 1, , ,P P V V

0 1 1 0cos( ) 2 cos /( )t tα α θ ϕ θ+ − = −                                            (6) 

a） If  are in the same direction, i.e., 0  and V 1V θ ϕ= , then Eq. (6) is equivalent to 

0 1 1 02cos /( )t tα α θ+ = − .    

Thus, 0 1, 0α α >  if and only if cos 0θ > . 

b） If  are in the opposite direction, i.e.,0  and V 1V θ ϕ π− = ± , then Eq. (6) is equivalent to 

0 1 1 02cos /( )t tα α θ− = − . 



 
 

Obviously, whatever θ  is, we can always find positive 0 and 1α α  that satisfy the equation. 
Summarizing the above two cases 1) and 2), we obtain the conclusion of theorem 2. 
 If the given tangent angles satisfy the condition (5), then the constructed OGH curve can 
preserve directions of the given tangent vectors and has the smallest curvature variation, i.e., 
mathematically smooth, but it may not be geometrically smooth, i.e., it may have loops, cusps or folds. So 
we discuss the geometric smoothness conditions below. 
 Theorem 3 , is an OGH curve with respect to the endpoint 
conditions , then  is geometric smoothness if it satisfies the conditions: 

0 1( ) [ ( ), ( )] , [ , ]TP t x t y t t t t= ∈

0 1 0 1{ , , , }P P V V ( )P t

 2
0

      sin( ) 0    tan tan 0
sin( ) 0    0 cos 2cos

and
or and

θ ϕ θ ϕ
θ ϕ α θ
− ≠ <
− = < <

  
   θ

                                  (7) 

where 0α is the optimized coefficient of the tangent vector of at , ( )P t 0t ,θ ϕ  are defined in theorem 2. 
conditions (7) is called the geometric smoothness conditions. 
 Proof. To make the OGH curve geometrically smooth, i.e., loop-, cusp- and fold-free, it’s 
sufficient to guarantee 0 1[ , ], ( ) 0 (or ( ) 0)t t t x t x t′ ′∀ ∈ > < . Then obviously, there aren’t any points on 

 making 0 1[ , ]t t ( ) 0x t′ = , thus doesn’t have any cusps. Moreover, ( )P t ( )x t is an increasing (or 
decreasing) function in this case, thus doesn’t have any loops or folds. ( )P t
 Without loss of generality, we assume , ,0 [0,0]TP = 1 [1,0]TP = 0 1[ , ] [0,1]t t = , and  are 
both unit vectors, then

0  and V 1V
T

0 1[cos ,sin ] , [cos ,sin ]TV Vθ θ ϕ= = ϕ . Obviously, all these assumptions don’t 
change the sign of ( )x t′ . Hence, we have 
 [ ] [ ]3 2

0 1 0 1 0( ) 2 cos cos 3 2 cos cos cosx t t t tα θ α ϕ α θ α ϕ α θ= − + + + − − +  
then 
 [ ] [ ]2

0 1 0 1 0( ) 3 -2 cos cos 2 3- 2 cos - cos cosx t t tα θ α ϕ α θ α ϕ α′ = + + + + θ

1V

                (8) 
We discuss in two cases: 
1) While are unparallel, i.e.,0  and V sin( ) 0θ ϕ− ≠ , 0 and 1α α  are obtained from Eqs. (3), i.e., 

0 2

1 2

2[cos cos cos( )]
sin ( )

2[cos cos cos( )]
sin ( )

θ ϕ θ ϕα
θ ϕ

ϕ θ θ ϕα
θ ϕ

− −⎧ =⎪ −⎪
⎨ − −⎪ =
⎪ −⎩

 

Substituting to (8), we get 
2 2

2

2(cos cos ) 2cos sin( )
sin( )sin ( )

x t tϕ θ θ ϕ
θ ϕθ ϕ

−′ = −
−−

. 

Let A  notate the coefficient of  in t ( )x t′ , then 

a） When 2 2cos cosϕ θ= , . Then, 0A = [0,1], ( ) 0 (or 0)t x t′∀ ∈ > < , as long as 

2cos sin 0 (or 0)
sin( )

θ ϕ
θ ϕ

− >
−

< , i.e., cos sin 0θ ϕ ≠ .  

Obviously, the condition is true if tan tan 0θ ϕ < . 

b） When 2 2cos cosϕ θ≠ , . Then 0A ≠ [0,1], ( ) 0 (or 0)t x t′∀ ∈ > < , as long as 

2

2cos sin(0) 0
sin( )

2sin cos sin( )(1) 0
sin ( )

x

x

θ ϕ
θ ϕ

θ ϕ θ ϕ
θ ϕ

⎧ ′ = − >⎪ −⎪
⎨ −⎪ ′ = >
⎪ −⎩

  or   
2

2cos sin(0) 0
sin( )

2sin cos sin( )(1) 0
sin ( )

x

x

θ ϕ
θ ϕ

θ ϕ θ ϕ
θ ϕ

⎧ ′ = − <⎪ −⎪
⎨ −⎪ ′ = <
⎪ −⎩

. 

the above inequalities are equivalent to cos sin 0
sin cos

θ ϕ
θ ϕ

< , i.e., tan tan 0θ ϕ < . 

2) While  are parallel, i.e., 0  and V 1V sin( ) 0θ ϕ− = , 0 and 1α α  merely satisfy Eq. (4). 



 
 

① If  are in the same direction, i.e.,0  and V 1V θ ϕ= , Eq.(4) is equivalent to 0 1 2cosα α θ+ = . 
Substituting to (8), we get 
 2 2 2

0 0( ) 6sin 2(3 cos 2cos ) cosx t t tθ α θ θ α′ = − + − − + θ  
Let  notate the coefficient of  in B 2t ( )x t′ . Obviously, 0B ≤ .  Thus , 

a） When 0θ = , , then 0B = [0,1], ( ) 0 (or 0)t x t′∀ ∈ > < , as long as 

   , 0 0

0 0

(0) 0 (0) 0
      or     

(1) 2 0 (1) 2 0
x x
x x

α α
α α

′ ′= > = <⎧ ⎧
⎨ ⎨′ ′= − > = − <⎩ ⎩

          Simplifying the above inequalities, we get 00 2α< < . 

b） When θ π= , , then 0B = [0,1], ( ) 0 (or 0)t x t′∀ ∈ > < , as long as  

0 0

0 0

(0) 0 (0) 0
      or      

(1) 2 0 (1) 2 0
x x
x x

α α
α α

′ ′= − > = − <⎧ ⎧
⎨ ⎨′ ′= + > = + <⎩ ⎩

, 

Simplifying the above inequalities, we get 02 0α− < < . 

c) When sin 0θ ≠ , , then 0B < [0,1], ( ) 0 (or 0)t x t′∀ ∈ > <

>

, as long as  

0
2

0

(0) cos 0
(1) 2cos cos 0

x
x

α θ
θ α θ

′ = >⎧
⎨ ′ = −⎩

 or 0
2

0

(0) cos 0
(1) 2cos cos 0

x
x

α θ
θ α θ

′ = <⎧
⎨ ′ = − <⎩

 

      Simplifying the above inequalities, we get 2
00 cos 2cosα θ θ< < . 

Obviously, the conclusions of a) and b) can be included in c), i.e., 2
00 cos 2cosα θ θ< < . 

② If  are in the opposite direction, i.e., 0  and V 1V θ ϕ π− = ± , the proof process is similar to ①. 
Summarizing the above two cases 1) and 2), we obtain the conclusion of Theorem 3. 
 From Theorems 2 and 3, we conclude that conditions (5) and (7) can both be satisfied when 
( , ) (0, / 2) (3 / 2,2 ) (3 / 2,2 ) (0, / 2)θ ϕ π π π π π π∈ × ∪ × . Obviously, if the given tangent angles are in the 
region, the corresponding OGH curve is the most ideal for having minimum curvature variation, 
preserving tangent vector directions and loop-, cusp- and fold-free. While the curve is not pleasing if 
either (5) or (7) cannot be satisfied, hence, we should consider COH curves, which can achieve the whole 
smoothness requirements by ensuring automatic satisfaction of conditions (5) and (7) for each OGH 
segment. 

 

4.  Methods for constructing COH curves 
 

The definition of a COH curve is as follows:  
 Definition 2 A piecewise cubic polynomial curve is called a composite optimized geometric 

Hermite (COH) curve if the curve is G1 and each segment of the curve is an OGH curve. 
Below, for the given tangent angles not satisfying (5) and (7) simultaneously, the corresponding 

methods for constructing 2-segment or 3-segment COH curves will be given. Firstly, methods for 
constructing 2-segment COH curves are given. In these methods, the joint and the tangent vector at the 
joint of the two OGH segments are denoted , respectively. The counterclockwise angles at the 
endpoints of these OGH segments with respect to their base lines are denoted 

and QQ V

1 2 3 4, ,  and φ φ φ φ , 
respectively (see Fig.1 (1)-(2)). 
Method M1.  If ( , ) [0, / 2) (0, / 2)θ ϕ π π∈ × , then  are determined by setting and QQ V

{1
,         (0, / 2)
/ 4,    0

θ θ πφ ϕ θ
∈=
= ,  on the perpendicular bisector of Q 0 1P P , and {2

( ) / 3,   (0, / 2
( ) / 6,   0
θ ϕ θ πφ θ ϕ θ
+ ∈= + =

) . 

Method M2. If ( , ) (0, / 2] ( ,3 / 2]θ ϕ π π π∈ × , then  are determined by setting and QQ V

  1 4 2/ 2,  (2 ) / 2,  and 3φ θ φ π ϕ φ φ= = − = . 



 
 

  
Methods for constructing 3-segment COH curves are given next. In these methods, the joints 

and the tangent vectors at the joints of the three OGH segments are donated and , 
respectively. The counterclockwise angles at the endpoints of these OGH segments with respect to their 
base lines are donated 

0 1,Q Q
0 1
,q qV V

1 2 3 4 5 6, , , ,  and φ φ φ φ φ φ , respectively (see Fig. 1 (3)-(6)). 
Method M3.  If ( , ) [0, / 2) [ / 2, ]θ ϕ π π∈ × π , then  are determined by setting 

0 10 1, , ,q qQ Q V V

{1
,         (0, / 2)
/18,    0

θ θ πφ π θ
∈=
= , 0 0 0 1 / 3P Q P P= , 2 1φ φ= , 2

3 2
φ

φ = , {6
/ 2,    [ / 2, )

4 / 9,  
ϕ ϕ π πφ π ϕ π

∈=
=

, and 4 5φ φ= . 

Method M4. If ( , ) [ / 2, ] (0, / 2]θ ϕ π π π∈ × , then  are determined by setting 
0 10 1, , ,q qQ Q V V

{1
/ 3,                 / 2

7 /8 3 / 4,   ( / 2, ]
π θ πφ π θ θ π π

==
− ∈ ,  0 0 0 1 /8P Q P P= ,  2 1φ φ= ,  0 1Q Q

uuuuur
bisecting the counterclockwise 

angle fromV to , 
0q 0 0 6Q P

uuuuur
/ 2φ ϕ= , and 4 5φ φ= .  

Method M5. If ( , ) ( / 2, ] ( / 2, )θ ϕ π π π π∈ × , then  are determined by setting  
0 10 1, , ,q qQ Q V V

1 5 / 6 2 / 3φ π θ= − , 0 0 0 1 / 6P Q P P= ,  2 1φ φ= ,  Q Q0 1

uuuuur
 bisecting the counterclockwise angle from 

 to , ,  and 
0qV 0 0Q P

uuuuur {6
5 /8 / 4,  [17 / 30, ]

/12,      ( / 2,17 / 30)
π ϕ ϕ π πφ ϕ π ϕ π π

− ∈=
− ∈ 4 5φ φ= . 

Method M6. If ( , ) ( / 2, ] [ ,3 / 2)θ ϕ π π π π∈ × , then  are determined by setting 
0 10 1, , ,q qQ Q V V

{1
/ 2,    ( / 2, )

7 /16,  
θ θ π πφ π θ π

∈= = , 0 0 0 1 / 2P Q P P= , 0 1 0 1//Q Q P P
uuuuur uuuur

, {6
/ 2,  ( ,3 / 2)

7 /16,     
π ϕ ϕ π πφ π ϕ π
− ∈=

=
, 2 3φ φ= ,  

and 4 5φ φ= . 
 It can be easily obtained that the tangent angles of each OGH segment of the COH curves 
generated by above methods are all in the region (0, / 2) (3 / 2, 2 ) (3 / 2, 2 ) (0, / 2)π π π π π π× ∪ × , so these 
methods can guarantee automatic satisfaction of conditions (5) and (7) for each segment and consequently, 
the satisfaction of the whole smoothness requirement of the COH curve. 

 

5. Extension of the constructing methods 

2φ  Q
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4φ
1V

(1) Method M1 

1φ
0V

0P 1P
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Fig. 1. Methods for constructing 2-segment and 3-segment COH curves 



 
 

Let M0 denote the method generating OGH curves (i.e., 1-segment COH curves). Obliviously, 
the above seven methods M0~M6 cannot cover the entire θϕ -space, [0,2 ) [0,2 )π π× . So we extend the 
methods as follows: 

( )P t is an COH curve generated by method M  (shown in Fig.2), ( )TP t is a new curve 
symmetric to with respect to the base line of , is a new curve reversing , and ( )P t ( )P t ( )RP t ( )P t

( )RTP t is a new curve symmetric to ( )RP t with respect to the base line of ,  then the methods 
generating , and 

( )RP t

( )TP t ( )RP t ( )RTP t  are called , and T R RTM M M , respectively. 
If the applicable region of method M  is 1 2 1 2( , ) [ , ] [ , ]θ ϕ θ θ ϕ ϕ∈ × , then the applicable regions 

of methods TM  ,  RM and RTM  are 2 1 2( , ) [2 ,2 ] [2 ,2 ]T T
1θ ϕ π θ π θ π ϕ π∈ − − × − −ϕ

1

, 

2 1 2( , ) [2 ,2 ] [2 ,2 ]R Rθ ϕ π ϕ π ϕ π θ π∈ − − × − −θ ) [ , ] [ , ]RT RT and ( , 1 2 1 2θ ϕ ϕ ϕ θ θ∈ × , respectively, all these 
regions are generally called extension regions of M . Obviously, after above extension, methods 

, with the addition of , , and , 0,1, 6T R RT
i i i iM M M M i = L 0, 0θ ϕ= =  (OGH curve is a line in this case) 

can cover the entire θϕ -space, [0,2 ) [0,2 )π π× . 
 

( )P t  

( )TP t  

( )P t ( )RP t ( )P t  

( )RTP t  

Fig. 2.  Extension of methods for constructing COH curves 

 

6. Comparison of the COH curves with different object functions 
 

The discussion above gives the tangent angle constraints that ensure the OGH curves with the 
object function of curvature variation (i.e., based on the smoothness criterion of MCV) mathematically 
and geometrically smooth and new methods for constructing COH curves. Following these curves are 
compared with those COH curves based on MSE by Yong and Cheng. 

As shown in Fig.3, (a)-(h) are examples of the COH curves based on MCV being better than 
those based on MSE; (i)-(n) are examples of the COH curves based on MSE being better than those based 
on MCV; and (o)-(p) are Examples of the COH curves with two object functions both being unpleasing. 
Note：Symbols ① and ② in figure denote the COH curve based on MCV and the COH curve based 
on MSE, respectively. 

From the examples, we can draw the conclusion as follows: 

When ( , ) [0, / 3] [0, ] [2 / 3, ] [ ,3 / 2) ( / 2, 2 / 3] [ , 4 / 3]
            [2 / 3, ] [ / 6, / 2] [ / 3, 2 / 3] [4 / 3,3 / 2]
θ ϕ π π π π π π π π π π

π π π π π π π π
∈ × ∪ × ∪ ×
∪ × ∪ ×

, shapes of the COH 

curves based on MCV are more pleasant. 

When ( , ) [0, / 3] ( , 2 ] [ / 3, 2 / 3] [3 / 2,5 / 3]
           [ / 3, / 2] [ , 4 / 3] [ / 3, 2 / 3] [ / 3, 2 / 3]          
θ ϕ π π π π π π π

π π π π π π π π
∈ × ∪ ×
∪ × ∪ ×

, shapes of the COH curves 

based on MSE are more pleasant. 
When ( , ) [2 / 3, ) ( / 2, )θ ϕ π π π π∈ × , shapes of the COH curves based on MCV and MSE are both some 
unpleasing. 
 We mark the above three regions R1, R2 and R3. After extension, they can cover tangent angles 
of all possible cases, and the results of comparisons in the extension regions are the same as their 
respective original regions. Furthermore, the proportion of the region R1 to the entire θϕ -space is 
approximately equal to that of the region R2. 
 

 



 
 

 

7. Conclusion 
 

The comparison above shows that the smoothness criterion of curves is not unique, so different 
ones should be adopted in different cases to achieve more pleasing shapes. This paper gives the 
conclusion that which criterion generates better curves when the tangent angles in different regions. Our 
discussion shows that the combination of the new methods with the Yong and Cheng’s methods can 
achieve a much better result. To the region in which curves based on two criterions are both unpleasant, 
new criterion should be considered, such as minimum curve length, that’s the future work. 
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