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Abstract 
 

This paper describes a method for extracting surfaces from multi-material CT (Computed 
Tomography) data. Most contouring methods such as Marching Cubes algorithm assume that CT data are 
composed of only two materials. Some extended methods such as [3, 6] can extract surfaces from the 
multi-material (non-manifold) implicit representation. However, these methods are not directly applicable 
to CT data that are composed of three or more materials. There are two major problems that arise from 
fundamentals of CT. The first problem is that we have to use n(n −1) /2 threshold values for CT data 
contains  materials and select appropriately one threshold value for each boundary area. The second is 
that we cannot reconstruct only from CT data in which area three or more materials are adjacent each 
other. In this paper, we propose a method to solve the problems by using image analysis and demonstrate 
the effectiveness of the method with application examples construct polygon models from CT data of 
machine parts.  
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1. Introduction 
 

CT (Computed Tomography) is a powerful non-destructive evaluation technique to generate 

cross-sectional x-ray images of objects, from which we can further produce three dimensional volumetric 

images. Characteristics of the internal structure of objects such as dimensions, shape, internal defects and 

density are readily available from CT images. 

In this study, we focused on the industrial application of x-ray CT to analyze multi-material 

machine parts. Compared to medical applications, industrial ones are prescribed relatively higher 

precision for their purpose. Therefore, we concentrate on solving problems which causes degradation of 

the precision when we extract surfaces from multi-material CT data. 

There are two major problems that arise from fundamentals of CT. Figure 1 shows the 

fundamentals in brief. CT values change gradually corresponding to the x-ray absorption of materials in a 

real space as shown Figure 1 (b), because each voxel value is influenced by surrounding area in a real 

space. Some filtered reconstruction methods are proposed, however the blur is still ineludible. 
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(a)                                           (b) 

Fig. 1. A typical example image of multi-material CT data (a) and transition of CT values on the red line (b). 

Currently, CT data do not clearly picture a real space. At the boundary of materials, CT values change gradually 

corresponding to the x-ray absorption of materials. 

 

Figure 2 shows the problems caused by the fundamentals. The first problem is that we have to 

use n(n −1) /2  threshold values for CT data contains  materials and select appropriately one 

threshold value for each boundary area. For example, when CT data contains  materials: 

background, aluminum and iron as shown in (a), we can take three threshold values: background-

aluminum, background-iron and aluminum-iron into account. For extracting the iron area properly, we 

have to use the aluminum-iron threshold value at the upper side of the area and the background-iron 

threshold value at the downside as shown in (c). We solve this problem by using a classification method 

described in Section 3.1. 

n
n = 3

Before illustrating the second problem, we define junction areas in which three or more 

materials are adjacent each other. The problem is that we cannot adopt existing contouring methods 

directly to junction areas. Because a CT value is influenced by surrounding areas, the value are not 

credible and so threshold values are indeterminable for extracting desired surfaces which are described as 

white lines in Figure 2(c). To solve the problem, we introduce a thinning method in Section 3.2. 

Figure 3 shows an overview of our method. Figure 3(a) describes an example of a multi-

material object. In this example, the white area is filled with higher x-ray absorption material (e.g. iron), 

the gray area is filled with lower x-ray absorption material (e.g. aluminum) and the black area is 

background (e.g. air). Figure 3(b) describes multi-material CT data of (a) and we call each element of 

   

(a)                            (b)                             (c) 

Fig. 2. Given multi-material CT data (a), we have to select from n(n −1) /2 threshold values to construct surfaces 

(b) and create non-manifold surfaces appropriately at the junction areas (c). 



 
 

data voxel based on common manner. This simple CT data shows our problems described earlier. To solve 

them, at the beginning, we apply voxel based classification to determine which threshold value we should 

use for extracting boundaries of two materials as shown in Figure 3(c). However, the classification is not 

perfect at this point. We cannot classify junction areas and then mark them as junction as shown in white 

voxels of Figure 3(c). Next, we construct cell models from classified voxels. A cell is cube comprising 

eight corner voxels. When all of voxels are classified (not marked as junction), we can determine a 

threshold value for these cells as shown in Figure 3(d). At the same time, junction areas remain in Figure 

3(d). Therefore, we apply cell thinning to remove junction cells and guarantee contouring algorithms can 

extract surfaces as shown in Figure 3(e). At the last, we apply a Marching Cubes variant which 

correspond to non-manifold objects as shown in Figure 3(f). 

   

 (a)                                (b)                                 (c) 

   

(d)                                (e)                                 (f) 

Fig. 3. An overview of our method: a multi-material object in a real space (a), multi-material CT data (b), voxel 

based classification (c), cells which are derived from classified voxels (d), cell thinning (e), and multi-material 

contouring (f). 
 

This paper consists of six sections. Section 2 surveys important related research works and 

Section 3 discusses our major contributions of this study. We propose three dimensional image analysis 

methods. Section 4 discusses an algorithm when applying the existing contouring method. Section 5 

shows some results obtained by prototype systems and Section 6 gives summary and future works. 

 



 
 

2. Related Works 
 

Cube-based methods such as the Marching Cubes algorithm [5] and its variants generate one or 

more triangles for each cube in the grid that intersects the contour of a signed field. Surface samples are 

computed by the intersection of the cube edges with the surface, and triangles connecting these samples 

are generated. Most cube-based techniques are conceptually derived from the Marching Cubes algorithm 

where a pre-processed triangulation is stored in a table for all possible configurations of edge 

intersections. Additionally, Lorensen's original Marching Cubes is unable to process non-manifold objects. 

Hege et al. [3] proposed the Generalized Marching Cubes. 

Furthermore, Nielson et al. [6] proposed the extended Marching Tetrahedra for segmented data. 

Their approached problems alike our ones, however, they are not referring threshold values and 

characteristics of CT images. Also, Adolfsson et al. [1] removed surface irregularities such as ridges at 

junction areas. However, they targeted medical applications and their purpose is different from us. 

Therefore we proposed a cell-based thinning algorithm [2] to extract surfaces from CT data of thin plate 

structures. 

We can apply a general contouring algorithm for the signed field to the cell. This paper 

discusses the generalized Marching Cubes algorithm but other algorithms are applicable in principle. 

However, they require Hermite data or normal vectors at samples that cannot be accurately defined in our 

typical CT image examples. Thus we cannot guarantee the accuracy with those contouring methods. 

 

3. Multi-material Image Analysis 
 

In this section, we discuss characteristics of multi-material CT data at the beginning. Then, we 

produce two methods which leverage the characteristics to solve the problems. The first method classifies 

voxels to select threshold values at boundary of two materials. Secondly, we construct cell models from 

voxels and apply a cell thinning algorithm to set up junction areas so that the contouring algorithm may 

extract desired surfaces. 

In Section 1, we remarked CT data do not clearly picture a real space. Therefore, we expect this 

CT blur is approximated by the Gaussian blur and test it through experiments. Figure 1(b) is a collateral 

evidence of the expectation. We applied the normal distribution curve to the graph and estimated the 

Gaussian kernel. In this example case, the Gaussian kernel is a sphere with radius 2 or 3 voxels. In other 

words, we blur the clear image of a real space by such a kernel, the result well-approximates CT data. 

Additionally, we define a distance value R which is the radius of the estimated spherical Gaussian 

kernel. We propose image analysis methods in the following subsections consistent with the blur 

characteristics and definition. 

 



 
 

3.1. Voxel based Classification 

When CT data contains N  materials, we denote average CT values of those materials by 

. A value  is obtained by CT scanning a space filled with a material  and averaging 

values to cancel noises. Next, we denote a threshold value to extract the boundary between material 
  (v1,v2,L,vn ) vi mi

x  

and  by . Because CT value of an arbitrary voxel is blurred by the Gaussian-like kernel, threshold 

value 

y txy

txy = (vx + vy ) /2 become good approximation. 

In the first step, we roughly classify all voxels by Table 1. This classification has a problem that 

there exists a material pair x, y  that satisfy t( i−1)i ≤ txy < ti(i+1)  where classes are given as 

. For example, we have no way of distinguishing the aluminum area and the transition 

area from background to iron based on only its CT value. 

a = ai(1< i < n)

 

CT Value Class of the 1st step

v < t12 a1 

t12 ≤ v < t23  a2 

t23 ≤ v < t34  a3 

  M

t(n−2)(n−1) ≤ v < t(n−1)n an−1 

t(n−1)n ≤ v  an  

 

Table. 1. We classify voxels into ai  depending on its value in the first step of voxel based classification. 

We solve this problem by using a geometrical three dimensional image analysis in the second 

step and the third step. Basically, these steps classify voxels again and again depending on how its 

neighbors were classified. 

In the second step, about a voxel  which is classified as class , we consider voxels  

comprised in 's neighbor sphere with radius 

V ai Vs

V rs . Where appropriate rs  is given, we can assume that a 

material of  is i  when all of  are classified as  and we define such a voxel has class . 

The assumption is considered reasonable and proper if 

V Vs ai b = bi

rs ≥ R. This step classifies regions which have 

some extents and filled with the same material. Figure 4 shows an example application of the second step. 



 
 

Figure 5 shows the result of the step and it is an input of the next step. 

 

Fig. 4. In the transition area from material 1 to material , the second step classifies voxels which we can 

determine its material certainly. 
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Fig. 5. The third step uses the neighbor sphere of the doubled radius, and classifies properly boundaries of two 

materials. 

 

In the third step, we consider voxels  in the same manner as the previous step.  

comprised in a voxel 's neighbor sphere with radius 

Vt Vt

V rt . This step aims exact detection of boundaries 

between two materials. We adopt a condition rt ≥ 2R  so that the neighbor sphere can involve two or 

more different $b$-classified voxels. Classes are given as a list  as 

shown in Figure 5. The list is consist of 
 (a j1

,a j2
,L,a jl

,bk1
,bk2

,L,bkm
)

l-tuple of classes  and -tuple of classes a j m bk . If m = 2 

and , we can determine a material of the voxel is either  or . We 

give class  to the voxel if v , or give class 
  
∀ j ∈ ( j1, j2,L, jl ),k1 ≤ j ≤ k2 k1 k2

b = bk1
< tk1k2

b = bk2
. We assume each material region has 

R voxel extent at the lowest and classifies properly boundaries of two materials. 

At this point, voxels which are not given class  remain. Such voxels compose a junction area, 

therefore we give class  to them. 

b
bjunction

 



 
 

3.2. Cell Thinning 
 

We construct a cell model from the classified voxels, because most contouring methods require 

not only voxels but also cells to extract surfaces. And we put a concept ¥textit{foreground} to work. If a 

set of cells represent objects in regular grid space, we say those cells are foreground cells (We can also 

say background cells in contrary senses, however this concept is ambiguous with the same term of 

material). 

In this subsection, we roughly construct a set of foreground cells  at the beginning. This is 

a discrete well-approximated of the desired surfaces. However we cannot apply contouring methods 

directly to , because junction areas still remain in . Therefore we remove unnecessary cells by 

using a cell thinning method and construct new foreground cells  from which we will extract desired 

surfaces. 

Cx

Cx Cx

CY

A set of foreground cells  consists of cells whose eight vertices are classified into two or 

more materials or one of vertices is classified into . If eight vertices have the same material 

except , the cell exists inside of an object and so no surface pass through it.  has the 

following properties: 

Cx

bjunction

b junction Cx

 

 If no class is  for each vertex of a cell, the cell is already valid to apply 

contouring methods. From the geometrical characteristics of voxel based classification, 

the cell represents a boundary and its eight voxels are classified just two materials. 

bjunction

 If classes of eight vertices involve , we call the cell junction cell and it is invalid 

for the contouring method. Therefore we apply a cell thinning method to those cells. 

bjunction

 

Now we construct a set of cells  from  as shown in Figure 6. We apply a cell thinning 

method to  to keep the topology of the surfaces. It is different between our method and the existing 

thinning methods that we take account of not only cells but also classified vertices and the result cells 

become suitable for contouring. 

CY Cx

Cx

     

Fig. 6. An overview of our cell thinning algorithm. Colored spheres describes the classified voxels. Especially we 

note that white spheres are junction voxels. In the first (upper-left) figure, junction cells are described as white 

squares. According to the progress of thinning process, white squares (cells) are removed and white spheres 

(vertices) are given another classes. 



 
 

Basically, our thinning process is described as the simple iteration of the following procedure: 

 

1. If eight voxels of a cell are classified into just two materials and one of them is , 

the cell is removable. In this case, we denote the classes by a list . 

bjunction

(bx,b junction )

2. If the cell is removable, we give all eight vertices class bx . As the result, vertices of 

adjacent cells are also re-classified. 

3. For a finale, we remove the cell. 

 

We repeat the iterations until no removable cell exists. When the terminal condition is satisfied, 

thinning is almost done excepting remarkable cases such as Figure 7. 

  

Fig. 7. A two dimensional example of remarkable cases: the terminal condition is already satisfied in the left. 

However a junction vertex still remains. Actually, we can give an arbitrary class to the vertex and then extract 

surfaces in those cases. The center and right show two from four possible results. 
 

At this point, we fall all of  into two categories: CY

 

 A cell which eight voxels are classified into two or more classes. The classes do not 

include  and so we can denote the list by . bjunction  (bx,by,L)

 A cell which eight voxels are classified into three or more classes. The classes include 

 and we denote the list by . We have to deal these cells as 

the remarkable cases. 

bjunction  (b junction ,bx,by,L)

 

We discuss about cells of the latter category. Those cells have one or more junction vertices. 

Therefore, we consider how to give an appropriate class to the vertices as shown in Figure 6. 

Consequently, we apply the following operations to the vertex: 

 

1. We inspect classes of the vertex neighborhoods. The classes may include  and 

one or more classes denoted by a list 

bjunction

 (bx,L) in addition to . bjunction

2. Replace the class of the target vertex by an arbitrary class  from   b (bx,L) . When the 

number of   (bx,L)  is greater than one, all choices are topologically equivalent. 



 
 

Applying the above processes, we construct a foreground cells  for extracting surfaces. By 

the way, what are represented by  that we remarked the approximation of desired surfaces? At the 

area wedged between different two materials, foreground cells well-approximate the boundary surface 

geometrically and topologically. In other words, we can determine an appropriate threshold value 

uniquely for those cells and contouring algorithms generate high-precision surfaces of real objects. Next, 

we examine junction areas. We does not use the information of CT data at the junction areas because CT 

values in the areas are not credible for their nonlinear behavior. Therefore, we adopt the cell thinning 

algorithm that assures only topological reasonabilities such as conductivities of surfaces. As the result, 

 is not good geometrical approximations in the junction areas. 

CY

CY

CY

 

4. Multi-material Contouring 
 

We constructed a cell model in the previous section, then we construct surfaces which pass 

through the cells. First, we determine a threshold value for each foreground cell. Next, we apply the 

existing contouring method to them. 

So-called contouring methods require signs and field values to extract surfaces. Figure 8 shows 

examples of the generalized Marching Cubes table [3]. If vertices are given signs, Marching Cubes 

algorithm always generates triangles in the cell. Note that the original Marching Cubes is not applicable 

to non-manifold objects by using only two signs plus and minus. However the generalized Marching 

Cubes algorithm can generate non-manifold surfaces by using two or more signs. 

  

Fig. 8. An optimization of the generalized Marching Cubes table [3]. The original Marching Cubes method [5] is 

only applicable for two-manifold objects. However by extending to use not only two signs but also more signs, we 

can create non-manifold surfaces. Three signs are given in this figure: red, green and blue. 
 

Therefore, we determine a sign for each vertex from its material. The determination is very 

simple. We only have to map a material to a sign one to one. Next, we consider field values for each 

vertex, because Marching Cubes algorithm and its variants calculate the position of a triangle vertex by 

linear interpolation of field values of two edge endpoints. If a cell is not derived from junction cells, 

vertices of the cell are classified by only two materials . In this case, we use a threshold value (bx,by )

txy = (vx + vy ) /2 and a field value f =| v − txy | for each vertex to contour. If a cell is derived from 



 
 

junction cells, we consider CT values bound to the cell are incredible. We have no alternative but to use a 

constant field value  to contour. In other words, we use trivial boundary mapping [4] which create a 

triangle vertex on the center of the cell edge. This strategy causes the bad geometrical accuracy of 

extracted surfaces. However CT data has enough information in junction areas, we consider the problem 

is insoluble as and when we use only CT data. 

fconst

After determination of signs and field values, we apply the existing Marching Cubes algorithm 

to the foreground cells and extract the boundary surfaces. 

 

5. Result 
 

We implemented the proposed methods on a standard workstation equipped with AMD Opteron 

1.8GHz and 16GB main memory. We experimented on several parts of a car engine-head as shown in 

Figure 9. The size of the whole CT data is 500 ×  700 ×  231 and the resolution is 0.4mm  0.4mm 

 0.5mm. 

×
×

 

Fig. 9. CT data of a car engine-head which contains aluminum parts (gray areas) and iron parts (white areas). 

Specially, we extracted two multi-material areas from the data for experiments. 
 

It took 18 seconds to extract 56,631 triangles from CT data of a manfold part (50  90  90) 

as shown in Figure 10. And it took 29 seconds to extract 102,659 triangles from CT data of an attachment 

part (130  120 ×  62) as shown in Figure 11. We checked our algorithm can select threshold values 

properly for surfaces between two materials and checked topologies of the generated surfaces are 

correctly constructed. In practice, the maximum error of the extracted surface is 

× ×

×

±0.1mm in the 

boundary areas. In the junction areas, the maximum error is ±0.5mm (as same as the voxel size). 

Parameters rs  and rt  are decided as rs = R and rt = 2R  through experiments. When we adopted 

bigger parameters, the junction areas grown. Contrarily, when we adopted smaller parameters, the 



 
 

maximum error of boundary areas enlarged. 

We also applied our algorithm to the whole CT data for feasibility study. It took 30 minutes to 

process the data and about 10 mega triangles are generated (Figure 12). 

   

 

Fig. 10. The left is the extracted polygon model of the manfold part. An iron ring are knocked into an aluminum 

manfold. The center shows non-manifold edges in red and boundary edges in blue. The right shows only the iron 

ring. 

   

 

Fig. 11. The left is the extracted polygon model of the attachment part. As same as shown Figure 10, an iron 

attachment is fit in an aluminum engine-head. The center shows non-manifold edges and boundary edges. The right 

shows only the iron attachment. 

  

Fig. 11. These are the whole polygon model of the engine-head.



 
 

 

6. Conclusion and Future Works 
 

We presented a new method for extracting surfaces from multi-material CT data. Our 

algorithms are based on three dimensional image analysis and aimed to solve the problems caused by 

fundamentals of CT itself. First, we applied a voxel based classification method to the data to detect 

boundary areas between two materials. Secondly, we proposed a cell thinning algorithm to solve 

problems at junction areas. Thus we could produce a cell model approximate desired surfaces. And last, 

we determined signs and field values for each vertex and applied the existing contouring algorithm to 

extract surfaces. 

Some of the problems to be resolved in future work include the issue of the accuracy of the 

junction areas. We consider we cannot improve the precision without another information except for CT 

data. Therefore, we plan to add some knowledge when extracting surfaces of junction areas. 
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